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At cosmological scales, one can actually measure two types of distances:
luminosity distance dL and angular diameter distance dA. Within General
Relativity, providing there are no processes eliminating photons from the
beam, these two distances are related by the so-called distance duality re-
lation. In this paper we used the measurements of the angular diameter
distance of 38 cluster of galaxies by Bonamente et al. together with our
own fits on the latest Union2 compilation of supernovae to test the dis-
tance duality relation in different cosmological models invoked to explain
accelerating expansion of the Universe. Our results demonstrate that dis-
tance duality violation parameter η(z) does not depend on the cosmological
model assumed, but considerably depends on assumptions about mass den-
sity distribution profile of the cluster. Maximum likelihood estimates of η
might be interpreted as the distance duality violation. However, this effect
is more pronounced for isothermal models of clusters than for the models
based on hydrostatic equilibrium. This suggests that more sophisticated
and accurate modeling of clusters mass density profiles is needed before the
X-ray + SZ technique becomes competitive to other methods of measuring
distances.
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1. Introduction
Last few decades brought a real revolution in cosmology. It is most re-

markably manifested by discovery of the accelerating expansion of the Uni-
verse, which means that about 70% of the content of the Universe is in the
form of the so-called dark energy. More than a decade of intensive research
focused on the accelerating expansion of the Universe brought the consensus
that the puzzle is real. This phenomenon was first discovered in Hubble di-
agram for the Type Ia supernovae (SNIa) [1] and now is strongly supported
by the data from a large number of independent studies of SNIa [2], cosmic
microwave background radiation (CMBR) anisotropies and baryon acoustic
oscillations imprinted in the large scale structure power spectrum [4]. The
fact that 70% of the content of the Universe is completely unknown to us
has far reaching consequences to both cosmology and fundamental physics
— it is really a revolution. However, this revolution was only possible be-
cause of the advances in cosmic distance determinations going far beyond
classical distance tracers such like cepheids. The story has additional compli-
cation because, at cosmological scales, space-time can no longer be treated as
Minkowski space but is rather the Friedman–Robertson–Walker space-time.
As a consequence, there is some ambiguity in the notion of the distance.
Namely, besides the distance measure suggested by the metric (often called
the comoving distance), which is not directly observable, one uses (obser-
vationally motivated) luminosity distance dL and angular diameter distance
dA. Fortunately, these distances are related to each other by the so-called
reciprocity [5] relation dL(z) = (1 + z)2dA(z). Bassett and Kuntz [6] were
the first to pose the question: what if the reciprocity relation is violated?
The relation could be violated if there exist processes eliminating photons
from the beam on the way between the source and the observer, or — which
is the most extreme case — if gravity is not described by a metric theory
and photons do not follow null geodesics. Contemplating such cases is not
purely academic since the first concern that comes to ones mind is whether
the apparent supernovae dimming might be caused by unaccounted extinc-
tion or axion–photon mixing. Similarly, there are suggestions that perhaps
gravity should be modified at galactic and cosmological scales (e.g. MOND
and its relativistic extensions [7]).

After [6] various tests of Etherington reciprocity relation have been per-
formed: by Uzan et al. [8] and then by other authors [9]. Interpretation
of the disagreement between dL(z) and dA(z) seen in the data can be ob-
scured, however, by time varying cosmic equation of state. Therefore, in
this paper we test the reciprocity relation in the framework of several cos-
mological scenarios invoked to explain accelerating expansion. In the similar
spirit [10] discussed sensitivity of Lorentz invariance violating effects on the
cosmological model assumed.
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2. Cosmological models tested

The ΛCDM model is a standard reference point in modern cosmology. It
is also called the concordance model since it fits rather well to independent
data (such as CMBR data, Large Scale Structure considerations, supernovae
data). There are, however, reasons why we are not fully satisfied with the
concordance scenario. They can be summarized as the fine-tuning problems.

Therefore the next, popular explanation of the accelerating Universe
is to assume the existence of a negative pressure component called dark
energy. One can heuristically assume that this component is described by
hydrodynamical energy-momentum tensor with (effective) cosmic equation
of state: p = wρ where w < −1/3. In such case this component is called
“quintessence”. Usually the quintessence is attributed to some sort of a scalar
field. Another scalar field invoked by cosmologists is the inflaton, which in
order to accomplish its role as driving the inflation and creating particles
at the reheating epoch, clearly had its own dynamics. Therefore, thinking
about quintessence as having origins in the evolving scalar field would lead
to a natural expectation that w coefficient should vary in time, i.e. w =
w(z). Bearing in mind that the scale factor a(t) is a real physical degree of
freedom instead of the redshift z, the parametrization of w(z) = w0 +wa

z
1+z

developed by [11] turned out to be well suited for such case. Two more
different models deserve a mention: the Chaplygin gas and brane-world
model of Dvali, Gabadadze and Porrati. The formulae for the expansion
rates in these models are given in Table I.

TABLE I

Expansion rates H(z) in cosmological models representative to various dark energy
scenarios.

Model Cosmological expansion rate H(z) (the Hubble function)

ΛCDM H2(z) = H2
0

[
Ωm (1 + z)3 +ΩΛ

]
Quintessence H2(z) = H2

0

[
Ωm (1 + z)3 +ΩQ (1 + z)3(1+w)

]
Chevalier–
Polarski– H2(z) = H2

0

[
Ωm (1 + z)3 +ΩQ (1 + z)3(1+w0+wa) exp(−3waz

1+z )
]

Linder
Chaplygin Gas H2(z) = H2

0

[
Ωm(1 + z)3 +ΩCh

(
A0 + (1−A0)(1 + z)3(1+α)

) 1
1+α
]

Braneworld H2(z) = H2
0

[
(
√
Ωm(1 + z)3 +Ωrc +

√
Ωrc)

2
]
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In the class of generalized Chaplygin gas models matter content of the
Universe consists of pressure-less gas with energy density ρm representing
baryonic plus Cold Dark Matter (CDM) and of the generalized Chaplygin gas
with the equation of state pCh = − A

ρCh
α representing dark energy responsible

for acceleration of the Universe. Values of α exponent close to zero mean
that the model is equivalent to ΛCDM case. Chaplygin models have been
confronted with supernovae data e.g. in [12, 13]. At last, the brane-world
models belong to the class of theories which seek the solution of presently
accelerating expansion of the Universe not in an exotic material component,
but in modifications of gravity. According to this picture, our 4-dimensional
Universe is a surface (a brane) embedded into a higher dimensional bulk
space-time in which gravity propagates. Therefore, there exists a certain
cross-over scale rc above which an observer will detect higher dimensional
effects. See [13] and the references therein for more details.

3. Method and results

In order to test reciprocity relation, one should have independent data
on luminosity and angular diameter distances over a range of redshifts.

For more than a decade now, supernovae Ia have been used as standard
candles of cosmology. The latest data set, comprising n = 557 supernovae,
comes from the compilation given in [3] also known as Union2. In [13] we
have used this set to fit cosmological parameters for the models described in
the previous section. These best fitted models will serve as a reference point
for calculating theoretical distances. Then, the observed angular diameter
distances dobs

A will be taken from Bonamente et al. [14] (Tables 2, 4 and 5).
They combined the X-ray data from Chandra with Sunyaev–Zel’dovich (SZ)
effect measurements for 38 clusters to obtain the angular diameter distances
dA(z). Essentially, the idea is analogous to the original Alcock–Paczyński
test where the transverse size of the cluster is inferred from X-ray data,
and the radial one from the SZ effect. The results depend on the assumed
mass (baryonic and Dark Matter) distribution in cluster, hence three cases
were considered in [14]: hydrostatic equilibrium model (Table 2), spherical
isothermal model (Table 4) and spherical cored isothermal model (Table 5).
Because the X-ray surface brightness depends on the luminosity distance
as well, the angular diameter distances obtained that way are affected by
potential deviations from the Etherington’s relation.

Following [8] we define the measure of violation of the reciprocity relation

η(z) :=

√
dth

A (z)
ddata

A (z)
, (1)
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where: dth
A (z) denotes theoretical angular diameter distance. However, we do

not know what the true, theoretical angular diameter distance is. Therefore,
we assume it to be the one calculated for each cosmological models tested, by
using respective expansion functions H(z) from the Table I with parameters
(like Ωm, w, w0, wa, etc.) taken as best fitted to the Union2 supernovae
(values from Table 3 in [13]). In other words, cosmological model parameters
obtained from standard candles serve as input for calculating theoretical dth

A ,
which are then compared with measured ddata

A .
For each of the 38 clusters we have calculated individual values of η(z)

given different assumptions on cosmological model and the cluster mass dis-
tribution. Fig. 1 shows η(z) error bars for the quintessence scenario under
hydrostatic equilibrium model of [14]. It turns out to be representative to all
other cosmological models. The likelihood function for η is shown in Fig. 2.

Fig. 1. η(z) error bar plot for 38 Bonamente clusters in quintessence scenario under
the hydrostatic equilibrium assumption.

Fig. 2. Joint likelihood function for η.
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Maximum-likelihood estimates for η are summarized in Table II. One
can see that the measure of potential reciprocity violation η(z) does not
depend on cosmological model. However the dependence on the assumption
concerning cluster’s mass profile is significant.

TABLE II

Values of η(z) in five different cosmological scenarios for three models for galaxy
clusters mass distribution.

Cosmological Hydrostatic Isothermal Spherical
model equilibrium model cored model isothermal model

ΛCDM 0.962± 0.007 0.878± 0.018 0.873± 0.017
Quintessence 0.964± 0.007 0.879± 0.018 0.874± 0.016

Var Quintessence 0.964± 0.007 0.879± 0.018 0.874± 0.017
Chaplygin gas 0.962± 0.007 0.878± 0.018 0.873± 0.017
Braneworld 0.972± 0.007 0.887± 0.018 0.881± 0.017

4. Conclusions

In this paper we used the measurements of the angular diameter dis-
tance of 38 cluster of galaxies by Bonamente et al. [14] together with our
fits [13] on the latest Union2 compilation of supernovae to test the distance
duality relation in different cosmological models invoked to explain accel-
erating expansion of the Universe. Our results demonstrate that distance
duality violation parameter η(z) does not depend on the cosmological model
assumed, but considerably depends on assumptions about mass density dis-
tribution profile of the cluster. The maximum likelihood estimates of η
from the Bonamente sample (Table II) are all more than 2σ away from the
value of η = 1 which might suggest the distance duality violation. However,
this effect is more pronounced for isothermal models than for models based
on hydrostatic equilibrium, and one can expect that it simply tells us that
more sophisticated and accurate modeling of clusters mass density profiles
is needed before the X-ray + SZ technique becomes competitive to other
methods of measuring distances.
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