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NEW 4D RESULTS FROM SUPERSTRING THEORY∗
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Recent advances in relating superstring theory with dimension 4 via
exotic smooth geometries on Euclidean R4 are reviewed. The string the-
ory backgrounds and some configurations of Neveu–Schwarz and Dirichlet
branes describe exotic open 4-smoothness. This serves as a link to 4D
physics.
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1. Introduction

Superstring theory is probably the most advanced and promising ap-
proach toward formulating a theory of quantum gravity (QG). However, this
is not any complete quantum field theory (QFT) and its consistency requires
10 space-time dimensions. In order to grasp 4-dimensional (4D) physics
from 10D superstrings, many techniques were worked out. These are in
particular: compactification, flux stabilization, brane configuration model-
buildings, brane worlds, holography or AdS/CFT correspondence. However,
4d results obtained by these methods are highly ambiguous. Recent propo-
sition [1,2,3,4] relies on considering string theory as rich mathematics which
deals with 4-dimensional physics via special 4-geometry. This geometry is
smooth, exists exclusively in dimension 4, and is significant to physics in
4d. We have in mind exotic smooth structures on the simplest 4d topolog-
ical manifold, i.e. R4. Among all Rn only n = 4 case allows for different
smoothings of Euclidean Rn. Such programme seems to be a formidable
task, since exotic smooth R4’s are out of reach for conventional mathemat-
ical tools usually applicable in lower or higher dimensions in differential
geometry and topology. However, some results have been derived where su-
perstring theory was formulated on backgrounds containing 4-dimensional
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part which is exotic R4 rather than standard smooth R4. Moreover, some
exceptional properties of these 4 Riemannian geometries were found indicat-
ing strong connections with physical theories. Thus from this point of view
exotic smooth R4’s serve as a new important channel for superstring theory
leading to 4-dimensional physics.

In the next section, we present how exotic smooth R4s are involved
in string theory backgrounds and depend on the certain configurations of
Neveu–Schwarz (NS) and Dirichlet (D) branes. In Sec. 2.2, we address the
issue of quantum D-branes and show that even this level of string formalism
refers to exotic 4-smoothness. Subsequently in Sec. 3, we show the result of
the calculation of some energy spectra of a test particle on space-time where
the smooth structure is exotic and briefly comment on physics behind exotic
4-smoothness.

2. String backgrounds and quantum D-branes
from 4d smoothness

In classical gravity theory, i.e. in General Relativity (GR), the geome-
try is one of (pseudo)-Riemannian differentiable manifolds. String theory
has GR (10D Einstein equations) as its classical gravitational limit. How-
ever, in the quantum gravity (QG) limit the space-time geometry should
be drastically modified. In string theory, the concept of space-time as a
smooth manifold is not valid any longer in general. Rather, we have string
backgrounds which are described by 2-dimensional conformal field theory
(2d CFT) and σ models in suitable targets. However, these string back-
grounds still have well-defined geometric classical limits which appear to be
the triples (M, g,B) where, in addition to the pseudo-Riemannian smooth
manifold M and metric g, we have B-field, i.e. local 2-form on M . Con-
versely, every full string background, hence a 2d CFT plus σ-model with the
targetM , can be derived from some limiting classical geometry (M, g,B) [5].
In type II superstring theories, in addition to the metric Gµν and an anti-
symmetric H-field (three-form Hµνρ is the strength of the B-field) we have
the dilaton Φ. In heterotic strings, we have additionally the gauge field F aµν .
Some backgrounds are exact which means they survive at any order of α’
corrections. The existence of such backgrounds is of special and exceptional
character — the arguments based on these are universal and strong.

Abelian gerbes are classified by the integral classes of H3(M,Z). These
are geometric objects representing the third cohomologies similarly as com-
plex line bundles represent the second cohomologies from H2(M,Z). The
presence of B-field such that H is the curvature of a gerbe indicates that
the correct, semi-classical, geometry for string theory is the one based on
Abelian gerbes as supplementing Riemannian geometry [5, 6, 7].
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Moreover, supposing dilaton is constant and F aµν vanishes, the β-function
enforces the background be non-flat unless H = dB is zero. Given S3 part
of the linear dilaton background we have non-trivial H-field on it and in
order to avoid anomalies we restrict to the integral case H3(S3,Z). These
classes, however, are non-trivially generated by exotic R4

k, k ∈ Z. Namely,
the following strict relation was proved in [8]:

Theorem 1 (2009, [8]) Suppose we have the family of exotic R4’s in the
radial family whose members are embedded in standard R4. There exists a
corresponding family of 3-spheres in the boundaries of the Akbulut corks
for these exotic R4’s. Then each exotic R4 from the family as above is
determined by the codimension-1 foliation of the corresponding 3-sphere, with
non-vanishing Godbillon–Vey (GV) class in H3(S3,R). The radius in the
family, ρ, and value of GV are related by GV = ρ2.

On the other hand, the classification of D-branes in string backgrounds is
governed by K-theory of the background, or in the presence of H-field, by
twisted by H K-theory classes. This is briefly summarized in the next sub-
sections.

2.1. NS and D branes in type II

Let us consider following [2], the bosonic SU(2)k WZW model. In the
semi-classical limit, i.e. k → ∞, D-branes in group manifold SU(2) are
determined by wrapping the conjugacy classes of SU(2), i.e. are described
by 2-spheres S2s and two poles (degenerate branes) each localized at a point.
There are k + 1 D-branes on the level k SU(2) WZW model [9, 10, 11]. To
grasp the dynamics of the branes one should deal with the gauge theory on
the stack of N D-branes on S3. Non-commutative gauge theory emerges
[12] similar to the flat space case. Let J be the representation of SU(2)k
i.e. J = 0, 1

2 , 1, ... ,
k
2 . The non-commutative action for the dynamics of N

branes of type J in the string regime (k is finite), is then given by

SN,J =SYM + SCS =
π2

k2(2J+1)N

(
1
4

tr(FµνFµν)− i
2

tr(fµνρCSµνρ)
)
. (1)

Here, the curvature form Fµν(A) = iLµAν− iLνAµ+ i[Aµ, Aν ]+fµνρA
ρ and

the non-commutative Chern–Simons action reads CSµνρ(A) = LµAνAρ +
1
3Aµ[Aν , Aρ]. The fields Aµ, µ = 1, 2, 3 are defined on a fuzzy 2-sphere S2

J

and should be considered as N × N matrix-valued, i.e. Aµ =
∑

j,a aµj,aY
j
a

where Y j
a are fuzzy spherical harmonics and aµj,a are Chan–Paton matrix-

valued coefficients. Lµ are generators of the rotations on fuzzy 2-spheres and
they act only on fuzzy spherical harmonics [11]. Originally, the action (1) was
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designed to describe Maxwell theory on fuzzy spheres [13]. The equations
of motion derived from (1) read

LµF
µν + [Aµ, Fµν ] = 0 . (2)

The solutions of (2) describe the dynamics of the branes, i.e. the conden-
sation processes on the brane configuration (N, J) which results in another
configuration (N ′, J ′). A special class of solutions, in the semi-classical
k →∞ limit, can be obtained as: for J = 0 one has N branes of type J = 0,
i.e. N point-like branes in S3 sitting at the identity of the group. Given
another solution corresponding to JN = N−1

2 , then this is the condensed
state of N point-like branes at the identity of SU(2) [11]

(N, J) = (N, 0)→
(

1,
N − 1

2

)
=
(
N ′, J ′

)
. (3)

Taking k finite one refers to the boundary CFT. It follows that there exists a
continuous passage between the partition functions governed by the Verlinde
fusion rules coefficients N l

JN j
, which is Nχj(q), and the sum of characters∑

j N
l
JN j

χl(q), where N = 2JN + 1. In the case of N point-like branes, one
can determine the decay product of these

Z(N,0)(q) → Z(1,JN ) ,

(N, 0) → (1, JN ) (4)

which extends the similar process at the semi-classical k →∞ limit (3).
Thus there are k+ 1 stable branes wrapping the conjugacy classes num-

bered by J = 0, 1
2 , ...,

k
2 . Placing N point-like branes (each charged by the

unit 1) at the pole e causes their decay to the spherical brane JN wrapping
the conjugacy class. Taking more point-like branes to the stack at e gives
the more distant S2 branes until reaching the opposite pole −e, where we
have single point-like brane with the opposite charge −1. Having identified
k + 1 units of the charge with −1 we obtain the group of RR charges as
Zk+2. In the case of SU(2), we get (for K = k + 2)

K?
H

(
S3
)

= ZK . (5)

Now, let us place this S3 ' SU(2) at the boundary of the Akbulut cork
for some exotic smooth R4

k from the radial family as in Theorem 1. The
S3 belongs to the family of 3-spheres as appearing in Theorem 1. Thus the
result follows:

Certain small exotic R4’s generate the group of RR charges of D-branes
in the curved background of S3 ⊂ R4.
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And the important correspondence follows:

Theorem 2 ([2]) The classification of RR charges of the branes on the
background given by the group manifold SU(2) at the level k (hence the dy-
namics of D-branes in S3 in stringy regime) is correlated with the exotic
smoothness on R4 containing this S3 = SU(2) as the part of the boundary
of the Akbulut cork.

Let us consider now the linear dilaton geometry as the near horizon geometry
of the stack of N NS5-branes in supersymmetric model, i.e. R5,1 × Rφ ×
SU(2)k. Again placing this S3 ' SU(2) at the boundary of the cork we
have:

Theorem 3 ([2]) In the geometry of the stack of NS5-branes in type II
superstring theories, adding or subtracting a NS5-brane is correlated with
the change of the smoothness structure on the transversal R4.

2.2. Quantum and topological D-branes

In semi-classical regime, the space-time pseudo-Riemannian manifold in
superstring theory is replaced by the geometry of the background generated
by B-field. In the quantum regime further modification is required, namely
the geometry becomes non-commutative geometry generated by spectral
triples. Similar change is expected concerning the geometry assigned to
the world-volumes of D-branes considered as quantum objects. Thus one
defines ( [14]) a space-time as some separable C?-algebra A and D-brane
in such space-time is also a separable C?-algebra given by some spectral
triple (H,AM , T ). H is the separable Hilbert space and T is a self-adjoint
(unbounded) operator acting on the Chan–Paton Hilbert space.

Every small exotic R4 from the radial family, as in Theorem 1, de-
termines the codimension-1 foliation of S3 so one assigns a C?-algebra to
this 4-exotic. This algebra is precisely the non-commutative convolution
C?-algebra C?(V, F ) of the foliation (V, F ). The class of generalized stable
D-branes in C?-algebra is then defined [4]. Interesting connections of the
formalism with exotic 4-smoothness emerge:

Theorem 4 (2011, [4]) The class of generalized stable D-branes on the
C? algebra C?(S3, F1) (of the codimension-1 foliation of S3) determines an
invariant of exotic smooth R4,

Theorem 5 (2011, [4]) Let e be an exotic R4 corresponding to the codi-
mension-1 foliation of S3 which gives rise to the C?algebra Ae. The exotic
smooth R4 embedded in e determines a generalized quantum D-brane in Ae.
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Interestingly, the interpretation of D-branes as subspaces can be recovered
partially in the quantum regime for the special class of the topological quan-
tum D-branes. The embedding becomes now the wild embedding into space-
time, known from the topology of horned Alexander’s spheres.

Theorem 6 (2011, [3]) Let R4
H be some exotic R4 determined by an el-

ement in H3(S3,R), i.e. by a codimension-1 foliation of S3. Each wild
embedding i : K3 → Sp for p > 6 of a 3-dimensional polyhedron determines
a class in Hn(Sn,R) which represents a wild embedding i : Kp → Sn of
a p-polyhedron into Sn.

Topological quantum Dp-branes are these branes which are determined by
the wild embeddings i : Kp → Sn as above and in the classical and flat limit
correspond to tame embeddings. In fact, B-field on S3 can be translated
into wild embeddings of higher dimensional objects and generates quantum
character of these branes.

3. Where is physics?

Given the above rather formal results we are going to argue that exotic
R4s are also sound from the point of view of physics in 4D. First, the inter-
esting mixture of string theory backgrounds, CFT and differential geometry
techniques, led to the determining the energy spectra of a charged particle,
when the particle travels through the space-time and the smooth structure
of this space-time is the one of exotic R4. The calculations are performed
under presence of the almost constant magnetic field and in the regime of
QG backreactions. The result is the following spectrum [15]

∆Ekj,m,m =
1

k + 2
[
j(j + 1)−m2

]
+

(
2
√
k + 2eH −

(
λ+ 1

λ

)
m−

(
λ− 1

λ

)√
(1 + 2/k)m

)2

4(k + 2) (1− 2H2)
.(6)

k labels effects from different exotic R4
k and is the square of the quantum

radii of SU(2), λ is the moduli due to the gravitational backreaction of the
magnetic field H, e is the charge of a particle, j,m,m are quantum numbers
due to the symmetry of the contracted exotic R4

k.
Second, exotic R4

k regions in 4-space-time act as magnetic monopoles,
namely [8]: Some small, exotic smooth structures on R4 can act as sources
of magnetic field, i.e. monopoles, in space-time. Electric charge in space-time
has to be quantized, provided some region has this small exotic smoothness.
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Third, quantum effective matter as in the Kondo effect deals with exotic
smooth 4-geometry which when in high temperatures naturally allows for
QG description via superstring theory [15].

Next, in Riemannian geometry and GR we have the result: some large
exotic smooth R4s can act as the external sources of gravitational field in
space-time. This Brans conjecture was proved by Asselmeyer [16] in the
compact case, and by Sładkowski [17] in the non-compact case.

Other applications deal with neutrino oscillations and transport in dense
neutron stars where exotic 4-geometry is generated naturally, or, fractional
quantum Hall effect which refers to BCFT. The work is in progress.

All the results presented here were established in the cooperation with
Torsten Asselmeyer-Maluga.
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