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In this paper, we describe the GoSam (Golem/Samurai) framework for
the automated computation of multi-particle scattering amplitudes at the
one-loop level. The amplitudes are generated analytically in terms of Feyn-
man diagrams, and can be evaluated using either D-dimensional integrand
reduction or tensor decomposition. GoSam can be used to compute one-loop
corrections to Standard Model (QCD and EW) processes, and it is ready to
link generic model files for theories Beyond SM. We show the main features
of GoSam through its application to several examples of different complexity.
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1. Introduction

The discovery potential of the experimental programs at the LHC relies
heavily on the availability of higher order corrections for many relevant pro-
cesses [1]. The searches for the Higgs boson and the compilation of related
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exclusion limits need precise calculations for Higgs’ signal and background
processes. Further, it will be very important to have precise theory pre-
dictions at hand in order to constrain model parameters in the event that
a signal of New Physics will be detected. Therefore, it is of major impor-
tance to provide tools for next-to-leading order (NLO) predictions which are
largely automated such that signal and background rates for a multitude of
processes can be estimated reliably.

Already some time ago, the idea of automating NLO calculations has
been pursued with public programs like FeynArts [2] and QGRAF [3] for
diagram generation and FormCalc/LoopTools [4] and GRACE [5] for the
automated calculation of NLO corrections, primarily in the electroweak sec-
tor. In spite of this important progress, until the last few years we did
not observe a large production of calculations of one-loop amplitudes in-
volving more than four external legs. Only very recently, conceptual and
technical advances in multi-leg one-loop calculations allowed the calcula-
tion of six-point [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and
even seven-point [23, 24] processes, and opened the door to the possibility
of an automated generation and evaluation of multi-leg one-loop amplitudes,
rather than creating a collection of hard-coded individual processes.

Even if excellent process-specific programs are available, like MCFM
[25, 26, 27] and VBFNLO [28], nevertheless it is desirable to have flexible
tools at hand such that, in the same fashion already available at the tree-
level [29, 30, 31], any process which may turn out to be important can be
promptly evaluated at NLO accuracy.

Recently, we observed major advances in the direction of constructing
packages for fully automated one-loop calculations, see e.g. [32,33,34,35,36,
37,38,39]. Reviewing all the concepts that lead to these advances is beyond
the scope of this presentation1. In the development of our computational
tools, the OPP reduction technique [41, 42] and generalized D-dimensional
unitarity [43] turned out to be the most crucial ingredients.

The purpose of this talk is to present the program package GoSam [44]
which allows the automated calculation of one-loop amplitudes for multi-
particle processes. The integrand is generated via Feynman diagrams, using
QGRAF [3], FORM [45], spinney [46] and haggies [47]. The individual program
tasks are managed by python scripts. The only task required from the user
is the preparation of an “input card” in order to launch the generation of
the source code and its compilation, without having to worry about internal
details of the code generation.

1 Additional information can be found in other talks presented in this conference [40].
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Concerning the reduction, the program offers the possibility to use ei-
ther the D-dimensional extension of the OPP method, as implemented in
SAMURAI [34,48], or tensor reduction as implemented in Golem95C [49,50]
interfaced through tensorial reconstruction at the integrand level [51], or a
combination of both.

GoSam can be used to generate and evaluate one-loop corrections in both
QCD and electro-weak theory. Beyond the Standard Model theories can
be interfaced using FeynRules [52, 53] or LanHEP [54]. The Binoth-Les
Houches-interface [55] to programs providing the real radiation contributions
is also included.

In the following, we will provide a brief description of the main features
of the code, with particular attention to the generation of the code and the
various options to efficiently and automatically compute all rational terms.
We will conclude the presentation with some examples of applications.

2. Main features of GoSam

GoSam produces in a fully automated way all the code required to per-
form the calculation of one-loop amplitudes, by processing the information
contained in an “input card” prepared by the user. The main steps in this
process are: the generation of contributing diagrams, the optimization and
algebraic manipulation to simplify their expressions, and the writing of a
FORTRAN code ready to be used within a phase-space integration. The re-
duction of unintegrated amplitudes to linear combinations of scalar (master)
integrals is fully embedded in the process.

In this section, we give a brief overview of some general operations per-
formed by GoSam. A complete description of the framework, together with a
detailed explanation of all features available in GoSam, is currently in prepa-
ration and will be the subject of a forthcoming publication [44].

2.1. Diagram generation

For the diagram generation both at tree level and one-loop level we
employ the program QGRAF [3]. This program already offers several ways of
excluding unwanted diagrams for example by requesting a certain number of
propagators or vertices of a certain type or by specifying topological prop-
erties such as the presence of tadpoles or on-shell propagators. Although
QGRAF is a very reliable and fast generator we added another filter over di-
agrams by means of Python. This gives several advantages: first of all, the
possibilities offered by QGRAF are not always sufficient to distinguish certain
classes of diagrams; secondly, QGRAF cannot handle the sign for diagrams
with Majorana fermions in a reliable way; and finally, in order to fully op-
timize the reduction, we want to classify and group diagrams according to
the sets of their propagators.
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In our framework, QGRAF generates three sets of output files: an expres-
sion for each diagram for FORM [45], Python code for drawing each diagram
and Python code for computing the properties of the diagram. The model
information for QGRAF is either read from the built-in Standard Model file
or is generated from a user defined LanHEP [54] or Universal FeynRules
Output (UFO) [52] file. The Python program automatically performs several
operations: diagrams whose color factor turns out to be zero are dropped;
the number of propagators containing the loop momentum, the tensor rank
and the kinematic invariants of the associated loop integral are computed;
diagrams with a vanishing loop integral associated are detected and flagged
for the diagram selection; all propagators and vertices are classified for the
diagram selection; diagrams containing massive quark self-energy insertions
or closed massless quark loops are specially flagged.

Partitioning diagrams with similar structures and tracking their rank
are very important operations in order to reduce the number of operations
performed by the reduction and allow allow for a big gain in efficiency: after
carrying out the tensor reduction for one diagram, all other diagrams that
contain only a subset of the denominators are reduced with virtually no
additional computational cost. This is true both in the OPP method [41] as
implemented in CutTools [56] and SAMURAI [34] and in classical tensor
reduction methods as implemented in Golem95C [49, 50], PJFRY [57, 58] and
LoopTools [4, 59].

During this phase, GoSam also generates a LATEX file with the drawings of
all contributing diagrams. To achieve this task, we use our own implemen-
tation of the algorithms described in Ref. [60] and Axodraw [61] to actually
draw the diagrams.

2.2. Lorentz algebra

Concerning the algebraic operations performed by GoSam to render the
integral suitable for efficient numerical evaluation, one of the primary goals
is to split the (4−2ε) dimensional algebra into strictly four-dimensional ob-
jects and symbols representing the higher-dimensional remainder. In GoSam
we have implemented the ’t Hooft–Veltman scheme (tHV) and dimensional
reduction (DRED). In both schemes all external vectors (momenta and po-
larisation vectors) are kept in four dimensions. Internal vectors, however,
are kept in the n-dimensional vector space. We adopt the conventions used
in [46], where k̂ denotes the four dimensional projection of an in general
n dimensional vector k. The (n − 4) dimensional orthogonal projection is
denoted as k̃. For the integration momentum q we introduce in addition the
symbol µ2 = −q̃2, such that

q2 = q̂2 + q̃2 = q̂2 − µ2 . (1)
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We also introduce suitable projectors by splitting the metric tensor

gµν = ĝµν + g̃µν , ĝµν g̃νρ = 0 , ĝµµ = 4, g̃µµ = n− 4 . (2)

GoSam contains a library of representations of wave functions and prop-
agators up to spin two. The exact form of the interaction vertices is taken
from the model files.

Once all wave functions and propagators have been substituted by the
above definitions and all vertices have been replaced by their corresponding
expressions from the model file, all vector-like quantities and all metric ten-
sors are split into their four-dimensional and their orthogonal part. As we
use the ’t Hooft algebra, γ5 is defined as a purely four-dimensional object,
γ5 = iεµνρσγ̂

µγ̂ν γ̂ργ̂σ. By applying the usual anti-commutation relation for
Dirac matrices we can separate the four-dimensional and (n−4)-dimensional
parts of Dirac traces.

While the (n−4)-dimensional traces are reduced completely to products
of (n−4)-dimensional metric tensors g̃µν , the four-dimensional part is treated
such that the number of terms in the resulting expression is kept as small as
possible. Any spinor line or trace is broken up at any position where a light-
like vector appears. Furthermore, Chisholm identities are used to resolve
Lorentz contractions between both Dirac traces and open spinor lines. If
any traces remain we use the built-in trace algorithm of FORM [45].

2.3. Treatment of R2 terms

In the numerator of a one-loop diagram, terms containing the symbols µ2

or ε can lead to a so-called R2 term [62]. Therefore, the numerator function
can be written as

N
(
q̂, µ2, ε

)
= N0

(
q̂, µ2

)
+ εN1

(
q̂, µ2

)
+ ε2N2

(
q̂, µ2

)
. (3)

It is useful to observe that the terms N1 and N2 in Eq. (3) do not arise in
DRED, where only terms containing µ2 contribute to R2. Instead of relying
on the construction of R2 from specialized Feynman rules [63,64,65,66], we
can generate the R2 part along with all other contribution using automated
algebraic manipulations.

The code offers the option between the implicit and explicit construction
of the R2 terms. The implicit construction uses the splitting of Eq. (3) and
treats all numerator functions Ni on equal grounds. Each term in Eq. (3)
is reduced separately and the results are added up taking into account the
powers of ε. The explicit construction of R2 is based on the fact that the
non-purely 4-dimensional part of the numerator function contains powers of
µ2 or ε, and the expressions for the corresponding integrals are relatively sim-
ple and known explicitly. Therefore, after separating it using the algebraic
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manipulation described before, the (n − 4) dimensional part is computed
analytically whereas the purely four-dimensional part is passed to the nu-
merical reduction. This approach also allows for an efficient calculation of
the R2 alone.

2.4. Reduction to scalar (master) integrals

GoSam allows to choose at run-time (namely without regenerating the
code) the preferred method of reduction. Available options include the
integral-level D-dimensional reduction, as implemented in SAMURAI, or
traditional tensor reduction as implemented in Golem95C interfaced through
tensorial reconstruction at the integrand level, or a combination of both.

Concerning the scalar (tensorial) integrals [67,68], GoSam allows to choose
among a variety of options, including QCDLoop [69, 70], OneLoop [71],
Golem95C [49, 50], plus the recently added PJFRY [57, 58] and LoopTools
[4,59]. Among these codes, OneLoop and Golem95C also fully support com-
plex masses.

For details about the reduction methods, we refer the reader to previous
presentations [35, 36,37] or the original articles.

3. Examples

The GoSam codes have been tested on several processes, starting with
QCD 2→ 2 NLO amplitudes, up to more challenging processes with 2→ 4
particles (not counting decays) in the final state. Some examples are de-
picted in Table I. The full list of processes, with the details of all comparisons
performed, will be given in Ref. [44].

TABLE I

Some of the processes computed and checked with GoSam.

Process Checked with Ref.

ud→ e−νe g [38]
e+e− → e+e−γ (QED) [72]
pp→ H tt [38]
pp→W+W+jj [20]
pp→ bbbb [15, 16,32]
pp→W+W−bb [32, 38]
uu→ ttbb [32, 38]
gg → ttbb [32, 38]
ud→W+ggg [32]
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3.1. BLHA interface, GoSam, and SHERPA

The BLHA interface allows to link GoSam to a general Monte Carlo
event generator, which is responsible for supplying the missing ingredients
for a complete NLO calculation of a physical cross-section. Among those,
SHERPA [73] offers the possibility to compute the LO cross-section and
the real corrections with both the subtraction terms and the corresponding
integrated counterparts [74, 75, 76]. Using the BLHA interface, we linked
GoSam with SHERPA to compute physical cross-section for W± + 1-jet at
NLO.

We tested our results producing distributions for inclusive and exclusive
p⊥ and η of the jet, HT, and for p⊥ and η of the leptons (details will be
given in Ref. [44]). All distributions are in agreement with the ones produced
using SHERPA in combination with MCFM.
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Fig. 1. Comparison of the inclusive transverse momentum of W− + 1 jet between
Sherpa interfaced with GoSam and Sherpa interfaced with MCFM. For comparison
purpose we chose the kT-algorithm with pt,min = 50 GeV. The bars indicate the
statistical Monte Carlo error.

3.2. GoSam and neutralino pair production

As an example of the usage of GoSam with a model file different from
the Standard Model, we calculated the QCD corrections to neutralino pair
production in the MSSM. A calculation of the total cross-sections for neu-
tralino pair production at the LHC is also presented in Ref. [77]. The model
file has been imported via the UFO interface. To import such files within the
GoSam setup, all the user has to do is to give the path to the corresponding
model file in the input card.
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In this example, we combined the one-loop amplitude with the real ra-
diation corrections to obtain results for differential cross-sections. For the
infrared subtraction terms we employed MadDipole [78, 79], while the real
emission part is calculated using MadGraph/MadEvent [80]. The virtual
matrix element is renormalized in the MS scheme, while massive particles
are treated in the on-shell scheme. The renormalization terms specific to
the massive MSSM particles have been added manually. For the SUSY pa-
rameters we use the modified benchmarks point SPS1mod suggested in [81],
and use

√
s = 7TeV.

In Fig. 2 we show the differential cross-section for the mχ0
1χ

0
1
invariant

mass, where we employed a jet veto to suppress large contributions from
the channel qg → χ0

1χ
0
1q which opens up at order α2αs, but for large pjet

T
belongs to the distinct process of neutralino pair plus one hard jet production
at leading order.
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distributions for the process pp →
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1 with a jet veto on jets with pjet

T > 20 GeV and η < 4.5. The band gives
the dependence of the result on µ = µF = µR between µ0/2 and 2µ0. We choose
µ0 = mZ . The black line gives the bin error for the value at the central scale.

4. Outlook and conclusions

In the last five years, we observed major advances in our understanding of
one-loop scattering amplitudes. Aside from improvement on standard tenso-
rial techniques, the development of unitarity-based approaches, paired with
the decomposition at the integrand level contained in OPP method, changed
the landscape of this field, favoring the calculation of NLO amplitudes for
several challenging processes and the development of new theoretical frame-
works and tools for such calculations.
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For quite a long time, tree-level calculation have been fully automated
and included in flexible multi-process tools [29,30]. The level of automation
achieved by one-loop calculations is suggesting the possibility of a similar
success also for the NLO. One of the natural hopes for the future is to
devise ways of extending and generalizing what we understood so far about
one-loop amplitudes, in order to develop tools and methods for higher-order
calculations [82,83,84], but plenty of work is still needed to achieve this goal.

In this paper, we illustrated the main features of GoSam, a new program
package for the fully automated evaluation of one-loop scattering amplitudes
in any renormalizable quantum field theory. In its present form, GoSam can
be used to calculate one-loop corrections both in QCD and electro-weak
theory and offers the flexibility to link general model files for theories Beyond
the Standard Model. The amplitudes are generated in terms of Feynman
diagrams and the reduction to master (scalar) integrals can be performed in
several ways, which can be selected at run-time.

We presented several examples of one-loop calculations performed within
the GoSam framework, as well as preliminary results of interesting applica-
tions such as the interface with SHERPA. These examples demonstrate
the great flexibility, together with a competitive timing, of GoSam. We are
looking forward to tackle more challenging calculations and interfacing with
other existing tools in the coming months.

G.C. and G.L. are supported by the British Science and Technology
Facilities Council (STFC). N.G. was supported in part by the U.S. De-
partment of Energy under contract No. DE-FG02-91ER40677. P.M. and
T.R. were supported by the Alexander von Humboldt Foundation, in the
framework of the Sofja Kovaleskaja Award Project “Advanced Mathemati-
cal Methods for Particle Physics”, endowed by the German Federal Ministry
of Education and Research. The work of G.O. was supported in part by the
National Science Foundation under Grant PHY-0855489 and PSC-CUNY
Award #63275-00 41. The research of F.T. is supported by Marie-Curie-
EIF, project: “SAMURAI-Apps”.

REFERENCES

[1] Z. Bern et al. [NLO Multileg Working Group], arXiv:0803.0494 [hep-ph];
J.R. Andersen et al. [SM and NLO Multileg Working Group],
arXiv:1003.1241 [hep-ph].

[2] T. Hahn, Comput. Phys. Commun. 140, 418 (2001).
[3] P. Nogueira, J. Comput. Phys. 105, 279 (1993).

http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1006/jcph.1993.1074


2360 G. Cullen et al.

[4] T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999).
[5] G. Belanger et al., Phys. Rep. 430, 117 (2006).
[6] C.F. Berger et al., Phys. Rev. D80, 074036 (2009).
[7] C.F. Berger et al., Phys. Rev. Lett. 102, 222001 (2009).
[8] R.K. Ellis, K. Melnikov, G. Zanderighi, Phys. Rev. D80, 094002 (2009).
[9] K. Melnikov, G. Zanderighi, Phys. Rev. D81, 074025 (2010).
[10] C.F. Berger et al., Phys. Rev. D82, 074002 (2010).
[11] A. Bredenstein et al., Phys. Rev. Lett. 103, 012002 (2009).
[12] A. Bredenstein et al., J. High Energy Phys. 1003, 021 (2010).
[13] G. Bevilacqua et al., J. High Energy Phys. 0909, 109 (2009).
[14] G. Bevilacqua et al., Phys. Rev. Lett. 104, 162002 (2010).
[15] T. Binoth et al., Phys. Lett. B685, 293 (2010).
[16] N. Greiner et al., Phys. Rev. Lett. 107, 102002 (2011).
[17] G. Bevilacqua et al., J. High Energy Phys. 1102, 083 (2011).
[18] G. Bevilacqua et al., arXiv:1108.2851 [hep-ph].
[19] A. Denner et al., Phys. Rev. Lett. 106, 052001 (2011).
[20] T. Melia et al., J. High Energy Phys. 1012, 053 (2010).
[21] T. Melia et al., Phys. Rev. D83, 114043 (2011).
[22] F. Campanario et al., Phys. Lett. B704, 515 (2011).
[23] C.F. Berger et al., Phys. Rev. Lett. 106, 092001 (2011).
[24] H. Ita et al., arXiv:1108.2229 [hep-ph].
[25] J.M. Campbell, R.K. Ellis, Phys. Rev. D60, 113006 (1999).
[26] J.M. Campbell, R.K. Ellis, Phys. Rev. D62, 114012 (2000).
[27] J.M. Campbell, R.K. Ellis, C. Williams, J. High Energy Phys. 1107, 018

(2011).
[28] K. Arnold et al., arXiv:1107.4038 [hep-ph].
[29] A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132, 306 (2000);

A. Cafarella, C.G. Papadopoulos, M. Worek, Comput. Phys. Commun. 180,
1941 (2009).

[30] T. Stelzer, W.F. Long, Comput. Phys. Commun. 81, 357 (1994).
[31] J. Alwall et al., J. High Energy Phys. 1106, 128 (2011).
[32] A. van Hameren, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0909,

106 (2009).
[33] G. Bevilacqua et al., Nucl. Phys. Proc. Suppl. 205–206, 211 (2010).
[34] P. Mastrolia et al., J. High Energy Phys. 1008, 080 (2010).
[35] G. Ossola, PoS ACAT2010, 075 (2010).
[36] G. Cullen et al., Nucl. Phys. Proc. Suppl. 205–206, 67 (2010).
[37] T. Reiter et al., arXiv:1011.6632 [hep-ph].
[38] V. Hirschi et al., J. High Energy Phys. 1105, 044 (2011).

http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://dx.doi.org/ 10.1016/j.physrep.2006.02.001
http://dx.doi.org/10.1103/PhysRevD.80.074036
http://dx.doi.org/10.1103/PhysRevLett.102.222001
http://dx.doi.org/10.1103/PhysRevD.80.094002
http://dx.doi.org/10.1103/PhysRevD.81.074025
http://dx.doi.org/10.1103/PhysRevD.82.074002
http://dx.doi.org/10.1103/PhysRevLett.103.012002
http://dx.doi.org/10.1007/JHEP03(2010)021
http://dx.doi.org/10.1088/1126-6708/2009/09/109
http://dx.doi.org/10.1103/PhysRevLett.104.162002
http://dx.doi.org/10.1016/j.physletb.2010.02.010
http://dx.doi.org/10.1103/PhysRevLett.107.102002
http://dx.doi.org/10.1007/JHEP02(2011)083
http://dx.doi.org/10.1103/PhysRevLett.106.052001
http://dx.doi.org/10.1007/JHEP12(2010)053
http://dx.doi.org/10.1103/PhysRevD.83.114043
http://dx.doi.org/10.1016/j.physletb.2011.09.072
http://dx.doi.org/10.1103/PhysRevLett.106.092001
http://dx.doi.org/10.1103/PhysRevD.60.113006
http://dx.doi.org/10.1103/PhysRevD.62.114012
http://dx.doi.org/10.1007/JHEP07(2011)018
http://dx.doi.org/10.1007/JHEP07(2011)018
http://dx.doi.org/10.1016/S0010-4655(00)00151-X
http://dx.doi.org/10.1016/j.cpc.2009.04.023
http://dx.doi.org/10.1016/j.cpc.2009.04.023
http://dx.doi.org/10.1016/0010-4655(94)90084-1
http://dx.doi.org/10.1007/JHEP06(2011)128
http://dx.doi.org/10.1088/1126-6708/2009/09/106
http://dx.doi.org/10.1088/1126-6708/2009/09/106
http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.045
http://dx.doi.org/10.1007/JHEP08(2010)080
http://dx.doi.org/ 10.1016/j.nuclphysbps.2010.08.021
http://dx.doi.org/10.1007/JHEP05(2011)044


Automation of One-loop Calculations with GoSam: Present Status . . . 2361

[39] G. Bevilacqua et al., arXiv:1110.1499 [hep-ph].
[40] M. Czakon, talk presented at the XXXV International Conference of

Theoretical Physics “Matter to the Deepest”, Ustroń, Poland, September
12–18, 2011; A. van Hameren, Acta Phys. Pol. B 42, 2363 (2011), this issue;
D. Kosower, talk presented at the XXXV International Conference of
Theoretical Physics “Matter to the Deepest”, Ustroń, Poland, September
12–18, 2011; M. Worek, Acta Phys. Pol. B 42, 2415 (2011), this issue.

[41] G. Ossola, C.G. Papadopoulos, R. Pittau, Nucl. Phys. B763, 147 (2007).
[42] G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0707, 085

(2007).
[43] R.K. Ellis et al., Nucl. Phys. B822, 270 (2009).
[44] G. Cullen et al., in preparation.
[45] J.A.M. Vermaseren, arXiv:math-ph/0010025.
[46] G. Cullen, M. Koch-Janusz, T. Reiter, Comput. Phys. Commun. 182, 2368

(2011).
[47] T. Reiter, Comput. Phys. Commun. 181, 1301 (2010).
[48] P. Mastrolia et al., J. High Energy Phys. 0806, 030 (2008).
[49] T. Binoth et al., Comput. Phys. Commun. 180, 2317 (2009).
[50] G. Cullen et al., Comput. Phys. Commun. 182, 2276 (2011).
[51] G. Heinrich et al., J. High Energy Phys. 1010, 105 (2010).
[52] C. Degrande et al., arXiv:1108.2040 [hep-ph].
[53] N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614 (2009).
[54] A. Semenov, arXiv:1005.1909 [hep-ph].
[55] T. Binoth et al., Comput. Phys. Commun. 181, 1612 (2010).
[56] G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0803, 042

(2008).
[57] J. Fleischer, T. Riemann, Phys. Rev. D83, 073004 (2011).
[58] V. Yundin, Acta Phys. Pol. B 42, (2011), this issue.
[59] G.J. van Oldenborgh, J.A.M. Vermaseren, Z. Phys. C46, 425 (1990).
[60] T. Ohl, Comput. Phys. Commun. 90, 340 (1995).
[61] J.A.M. Vermaseren, Comput. Phys. Commun. 83, 45 (1994).
[62] G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0805, 004

(2008).
[63] P. Draggiotis et al., J. High Energy Phys. 0904, 072 (2009).
[64] M.V. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1001, 040

(2010).
[65] M.V. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1101, 029

(2011).
[66] M.V. Garzelli, I. Malamos, Eur. Phys. J. C71, 1605 (2011).
[67] G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B153, 365 (1979).

http://dx.doi.org/10.5506/APhysPolB.42.2363
http://dx.doi.org/10.5506/APhysPolB.42.2415
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.012
http://dx.doi.org/10.1088/1126-6708/2007/07/085
http://dx.doi.org/10.1088/1126-6708/2007/07/085
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.023
http://dx.doi.org/10.1016/j.cpc.2011.06.007
http://dx.doi.org/10.1016/j.cpc.2011.06.007
http://dx.doi.org/10.1016/j.cpc.2010.01.012
http://dx.doi.org/10.1088/1126-6708/2008/06/030
http://dx.doi.org/10.1016/j.cpc.2009.06.024
http://dx.doi.org/10.1016/j.cpc.2011.05.015
http://dx.doi.org/10.1007/JHEP10(2010)105
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://dx.doi.org/10.1016/j.cpc.2010.05.016
http://dx.doi.org/10.1088/1126-6708/2008/03/042
http://dx.doi.org/10.1088/1126-6708/2008/03/042
http://dx.doi.org/10.1103/PhysRevD.83.073004
http://dx.doi.org/10.5506/APhysPolB.42.
http://dx.doi.org/10.1007/BF01621031
http://dx.doi.org/10.1016/0010-4655(95)90137-S
http://dx.doi.org/10.1016/0010-4655(94)90034-5
http://dx.doi.org/10.1088/1126-6708/2008/05/004
http://dx.doi.org/10.1088/1126-6708/2008/05/004
http://dx.doi.org/10.1088/1126-6708/2009/04/072
http://dx.doi.org/10.1007/JHEP01(2010)040
http://dx.doi.org/10.1007/JHEP01(2010)040
http://dx.doi.org/10.1007/JHEP01(2011)029
http://dx.doi.org/10.1007/JHEP01(2011)029
http://dx.doi.org/10.1140/epjc/s10052-011-1605-6
http://dx.doi.org/10.1016/0550-3213(79)90605-9


2362 G. Cullen et al.

[68] G. Passarino, M.J.G. Veltman, Nucl. Phys. B160, 151 (1979).
[69] R.K. Ellis, G. Zanderighi, J. High Energy Phys. 0802, 002 (2008).
[70] G.J. van Oldenborgh, Comput. Phys. Commun. 66, 1 (1991).
[71] A. van Hameren, Comput. Phys. Commun. 182, 2427 (2011).
[72] S. Actis, P. Mastrolia, G. Ossola, Phys. Lett. B682, 419 (2010); S. Actis,

P. Mastrolia, G. Ossola, Acta Phys. Pol. B 40, 2957 (2009).
[73] T. Gleisberg et al., J. High Energy Phys. 0902, 007 (2009).
[74] F. Krauss, R. Kuhn, G. Soff, J. High Energy Phys. 0202, 044 (2002).
[75] T. Gleisberg, F. Krauss, Eur. Phys. J. C53, 501 (2008).
[76] M. Schonherr, F. Krauss, J. High Energy Phys. 0812, 018 (2008).
[77] W. Beenakker et al., Phys. Rev. Lett. 83, 3780 (1999).
[78] R. Frederix, T. Gehrmann, N. Greiner, J. High Energy Phys. 0809, 122

(2008).
[79] R. Frederix, T. Gehrmann, N. Greiner, J. High Energy Phys. 1006, 086

(2010).
[80] J. Alwall et al., J. High Energy Phys. 0709, 028 (2007).
[81] B. Feigl, H. Rzehak, D. Zeppenfeld, arXiv:1108.1110 [hep-ph].
[82] J. Gluza, K. Kajda, D.A. Kosower, Phys. Rev. D83, 045012 (2011).
[83] P. Mastrolia, G. Ossola, arXiv:1107.6041 [hep-ph].
[84] D.A. Kosower, K.J. Larsen, arXiv:1108.1180 [hep-th].

http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1088/1126-6708/2008/02/002
http://dx.doi.org/10.1016/0010-4655(91)90002-3
http://dx.doi.org/10.1016/j.cpc.2011.06.011
http://dx.doi.org/10.1016/j.physletb.2009.11.035
http://www.actaphys.uj.edu.pl/vol40/abs/v40p2957
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://dx.doi.org/10.1140/epjc/s10052-007-0495-0
http://dx.doi.org/10.1088/1126-6708/2008/12/018
http://dx.doi.org/10.1103/PhysRevLett.83.3780
http://dx.doi.org/10.1088/1126-6708/2008/09/122
http://dx.doi.org/10.1088/1126-6708/2008/09/122
http://dx.doi.org/10.1007/JHEP06(2010)086
http://dx.doi.org/10.1007/JHEP06(2010)086
http://dx.doi.org/10.1088/1126-6708/2007/09/028
http://dx.doi.org/10.1103/PhysRevD.83.045012

	1 Introduction
	2 Main features of GoSam
	2.1 Diagram generation
	2.2 Lorentz algebra
	2.3 Treatment of R2 terms
	2.4 Reduction to scalar (master) integrals

	3 Examples
	3.1 BLHA interface, GoSam, and SHERPA
	3.2 GoSam and neutralino pair production

	4 Outlook and conclusions

