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1. Introduction

Precise predictions of signals and backgrounds are essential for physics
at LHC. This is, in particular, the case if the scenario persists, in which
the mechanism of electro-weak symmetry breaking or new physics beyond
the Standard Model will not be revealed through clear and easy-to-identify
evidence. Regarding for example the decay channels of the Higgs boson, one
has then to face the fact that many of both signals and the backgrounds
are described as hard scattering processes in proton–proton scattering with
several particles and/or partons in the final state.

Collinear factorization allows for the expression

σ(p1, p2) =
∑
a,b

∫
dx1dx2 fa(x1, µ)fb(x2, µ) σ̂ab(x1p1, x2p2, µ) , (1)

for the cross-section σ(p1, p2) of the process resulting from the collision of
hadrons with momenta p1 and p2. The p.d.fs fa(x1, µ) and fb(x2, µ) are
universal to hadron scattering processes, and are the materialization of the
description of the hadrons within the parton model, in which the hadron
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consists of quarks and gluons, each carrying a fraction of the total hadron
momentum. The partonic scattering cross-sections σ̂ab(x1p1, x2p2, µ) can
be calculated within perturbation theory. All components depend on the
renormalization/factorization scale µ, whereas the complete hadronic cross-
section does not. The terms in perturbative expansion do depend on it, and
one of the reasons to perform higher fixed-order calculations is to reduce this
dependence. In order to minimize the contribution of logarithms of ratios
of µ and other scales, that are remnants of the cancellation of divergences
in the factorization procedure, the value of µ is, in practice, set to a typical
scale of the hard process.

Regarding fixed-order calculations, there has been a remarkable progress
in recent years to reach next-to-leading (NLO) precision in QCD for pro-
cesses with four or more final-state particles and/or partons [1, 2, 3]. These
calculations are considerably more complex than leading-order (LO) calcu-
lations, and several difficulties had to be overcome. Formally, a differential
cross-section at NLO contains two contributions

dσ̂NLO
a,b→n = dΦa,b→n 2Re

{
M(0)∗

a,b→nM
(1)
a,b→n

}
OLO
a,b→n

+dΦa,b→n+1

∣∣∣M(0)
a,b→n+1

∣∣∣2ONLO
a,b→n+1 . (2)

The first term on the r.h.s. is the virtual contribution containing the in-
terference of the tree-level matrix elementM(0)

a,b→n and the one-loop matrix

element M(1)
a,b→n, and an observable OLO

a,b→n that essentially should enforce
strict hard kinematics, like in a LO calculation. Then, it usually consists of
a number of phase space cuts. dΦa,b→n represents a differential phase space
element, and for brevity it is understood to include all other ingredients
to a cross-section, like the flux factor and symmetry factors. The second
term is the real contribution, and contains the tree-level matrix element
M(0)

a,b→n+1 with one more parton, and an observable ONLO
a,b→n+1 allowing for

one parton to become arbitrarily soft, and one pair of partons to become ar-
bitrarily collinear. The infra-red (IR) divergences arising in the phase space
integration over this unresolved phase space should cancel against the diver-
gences in the virtual contribution coming from the one-loop matrix element.
This puts restrictions on the choice of the observables. The Kinoshita–Lee–
Nauenberg (KLN) theorem ensures that the cancellations happen under the
condition that the observables are IR-safe. This is often embedded in the
context of functions that allow for generalization to arbitrary numbers of
soft and collinear partons, so-called jet algorithms. Finally, there are left-
over collinear divergences related to the initial state radiation, that have to
be dealt with within the factorization prescription, in the context of Eq. (1).
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2. Calculations with Helac-NLO

From the list of calculations mentioned before, the ones in [2, 3] have
been performed with the help of a collection of computer programs recently
published under the name Helac-NLO as a complete tool for such calcu-
lations [4].

The cancellation of IR divergences is ensured to happen formally, but
must eventually be implemented for numerical calculations. This can be
achieved with the subtraction method, in which terms are added and sub-
tracted to the partonic cross-section. They should be such that the sub-
tracted ones cancel the IR divergences point-wise in the real contribution,
and the added ones can be integrated analytically over the unresolved phase
space to cancel the divergences in the virtual contribution. In Helac-
NLO the implementation Helac–Dipoles [5] of the dipole-subtraction
method [6] is used for this purpose. It is based on the LO platform Helac–
Phegas [7] making use of the universality of the dipole-subtraction method
with respect to details of the partonic process.

Helac is also used to evaluate tree-level amplitudes, whereas the one-
loop amplitudes are evaluated with Helac–1Loop [8]. It is an explicit
implementation of the OPP approach to one-loop calculations [9], using the
universal OPP reduction tool CutTools [10]. Within the OPP approach
the non-universal part of a one-loop calculation can be identified as the nu-
merator of the one-loop amplitude over denominator factors containing the
loop integration momentum. Helac–1Loop computes these by translating
them systematically into tree-level objects. The one-loop master integrals
are evaluated with OneLOop [11]. The part of the rational contribution
not provided by CutTools is also included [12].

3. Phase space integration for the real contribution

All mentioned tools are described in detail in the respective publications.
One issue that deserves some more attention is related to the phase space
integration of the real contribution. Within the dipole subtraction method
it concerns the evaluation of the integral∫

dΦn+1

{∣∣∣M(0)
n+1

∣∣∣2ONLO
n+1 −

∑
j

∑
i,k 6=j

D(ij;k)
n OLO

n ◦ T (ij;k)
n+1→n

}
. (3)

The dipole subtraction terms D(ij;k)
n are composed of n-parton tree-level

matrix elements. They are associated with OLO
n . The whole contribution

is given as a (n + 1)-particle phase space integral, and the objects living
in n-particle phase space can exist under the same integral via phase space
mappings T (ij;k)

n+1→n.
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Two new issues appear compared to LO calculations. Firstly, whereas
in a LO calculation all final-state partons are well-separated by phase space
cuts, in the integral above a single parton may become arbitrarily soft, and
one pair of partons may become arbitrarily collinear. The dipole terms en-
sure integrability in the singly soft/collinear regions, but do not make the
integrand completely finite. A remnant divergent, but integrable, behav-
ior remains. However, as used for LO calculations, phase space integrator
Phegas assumes these regions to be cut out, and anticipates the divergent
behavior towards these regions with internal probability densities that are
typically not defined at the singular phase space configurations, or become
very inefficient.

Secondly, the dipole terms are designed only to match |M(0)
n+1|

2 in the
singly soft/collinear regions. Outside those regions, they behave quite differ-
ently. A phase space generator like Phegas to integrate |M(0)

n+1|
2 efficiently

does not necessarily perform well when integrating the real-subtracted inte-
gral.

In order to deal with these issues, the independent phase space gener-
ator Kaleu [13] is used. In essence it is still a generator for LO appli-
cations, but due to the fact that it is designed in an object oriented way,
in the sense that several instances of the generator can deal with differ-
ent integrals in parallel, it can be used in a multi-channel approach [14] to
solve the second issue mentioned above. Each channel carries its own full
instance of Kaleu. One channel carries the instance that efficiently deals
with |M(0)

n+1|
2. Furthermore, for each dipole term there is a channel carrying

an instance that generates n-particle phase space configurations such that it
efficiently integrates the squared tree-level matrix element of the underlying
n-particle scattering process. Such a n-particle phase space configuration is
then turned into a (n+ 1)-particle configuration by applying the inverse of
the mapping T (ij;k)

n+1→n associated with the dipole term. This generation of an
extra momentum follows exactly the formulas for the parton showers based
on the dipole formalism presented in [15]. The azimuthal angle needed for
the construction of the extra momentum is generated with a flat distribution,
and the other two variables are generated following self-adaptive densities.

The adaptation of these densities happens in two steps. First, the unit
interval on which the variables live is divided into two halves, and optimiza-
tion is performed for densities of the type

density(x) ∝ θ
(

0 < x ≤ 1
2

) αγ1 2γ1

x1−γ1 + θ
(

1
2 < x < 1

) (1− α) γ2 2γ2

(1− x)1−γ2
. (4)

The three parameters α, γ1, γ2 are estimated during optimization as follows.
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The ratio α/(1− α) is estimated by the ratio∑
0<x≤ 1

2
w(x)∑

1
2
<x<1w(x)

(5)

of total weights contributing to the two intervals during the Monte Carlo
process. The exponents are estimated by

γ1 ≈

∑
0<x≤ 1

2
w(x)∑

0<x≤ 1
2
w(x) log

(
1
2x

) , γ2 ≈

∑
1
2
<x<1w(x)∑

1
2
<x<1w(x) log

(
1

2(1−x)

) . (6)

This happens by collecting batches of data points (x,w(x)) and updating
the parameters batch by batch. This optimization step is performed in order
to match the possible remnant divergent, but integrable, behavior of the in-
tegrand in terms of the mentioned variables after the dipole subtraction, and
solves the first issue related to phase space integration of the real contribu-
tion in NLO calculations mentioned above. After a while, the parameters in
the densities of Eq. (4) are frozen, and optimization continues with adaptive
grids underneath these densities, following the method presented in [16].

In Table I, some results regarding the application of dipole channels
are presented. It concerns the real contribution for the sub-process uū →
bb̄ e+νe µ

−ν̄µ g in NLO calculations of the process pp → bb̄ e+νe µ
−ν̄µ as

in [3]. More specifically, these are results for
√
s = 7 TeV, the anti-kT jet

algorithm, and two values of the cut-off αmax for the dipole phase space.
This parameter determines how far from the actual singularities the dipole
terms still contribute. The presented numbers depend on αmax, since only
a complete NLO calculation, including the integrated subtraction terms, is
independent. Three options are compared:

a. Kaleu with dipole channels as explained above;

b. Kaleu without dipole channels, but using adaptive grids for all gen-
erated invariants from which momenta are constructed;

c. Kaleu with non of the above, just using probability densities for gen-
erated invariants that are defined also in singular regions.

The overall conclusion is that the option with dipole channels outperforms
the other two options, in particular for αmax = 1.00, even taking into ac-
count the substantially higher computational cost. Although 7.1/2.7 times
slower, the estimated error is 1.9/0.59 times smaller, leading to a gain of
a factor (1.9/0.59)2/(7.1/2.7) ≈ 3.9, i.e. it takes a factor 3.9 less time to
reach the same estimated error. This result appears to be partly due to a
better balance in the distribution of events over positively and negatively
contributing regions.
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TABLE I

Cross-sections in [fb] for the real-subtracted contribution from uū→ bb̄ e+νe µ
−ν̄µ g

to the process pp → bb̄ e+νe µ
−ν̄µ at NLO as in [3]. All results were obtained

with Kaleu. The numbers Ngnrt of generated and Neval of accepted phase space
points are multiples of 106. The computing times tcpu are in hours on a 2.80 GHz
Intel Xeon processor. The superscripts (+) and (−) respectively refer to positive
and negative weight contributions. The values of Ngnrt were chosen such that
N

(+)
eval +N

(−)
eval ≈ 107.

αmax = 0.01

Option σ(+) σ(−) σ(+) − σ(−) N
(+)
eval N

(−)
eval Ngnrt tcpu

a 316.78(.34) 159.00(.29) 157.78(.45) 7.449 2.447 26 6.6
b 316.57(.58) 160.6(1.0) 156.0(1.2) 8.946 1.276 33 2.0
c 316.81(.54) 156.9(1.0) 159.9(1.2) 8.013 1.974 62 2.8

αmax = 1.00

Option σ(+) σ(−) σ(+) − σ(−) N
(+)
eval N

(−)
eval Ngnrt tcpu

a 286.29(.37) 305.10(.44) -18.81(.59) 5.005 4.828 21 7.1
b 286.22(.75) 304.7(1.7) -18.5(1.9) 7.034 2.952 25 2.7
c 286.7(.9) 309.9(3.1) -23.1(3.2) 6.509 3.347 40 2.7

4. Summary

Issues related to the calculation of hard scattering processes with several
particles in the final state at NLO QCD have been addressed. The pro-
gram Helac-NLO, for automated computation of such processes, has been
introduced along with its components dealing with the mentioned issues.
In particular, solutions related to the phase space integration of the real
contribution have been highlighted.
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