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The project of constructing a complete NLO-level Parton Shower Monte
Carlo for the QCD processes developed in IFJ PAN in Kraków is re-
viewed. Four issues are discussed: (1) the extension of the standard in-
clusive collinear factorization into a new, fully exclusive scheme; (2) recon-
struction of the LO Parton Shower in the new scheme; (3) inclusion of the
exclusive NLO corrections into the hard process and (4) inclusion of the
exclusive NLO corrections into the evolution (ladder) part.
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1. Introduction

Precise calculations of the QCD cross-sections for the LHC are based on
the factorization procedure. It allows to divide the entire collision process
into separate parts: (1) the non-perturbative initial distribution of partons
in the incoming protons, to be taken from experiments in form of the Parton
Density Functions (PDFs); (2) the actual Parton Showers (PSs), both in the
initial and final states, described by the evolution equations resulting from
the resumed perturbative calculations; (3) the hard scattering calculated
perturbatively to a fixed order and (4) the non-perturbative hadronization of
partons, described by phenomenological models. There are a few approaches
to the factorization, amongst which the collinear factorization, well founded
in the field theory, is the most popular one. Let us recall a few milestones in
its development. The first, LO, resummations, dated to the early 1970s, are
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due to Gribov, Lipatov, Altareli, Parisi and Dokshitzer [1]. The general the-
orem has been addressed in the papers of Ellis, Georgi, Machacek, Politzer
and Ross [2] with the help of the axial gauge in which the appealing ladder-
like structure of the singularities has been proven. The practical calcula-
tions of the NLO kernels were done by Floratos, Ross and Sachrajda [3, 4]
and then by Kalinowski, Konishi and others [5, 6], based on the operator
product expansion as well as by Curci, Furmanski and Petronzio [7, 8] in
diagrammatic approach in dimensionally regularized MS scheme. Further
reformulations of the factorization scheme were due to Collins, Soper, Ster-
man [9], Bodwin [10] and others in 1980s. Finally, twenty years later, the
NNLO kernels have been calculated by Moch, Vermaseren and Vogt [11,12].
All the above papers concern the analytical results. The Monte Carlo (MC)
implementations, i.e. the PS programs, used in the actual data analysis were
developed in a different pace. The first implementations: PYTHIA [13] and
HERWIG [14], based on the (improved) LO calculations, were created in
mid-1980s and systematically developed since then. The next step — the
complete NLO-based simulations have not been constructed yet, despite the
fact that the analytical results have been known for more than 30 years!
There are two half-way solutions: MC@NLO [15] and POWHEG [16] which
combine the NLO hard matrix element with the LO-type PS (LO evolution).
So far a LO accuracy of the MC programs was satisfactory in the data analy-
sis, as compared to the experimental precision of the hadronic experiments.
However, with the start-up of the LHC the situation has changed. The
generic expected experimental precision of LHC results is of the order of
1%, and to match this precision the MC simulations must be of the NLO
type at least.

The goal of the KRKMC project [17,18] developed in Kraków is to fill in
precisely this gap and to construct for the first time the complete NLO-level
PS program for QCD. In the following, after a short introduction to the
collinear factorization, we will briefly describe the four main ingredients of
the KRKMC project: the extended, exclusive collinear factorization scheme,
the new LO PS scheme, exclusive NLO corrections to the hard process and
exclusive corrections to the ladder part.

In the results presented here some simplifications are temporarily present:
only non-singlet kernels are included in the evolution, only qq̄ →W/Z hard
process is included and non-running αS is used.

2. Extended exclusive collinear factorization scheme

The standard collinear factorization rearranges the squared matrix el-
ement into a sum of two-particle-irreducible universal kernels K0, and a
process-dependent function C0, as shown in Fig. 1 for the Drell–Yan type
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process (use of the physical gauge is instrumental here!). The collinear sin-
gularities are located in the K0 functions. At this point, one introduces
the projection operator P which separates the singular part PK0 from the
non-singular rest (1−P)K0, leading to the rearrangement

|M |2 = C0 ·
1

1−K0
= C ⊗ (1 +K +K ⊗K +K ⊗K ⊗K + . . . ) , (1)

C = C0 ·
1

1− (1−P) ·K0
, K = PK0 ·

1
1− (1−P) ·K0

, (2)

where the reorganized kernel and the hard process, K and C, are to be
calculated up to a requested accuracy: LO, NLO, etc. The dot (·) denotes
four-dimensional integration, whereas the ⊗ is a one-dimensional integral
(convolution) over the longitudinal momentum (lightcone) variable x+. The
transverse momentum degrees of freedom are integrated out.
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Fig. 1. The collinear factorization for the Drell–Yan type process.

Why is the above scheme not good for precision MC simulation? The
three main reasons are: (1) It does not conserve four momenta. In order to
reduce · into ⊗, the P operator allows for unphysical configurations of mo-
menta. (2) There are very strong over-subtractions (cancellations) present.
Eq. (1) is a geometrical series whereas we expect the final result to be of the
exponential form. (3) The scheme is defined in dimensional regularization
(pole-part extraction), whereas the MC simulation must be done in four di-
mensions. How can one cure these drawbacks? (1) The projection operator
P has to be redefined. (2) The time-ordered exponential must follow directly
from the construction of the modified factorization expression (1). (3) The
geometrical regularization has to be introduced for the real emissions instead
of the dimensional one.
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We define a new
←−
P
′ operator and also introduce a finite-part operator B.

To the lowest order we have
←−
Bµ[K0] = K0 −

←−
P
′
µ{K0}, as expected. In

higher orders
←−
B is defined recursively:

←−
Bµ[K0 ·K0]=K0 ·K0−

←−
P
′
µ{s2K0}·

←−
P
′
s2{

s1K0}−
←−
P
′
µ{s2K0 ·

←−
Bs2 [K0]}−

←−
Bµ[K0]·

←−
P
′
µ{K0}, and so on.

←−
P
′
µ sets the upper limit µ on the phase space for all real partons towards

the hadron using the kinematical variable s(k1, . . . , kn) < µ, where s stands
for virtuality, maximal rapidity, maximal kT, etc. The notation {siA} defines
s = si, e.g.

←−
P
′
µ{s3A} ·

←−
P
′
s3{

s2A} ·
←−
P
′
s2{

s1A} means θµ>s3>s2>s1 instead of
←−
Pµ{s3A} ·

←−
Pµ{s2A} ·

←−
Pµ{s1A} corresponding to θµ>s3 θµ>s2 θµ>s1 (CFP-

like). Also,
←−
P
′
µ(A) extracts a singular part from an integrand A (not from

the integral
∫
A like CFP!).

An exclusive parton density function is then defined as the integrand in

D(µ) = expTO

(
←−
P
′
µ

{
s K0 ·

←−
Bs

[
1

1−K0

]})
, ∂µD(µ, x) = P ⊗D(µ)(x)

(3)
and at the inclusive level it fulfills the standard DGLAP equation.

3. LO Parton Shower revisited

Having established the general factorization framework, we now turn to
the LO MC. It is the basis of the project. All the NLO effects will be added
on top of it by means of the rejection techniques. The strategy is standard
— one combines twice the formula (3) (a Drell–Yan case)

σ
(
C

(0)
0 Γ

(1)
F Γ

(1)
B

)
=

∞∑
n1=1

∞∑
n2=1

{
σ
[
C

(0)
0

(←−
P
′K

(1)
0F

)n1
(←−
P
′′K

(1)
0B

)n2
]}

TO
(4)

and parametrizes it in terms of the Sudakov variables (αi, βi for emitted
partons and xi for virtual, “ladder”, ones) that can be directly generated.
There are two technical problems to be resolved: (1) the constraint on the
value of the final xF/B =

∏
ziF/B (necessary for resonant processes) and

(2) complete coverage of the phase space without any gaps. The standard
solution of the problem (1) is the “backward evolution” [13], which uses a
pretabulated grid of PDFs. In order to avoid this complication, we proposed
a different algorithm which imposes the constraint on top of the normal
“forward” evolution, see [19, 20] for details. The problem (2) is solved by
a kinematical mapping of the original phase space to the “tangent space”
(ki, αi, βi → k̄i, α̂i, β̂i). The mapping we proposed in Ref. [21] is a plain
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rescaling, although defined in a recursive way

kπi = λik̄πi , λi =
s(x̄i−1 − x̄i)

2
(
P −

∑i−1
j=1 kπj

)
· k̄πi

, i = 1, 2, . . . , n1 + n2 . (5)

The rescaling factors λi are chosen such that

s̄i = sx̄i = s

i∏
πj∈F

ẑFπj

i∏
πj∈B

ẑBπj =

P − i∑
j=1

kπj

2

=

P − i∑
j=1

λj k̄πj

2

.

(6)
This mapping has three important features: (1) it preserves angles, i.e.
rapidity ordering, and the upper limit of the phase space (integration) in
rapidity; (2) it preserves soft factors (dα/α . . . ), i.e. the original behavior in
the soft limit; (3) it covers the phase space completely, without any gaps.

The complete LO MC algorithm looks as follows:

1. the variables ẑF and ẑB are generated by the FOAM MC Sampler
[22,23],

2. the four-momenta k̄µi are generated separately in the F and B parts of
the phase space with the constraints

∑
j∈F α̂j = 1− ẑF and

∑
j∈B β̂j =

1− ẑB,

3. the double-ordering permutation π is established,

4. the rescaling parameter λ1 is calculated; kπ1 = λ1k̄π1 is set, such that
(P − kπ1)2 = sx1,

5. the parameter λ2 is calculated and kπ2 = λ2k̄π2 is set, such that (P −
kπ1 − kπ2)2 = sx2 = szπ1zπ2 and so on,

6. in the rest frame of P̂ = P −
∑

j kπj four-momenta qµ1 and qµ2 are
generated according to the Born angular distribution.

Exact analytical integration of the LO MC distributions of Eq. (4) over the
multigluon phase space is possible (we use the rapidity ordering with Ξ
being the rapidity of the produced boson, or equivalently the splitting point
between the forward and backward hemispheres)

σ
(
C

(0)
0 Γ

(1)
F Γ

(1)
B

)
=

1∫
0

dx̂F dx̂B DF (Ξ, x̂F) DB (Ξ, x̂B) σB (sx̂Fx̂B) ,

with two PDFs obeying the DGLAP non-singlet LO evolution equation
∂

∂Ξ
DF (Ξ, x) = [P ⊗DF(Ξ)] (x) .
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4. Exclusive NLO corrections to the hard process

Having described the “underlying” LO MC, we proceed now with the
NLO corrections. We begin with the hard process part. The NLO correction
consists of a one-parton real emission and the matching first order virtual
correction. It is included by means of a MC weight. In the case of the
Drell–Yan process (Fig. 1) the weight reads

WNLO
MC =1+∆S+V+

∑
j∈F

β̃1(ŝ, p̂F, p̂B; aj , zFj)

P̄ (zFj) dσB

(
ŝ, θ̂
)
/dΩ

+
∑
j∈B

β̃1(ŝ, p̂F, p̂B; aj , zBj)

P̄ (zBj) dσB

(
ŝ, θ̂
)
/dΩ

.

The IR/colinear-finite real emission part β̃1 (numerators) is a fully-different-
ial real emission matrix element minus two counter-terms (the counter-terms
are LO collinear distributions generalized to off-collinear regions)

β̃1(p̂F, p̂B; q1, q2, k) =
[

(1− α)2

2
dσB

dΩq
(ŝ, θF1) +

(1− β)2

2
dσB

dΩq
(ŝ, θB2)

]
−θα>β

1 + (1− α− β)2

2
dσB

dΩq

(
ŝ, θ̂
)
− θα<β

1 + (1− α− β)2

2
dσB

dΩq

(
ŝ, θ̂
)
.

The denominators are just the LO “underlying” differential distributions: nu-
merators of the DGLAP LO kernels P̄ (zFj/Bj) times the Born cross-section
dσB(ŝ, θ̂)/dΩ. The sums go over all emitted partons in both the F and B
hemispheres. This way all partons contribute to the hard scattering and
there is no problem of defining the “last”, “hardest”, etc. one.

Similarly to the real emission part, the virtual+soft correction is de-
fined as a difference between the complete inclusive result and two inclusive
MC-type counterterms

∆V+S =
(
DMS

DY(z)− 2CMC
ct (z)

)∣∣∣
δ−part

=
CFαs

π

(
2
3π

2 − 5
4

)
.

DMS
DY(z) can be taken from the literature (Eq. (89) in Ref. [24]) or re-

calculated from the Feynman graphs [25]. Details, in particular on the con-
struction of the counterterms, can be found in [21]. Note, that the ∆V+S is
kinematics independent (it is a constant).

As in the LO case, the exact analytical integration of the NLO MC
distributions over the multigluon phase space is possible, and leads to

σ
(
C

(1)
0 ΓFΓB

)
=

1∫
0

dx̂F dx̂B dz DF(Ξ, x̂F) DB(Ξ, x̂B)σB(szx̂Fx̂B)

×
{
δz=1(1 +∆S+V) + CMC

2r (z)
}
,
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where

CMC
2r (z) = −CFαs

π
(1− z) . (7)

The above inclusive NLO correction to the hard scattering in the MC scheme
differs from the MS correction (Eq. (90) in [24])

CMS
2r (z) =

CFαs

π

P̄ (x)
1− z

[4 ln(1− z)− 2 ln z] . (8)

As we see, the MC correction in Eq. (7) is a simple, regular polynomial,
whereas the MS one in Eq. (8) contains the singular logarithmic terms
ln(1 − z)/(1 − z). These terms originate from the “mistreatment” of the
phase space done by the kT ordering implied by MS, see also [24].

To summarize, the new NLO MC factorization scheme has the following
interesting features: (1) The NLO corrections are added on top of the LOMC
with a simple, positive weight. (2) There is no need to correct for the differ-
ence in the collinear counter-terms of the PSMC and MS schemes provided
PDFs are in the PSMC scheme. (3) The virtual+soft corrections are com-
pletely kinematics independent — all the complicated dΣc± contributions
of the MC@NLO scheme are absent. (4) There is a built-in resummation of
the lnn(1−x)

1−x terms (demonstrated for n = 1).

5. Exclusive NLO corrections to the ladders

The NLO corrections to the multi-emission ladder part have not been
included in any of the existing PSs yet, except for a partial proposal of
Ref. [26]. The scheme presented here is the first complete solution for the
non-singlet evolution. Our scheme is based on the reweighting technique.
Once again, we begin with the LO “underlying” differential distribution for
the single ladder

D̄LO(x,Q) =
∞∑
n=0

2

1

n

2

n−1

x

= e−S
∞∑
n=0

n∏
i=1

d3ki
k0
i

θQ>ai>ai−1ρ
(0)
1 (ki) ,

ρ
(0)
1 (ki) =

2C2
Fαs

π

1
kT2
i

1 + z2

2
.
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The NLO corrected distribution looks as follows

D̄NLO(x,Q) =

= e−S
∞∑
n=0



2

1

n

2

n−1

p +
n∑

p1=1

p1−1∑
j1=1

2

p

n

1

1

j
1

+
n∑

p1=1

p1−1∑
p2=1

p1−1∑
j1=1

j1 6=p2

p2−1∑
j2=1

j2 6=p1,j2

2

p

n

j
2

j
1

2
p

1

+ . . .


= e−S

δx=1 +
∞∑
n=1

 n∏
i=1

∫
Q>ai>ai−1

d3ki
k0
i

ρ
(0)
1 (ki)β

(1)
0 (zi)

 δx=
Qn

j=1 xj

1+
n∑
p=1

p−1∑
j=1

W (k̃p, k̃j)+
n∑

p1=1

p1−1∑
p2=1

p1−1∑
j1=1

j1 6=p2

p2−1∑
j2=1

j2 6=p1,j2

W (k̃p1 , k̃j1)W (k̃p2 , k̃j2)+. . .


 .

The above formula might look complicated, but in fact its structure is simple.
The LO ladder is multiplied by appropriate non-singular NLO weights: in
the first term by the virtual weights β(1)

0 (in the picture dots are replaced
by squares); in the second term one NLO real correction, W (k̃p, k̃j), is
added with all possible choices of the first and second momentum (two sums
are visible); the third contribution is identical to the second one but with
two NLO corrections and so on. The actual definitions of the weights are
intuitively obvious — they are ratios of the NLO to LO distributions (with
counterterms if needed) and can be graphically represented as

β
(1)
0 =

∣∣∣∣ ∣∣∣∣2∣∣∣∣ 1−z

z
∣∣∣∣2

= 1+2<
(
∆

(1)
ISR

)
, W (k2, k1) =

∣∣∣∣ 2

1

∣∣∣∣2∣∣∣∣ 2

1

∣∣∣∣2
=

∣∣∣∣ +
2

1

2

1

∣∣∣∣2∣∣∣∣ 2

1

∣∣∣∣2
−1 .

We have recalculated the real emission weight W (k2, k1) in the new factor-
ization scheme [27,28] and we are in the process of recalculating the virtual
weight [25]. We have tested numerically the above algorithm by compar-
ing the inclusive distribution D̄NLO(x,Q) from our exclusive MC with the
standard inclusive result. We obtained three-digit agreement limited by the
statistics, see [17, 18] for details.
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In the above we have ignored the contribution to W (k2, k1) from the
gluon-pair production. This contribution has additional singularity in the
limit of a vanishing mass of the emitted gluon pair. In the inclusive approach
this singularity is canceled by the corresponding virtual one. In the MC
exclusive simulation this is not possible and the singularity has to be included
into the “underlying” distribution, otherwise it would ruin the convergence
of the algorithm. Fortunately, as it is well known, this singularity is a part of
the LO corrections to the final state and can be included into the algorithm
at the expense of a few additional combinatorial sums over the final-state
emissions. Graphically it looks as follows

e−SISR
−S

FSR

∞∑
n,m=0

m∑
r=1

21
n−1

n−2

r m

2

,

where the Sudakov form-factor SFSR is subtracted in the virtual part∣∣∣∣ ∣∣∣∣2 = (1 + 2< (∆ISR + VFSR − SFSR))
∣∣∣∣ 1−z

z
∣∣∣∣2 ,

and the FSR real counterterm is subtracted together with the ISR one∣∣∣∣ 2

1

∣∣∣∣2 =
∣∣∣∣ + +

∣∣∣∣2 − ∣∣∣∣ 2

1

∣∣∣∣2− ∣∣∣∣ ∣∣∣∣2 .
Both the virtual and real corrections (weights) are now regular. All singu-
larities have canceled separately in each weight, allowing for construction of
the efficient MC algorithm. The exact analytical integration is possible in
this case and we have used this result to perform numerical tests of the MC
program with the percent-level precision.

6. Summary

We have briefly reviewed the most important results of the first ever,
complete NLO, fully exclusive, PS project under development in Kraków:
(1) Extension of the collinear factorization, better suited for the MC im-
plementation, is defined. (2) LO PSMC is (re-)constructed from scratch, in
a way compatible with the new factorization scheme. (3) The NLO parts
of the hard process and the evolution kernels are recalculated in the new
scheme (so far the non-singlet NLO exclusive kernels only). (4) The dif-
ferences between the new MC and standard MS schemes are understood,
keeping the universality (process independence) in mind. (5) The proposed
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solution has advantages as compared to the other techniques of adding the
NLO corrections to the hard process and it is completely new for the ladder
parts. (6) Implementation in the MC has been tested at the prototype level
with the relative precision of 10−3.
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for Research and Development Grant LIDER/02/35/L-2/10/NCBiR/2011
and by the U.S. Department of Energy under grant DE-FG02-04ER41299
and the Lightner-Sams Foundation.
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