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ing features are explored. A summary of the cross-section outputs of the
leading groups active in this research are presented including also the cal-
culated values of the gap survival probabilities, which is relevant, mostly, to
hard diffractive processes. A utilization of pQCD in soft Pomeron formula-
tion based on Gribov’s Reggeon calculus is applied in the GLM model. The
output parameters are compatible with AdS/CFT correspondence. The in-
terplay between Pomeron theory and its corresponding data analysis is dis-
cussed. LHC soft scattering data is quoted and compared with theoretical
predictions. Its implications for the Pomeron model are discussed.
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1. Introduction

Hard QCD deals with the strong interactions of high transverse mo-
menta partons. These are short distance phenomena which are calculated
within the framework of pQCD. Soft QCD is traditionally associated with
low transverse momenta partons separated by large distances, for which we
are unable to utilize perturbative methods. The relevant npQCD calcula-
tions are, thus, based on phenomenological models, foremost, the Regge pole
model in which the Pomeron (IP ) is the leading term. As such, IP exchange
dominates the soft scattering dynamics at the Tevatron and above.
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The original Pomeron, with αIP (0) = 1, was postulated [1] as an added
phenomenological feature to the Regge model. Theoretically, it is induced by
Gribov’s Reggeon Calculus [2]. The total and elastic (but NOT diffractive)
cross-sections in the ISR–Tevatron range are well reproduced by the simple
DL parametrization [3] where,

αIP (t) = 1 +∆IP + α′IP t , (1.1)

in which ∆IP = 0.08 and α′IP = 0.25 GeV−2.
The simple Pomeron model needs considerable re-formulations at high

energies, so as to be compatible with s and t unitarity. This procedure is
executed in impact parameter b-space. I shall use a normalization, where

dσel

dt
= π | fel(s, t) |2 , (1.2)

σtot = 4πImfel(s, 0) . (1.3)

The b-space elastic amplitude is defined as the transform

ael(s, b) =
1

2π

∫
dqe−iq·bfel(s, t) (1.4)

in which t = −q2. We obtain

σtot = 2
∫
d2b Im ael(s, b) , (1.5)

σel =
∫
d2b | ael(s, b) |2 . (1.6)

In this paper I shall briefly review the transition from the original defini-
tion of the Regge Pomeron to its present formulation, with special attention
to LHC physics. The present vigorous studies of the IP and its dynamics
are based on sophisticated utilizations of ideas dated decades ago.

• S-Matrix Regge Poles: Regge (1957), Chew–Frautchi (1960).
• Reggeon Field Theory: Gribov (1962, 1968).
• Eikonal Model: Glauber (1959).
• GW Proton Wave Function Decomposition: Good–Walker (1960).
• Triple Pomeron Formalism: Mueller (1971).
• Multi Pomeron Interactions: Gribov (1968), Kaidalov et al. (1986).
• Pomeron as a 2 gluon color singlet: Low (1975), Nussinov (1975).
• BFKL hard Pomeron: Balitsky–Fadin–Kuraev–Lipatov (1975–1978).
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Updated IP models have radically changed our perception of the Regge
Pomeron. They are specified by an elaborate multi component architecture.

• Bare non-screened IP amplitudes in a 2 channel Good–Walker (GW)
system composed of elastic and “low mass” diffraction.
• Eikonal re-scatterings of the incoming projectiles secure that the scat-

tering amplitudes are bounded by s-channel unitarity black disc bound.
• t-channel unitarity, induced by multi IP interactions, leads to “high

mass” diffraction and additional screening of the GW sector.
• The survival probability factor, which has eikonal and multi IP com-

ponents, induces a reduction of the non-GW diffraction.

Current IP models are coupled to a price tag of relatively large ∆IP and
exceedingly small α′IP , which seemingly destroy the conventional features of
the Regge Pomeron in which the s dependence of a IP exchange amplitude
is determined by ∆IP and the shrinkage of its t-dependence slope by α′IP . As
we shall see, the traditional Regge features are restored by s and t unitarity
screenings.

The first part of this paper is devoted to a brief description of the com-
ponents of the updated IP models. In the second part I shall focus on the
predictions obtained from these models with special attention to the new
LHC results on soft QCD and their implications on IP physics at exceed-
ingly high energies.

2. s-channel unitarity

If the Pomeron is super critical (∆IP > 0), σel grows indefinitely faster
than σtot and will, eventually, get larger! This paradox is eliminated by
imposing an s-unitarity bound on ael(s, b). Enforcing unitarity is model
dependent, so I shall start with the simplest diagonal re-scattering matrix,
where repeated elastic re-scatterings secure s-channel unitarity.

2 Im ael(s, b) =| ael(s, b)|2 +Gin(s, b) . (2.7)

This is no more than a statement that σtot(s, b) = σel(s, b) + σin(s, b). Its
general solution is

ael(s, b) = i
(

1− e−Ω(s,b)/2
)
, (2.8)

Gin(s, b) = 1 − e−Ω(s,b) , (2.9)

in which Ω(s, b) is arbitrary. We obtain a unitarity bound of | ael(s, b) |≤ 2.
In a Glauber type eikonal approximation, the input opacity Ω(s, b) is real,
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i.e. ael(s, b) is imaginary. It equals the imaginary part of the input Born
term, a IP exchange amplitude in our context. The output bound is

| ael(s, b) |≤ 1 , (2.10)

which is the black disc bound. Analyticity and crossing symmetry are re-
stored by the dispersion relation substitution sαIP → sαIP e−

1
2
iπαIP .

Total, elastic and inelastic cross-sections are

σtot = 2
∫
d2b
(

1 − e−Ω(s,b)/2
)
, (2.11)

σel =
∫
d2b
(

1 − e−Ω(s,b)/2
)2

, (2.12)

σin =
∫
d2b
(

1 − e−Ω(s,b)
)
. (2.13)

Imposing unitarity + analyticity/crossing bounds leads to the Froissart
bound

σtot ≤ C ln2(s/s0) , (2.14)

in which C ∝ 1/m2
π. This is a numerical (not a functional) bound. Its

value is far too high to provide a useful bound. There have been suggestions
to replace the pion mass with a gluonium mass. However, these ideas, as
appealing as they may be, lack a sound base. Fig. 1 illustrates the s-unitarity
bounds and the suppressed scattering amplitude output.

Fig. 1. The effect of eikonal screening restoring s unitarity. The bounds implied by
analiticity/crossing are also shown.
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3. Good–Walker eikonal models

Current eikonal models are two channel, including both elastic and dif-
fractive re-scatterings of the initial projectiles. This is a consequence of
the GW mechanism [4] in which the proton (anti-proton) wave function has
elastic and diffractive components. However, models based on just the GW
mechanism reproduce the total and elastic cross-sections well, but fail to
describe the complete diffractive cross-section data. Theoretically [5], these
deficiencies can be eliminated by the introduction of multi IP interactions
leading to high mass diffraction. These “Pomeron-enhanced” contributions,
are derived from Gribov’s Reggeon calculus [2]. The zero order, on which
these calculations are based, is Mueller’s triple Pomeron high mass SD for-
malism [6].

Consider a IP vertex with an incoming hadron |h〉 and outgoing diffrac-
tive system approximated [7] as a single state |D〉. The GW mechanism
is based on the observation that these states do not diagonalize the 2×2
interaction matrix. We denote the interaction matrix eigenstates by ψ1 and
ψ2. The wave functions of the incoming hadron and outgoing diffractive
state are

ψh = αψ1 + β ψ2 , (3.15)
ψD = −β ψ1 + αψ2 , (3.16)

where, α2 + β2 = 1. For each of the four independent elastic scattering
amplitudes AS

i,k(s, b) we write its elastic unitarity equation

ImAS
i,k(s, b) =

∣∣AS
i,k(s, b)

∣∣2 +Gin
i,k(s, b) , (3.17)

in which

AS
i,k(s, b) = i

(
1− exp

(
−1

2Ω
S
i,k(s, b)

))
, (3.18)

Gin
i,k(s, b) =

(
1− exp

(
−ΩS

i,k(s, b)
))
. (3.19)

Gin
i,k is the summed probability for all non-GW induced inelastic final states.

From Eq. (3.19) we deduce that

P S
i,k(s, b) = exp

(
−ΩS

i,k(s, b)
)
, (3.20)

is the probability that the GW (i, k) projectiles will reach the final Large
Rapidity Gap (LRG) interaction in their initial state, regardless of their
prior re-scatterings.
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For p–p and p̄–p scattering AS
1,2 = AS

2,1, which reduces the number of
independent amplitudes to three. The corresponding elastic, SD and DD
amplitudes are

ael(s, b) = i
{
α4AS

1,1 + 2α2β2AS
1,2 + β4AS

2,2

}
, (3.21)

asd(s, b) = iαβ
{
−α2AS

1,1 + (α2 − β2)AS
1,2 + β2AS

2,2

}
, (3.22)

add = iα2β2
{
AS

1,1 − 2AS
1,2 +AS

2,2

}
. (3.23)

For more details see Ref. [8] and references therein.
Eikonal models based on the GW mechanism use a Regge like formalism

in which the opacity is

ΩS
i,k(s, b) = νS

i,k(s)Γ
S
i,k(s, b, α

′
IP ) . (3.24)

νS
i,k(s) = gigk( ss0 )∆IP . Γ S

i,k are the b-space profiles, constructed so as to
reproduce the differential dσdt cross-sections in the elastic, SD and DD chan-
nels. In GLM Γ S

i,k are given as the b-transforms of two t-poles expressions
(t = −q2). Setting α′IP = 0, these profiles are energy independent

1
(1 + q2/m2

i )2
× 1

(1 + q2/m2
k)

2
=⇒ Γ S

(
b;mi,mk;α′IP = 0

)
. (3.25)

GLM introduce a small energy dependence

m2
i =⇒ m2

i (s) ≡
m2
i

1 + 4m2
iα
′
IP ln(s/s0)

. (3.26)

The normalization and constraints on the large b behavior of the pro-
files, are determined by the data analysis. The above parametrization is
compatible with the requirements of analyticity/crossing symmetry at large
b, pQCD at large q2 and Regge at small t. For details see Ref. [8].

4. Multi Pomeron interactions

Mueller applied [6] 3 body unitarity to equate the cross-section of

a+ b→M + b (4.27)

to the triple Regge diagram

a+ b+ b̄→ a+ b+ b̄ . (4.28)
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The core of this representation is a triple vertex with a leading 3IP term (see
Fig. 2). The equation is valid for mp

M2 � 1 and M2

s � 1, defining “high mass
diffraction”. The corresponding cross-section is

M2 dσ3IP

dt dM2
=
g2
p(t)gp(0)G3IP

16π2

( s

M2

)2αIP (t)−2
(
M2

s0

)αIP (0)−1

. (4.29)

Eq. (4.29) implies a correlation between the s dependences of the elastic
and diffractive amplitudes and the mass dependence of the “high mass” SD
amplitude. The procedure just described can be extended also to DD.

Fig. 2. Mueller’s 3IP approximation for SD.

Provided G3IP is not too small, Muller’s 3IP approximation for “high
mass” single diffraction is the lowest order of a very large family of multi
Pomeron interactions which are not included in the GW mechanism. This
dynamical feature is compatible with t-channel unitarity. Fig. 3 shows the
low order IP Green’s function. We distinguish between: (a) Enhanced
diagrams which renormalize (in low order) the IP propagator; (b) Semi-
enhanced diagrams which renormalize (in low order) the p–IP–p vertexes.
The complexity of these diagrams requires summing algorithms which are
model dependent.

a) b)

Fig. 3. The low order IP Green’s function.
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Multi IP interactions induce further screening of both the GW sector
through IP renormalization, and the non-GW sector through the correspond-
ing gap survival probability (discussed in the next section).

The introduction of multi IP interactions as a major component of the
Pomeron model, poses a serious problem in as much as it depends on many
unknown rapidity space point like couplings corresponding to nIP → mIP .
There are two optional procedures to overcome this difficulty:

1. In the GLM model [8] the microscopic sub structure of the Pomeron is
provided by Gribov partonic interpretation of Regge theory, in which
the slope of the Pomeron trajectory is related to the mean transverse
momentum of the partonic dipoles constructing the Pomeron, and,
consequently, the running QCD coupling constant.

α′IP ∝ 1/〈pt〉2 , (4.30)
αS ∝ π/ ln

(〈
p2

t

〉
/Λ2

QCD

)
� 1 . (4.31)

GLM utilize the pQCD MPSI procedure [9], where nIP → mIP re-
duces to a sequence of G3IP vertexes (Fan diagrams), i.e. 2IP → IP
and IP → 2IP .

2. In an alternative approach, KMR [10] assumed a recurrence relation
for multi IP couplings,

gnm = 1
2 gN nmλn+m−2 = 1

2 nmG3IP λ
n+m−3 . (4.32)

λ is a free parameter, n+m > 2, G3IP = λgN . Kaidalov and Poghosyan
(KP) [11] and Ostapchenko (Os) [12] have a similar coupling with a
different normalization.

The need for s-channel screening of the bare IP exchange amplitude has been
recognized and integrated into phenomenological models long ago. The re-
alization of t-channel multi IP interaction is as old, but its full formulation
and integration into the analysis of high energy soft interactions is rela-
tively young. One of the main goals of this presentation is to emphasize the
role of multi IP interactions in high energy soft scattering and identify its
experimental signatures.

5. LRG survival probability

The Pomeron is defined as a moving Regge pole void of electric and
color charges. The proposition by Low and Nussinov [13] that the IP is a 2
gluon color singlet, is intuitively appealing. This is a Born term description.
In high order the 2 gluons are replaced by a gluonic ladder. The coupled
experimental signature, indicating a diffractive process, is a large rapidity
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(in practice, pseudorapidity) gap (LRG) devoid of hadrons in the η–φ Lego
plot,

η = − ln
(

tan
θ

2

)
. (5.33)

Consider non-GW diffraction (soft or hard). This channel is contained
in Gin

i,k, rather than within the AS
i,k GW amplitudes. The reduction of the

bare non-screened non-GW diffractive cross-section is expressed by the prob-
ability that its rapidity gap signature will not be filled by partonic and/or
hadronic debris originating from s and t channel screenings. This is ex-
pressed by the LRG survival probability factor.

The LHC experimental program is focused, to a considerable extent, on
the discovery of the Higgs boson. I shall confine my discussion on this subject
to a Standard Model Higgs with a relatively low mass of 120–180 GeV,
produced in an exclusive central diffraction,

p+ p→ p+ LRG +H + LRG + p . (5.34)

The advantage of this channel is that it has a distinctive signature of two
large rapidity gaps and a favorable signal to background ratio, which is
improved when the forward protons are tagged. The same mechanism is
applied to di-jets and χ mesons central production. Denote the gap survival
factor initiated by s-channel soft eikonalization S2

eik, and the one initiated
by t-channel multi IP interactions by S2

enh. Even though S2 is obtained
through a convolution of the s and t channel screenings (see Fig. 4), it can
be reasonably well approximated through a factorization of the s-channel
eikonal screening and the t-channel enhanced IP screening.

S2 =
σscr

diff

σnonscr
diff

≈ S2
eik · S2

enh . (5.35)

Fig. 4. An example of the screenings generating the gap survival probability for
exclusive central diffractive production of the Higgs boson. (a) shows the contri-
bution to the survival probability in the GW mechanism, while (b) illustrates the
origin of the additional factor 〈|S2

enh|〉.
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In a single channel eikonal model,

S2
eik =

∫
d2b |M in

diff(s, b) |2 P S(s, b)∫
d2b |M in

diff(s, b) |2
. (5.36)

Recall that, Gin = 1 − P S, where, P S(s, b) = e−ΩIP (s,b). It is the probabil-
ity that the colliding projectiles reach the IP exchange diffractive reaction in
their initial state, regardless of their prior re-scatterings. The calculation of
S2

eik in a multi channel model is straightforward, depending on the summa-
tion over the GW eigen states. It is coherent for an exclusive channel such
as

p+ p→ p+ LRG + Higgs + LRG + p , (5.37)

and non-coherent for an inclusive channel such as

p+ p→ X + LRG + Higgs + LRG + Y . (5.38)

As I have just noted, a precise calculation of S2 requires a convolution
of the s-channel eikonal initial re-scatterings of the incoming projectiles and
the t-channel multi IP interactions. A scheme of these diagrams in the GLM
model is given in Fig. 5. The corresponding S2 results [14] for exclusive
central diffraction are presented in Fig. 6.

a)

G−W contribution

G−W contribution

G−W contribution

b)

c)

Higgs

Fig. 5. GLM diagrams for exclusive central diffraction.
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Fig. 6. GLM estimates of S2 for exclusive central diffraction.

The s and t screenings induce a monotonous decrease of ∆eff
IP referred to

as “IP renormalization”. Its GLM predictions are shown in Table I.

TABLE I

GLM ∆eff
IP in two energy ranges.

W[TeV] 1.8 → 14.0 14.0 → 100.0
∆input

IP = 0.335 0.056 0.041
∆input

IP = 0.200 0.074 0.060

6. How many Pomerons?

Following I shall discuss mostly multi channel IP models in which s
and t unitarity screenings are incorporated. The models are very similar
conceptually, but differ in the details of their IP model, multi IP diagram
summation procedures and data analyses.

• GLM (Tel Aviv): have a single soft IP with hard characteristics [8].
∆IP = 0.20 and α′IP = 0.02 GeV−2. The GLM IP does not depend on
kt.
• KMR (Durham): have a BFKL like single soft IP [10]. ∆IP = 0.3 and
α′IP ∝ 1/p2

t depends on kt evolution which determines the continuous
value of α′IP .
• Os (Bergen): has 2 Pomerons [12]. Following are his set C parameters:

Soft IP : ∆IP = 0.17 and α′IP = 0.11 GeV−2. Hard IP : ∆IP = 0.31 and
α′IP = 0.085 GeV−2.
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• KP (Moscow): is a single channel non-GW IP model with a single,
DL-like, soft IP and 3 Regge secondary trajectories [11]. ∆IP = 0.117
and α′IP = 0.252 GeV−2. ∆f = 0.17 and α′f = 0.8 GeV−2; ∆ρ = 0.5
and α′ρ = 0.9 GeV−2; ∆ω = 0.4 and α′ω = 0.9 GeV−2.

pQCD study of e–p DIS, in the limit of very high Q2 and exceedingly
small x, led Balitsky, Fadin, Kuraev and Lipatov (1975–78) to introduce the
hard BFKL Pomeron corresponding, in its lowest order to a hard gluon lad-
der. Note that, the soft IP is a simple moving pole in the J-plane, while, the
BFKL IP is a branch cut. Commonly, though, the BFKL IP is parameter-
ized as a simple J-pole with parameters obtained from NLL resumed BFKL
equation. ∆BFKL = 0.2–0.35 and α′BFKL = 0. These values are regarded as
the signatures of the hard IP . Recall that, in pQCD the BFKL Pomeron
slope α′IP ∝ 1/Q2

s → 0 as s→∞. Q2
s is the saturation scale.

The experimental study of e–p DIS provides a “laboratory” in which we
can investigate the Pomeron properties as a function of its kinematic vari-
ables. Indeed, HERA e–p DIS data is a rich source of information on the
IP features. Fig. 7 presents the Q2 dependence of ∆eff

IP obtained from DIS
σ(γ∗ + p→p + X) ∝ sλ, λ = ∆eff

IP . Fig. 7 clearly shows the smooth tran-
sition from the soft (non-perturbative) Pomeron to the hard (perturbative)
Pomeron. As seen, at very small Q2, ∆eff

IP ' 0.1, is compatible with the

Fig. 7. Q2 dependence of e–p DIS.
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hadronic effective soft IP . At higher Q2, up to ' 200 GeV2, ∆IP grows to-
ward ∆eff

IP ' 0.35, compatible with the DIS hard IP . The smooth transition
from soft to hard IP supports GLM and KMR choice of a single Pomeron.

There is an inherent difficulty in the leading concept of GLM and KMR
who calculate the elastic and diffractive channels simultaneously. This ap-
proach requires a sum over all orders (loops) of the multi IP interactions.
Since there is no rigorous method to calculate the sum of the enhanced and
semi-enhanced diagrams, both groups had to rely on approximations which
are difficult to assess critically. Recall that GLM and KMR fix α′IP = 0. This
implies a bound of validity for both models approximately W = 100 TeV.

GLM try to by-pass this problem by constructing a model [8, 14] based
on the postulates stemmed from N = 4 SYM and pQCD.

• Following Ref. [16] α′IP = 0. From the information on multi-particle
production at HERA [16] and early LHC (see the last section in this
presentation) we estimate that λ = 5–9. Consequently, ∆IP =
1–2/
√
λ ≈ 0.11–0.33. Fig. 8 shows the transition from the N = 4

SYM trajectory to the pQCD trajectory at t = 0.

Fig. 8. The N = 4 SYM IP trajectory which has different slopes at positive and
negative t. The figure is taken from Brower, Polchinski, Strassler and Tan.

• Given a λ which is large enough, the total cross-section has a signifi-
cant contribution from the diffraction dissociation channels originating
mainly from the GW mechanism.
• Matching N = 4 SYM with pQCD [17], the self interaction of the

Pomeron in N = 4 SYM is of the order of 2/
√
λ. It is much smaller

than the vertex of the hadron–IP–hadron, which is of the order of λ.
Note that in the GLM model, the only contributing vertex is the
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triple IP . This ingredient differentiates between GLM and the other IP
models discussed. The IP parameters just estimated are in agreement
with GLM fitted parameters.

I shall also quote 2 versions of the non-Pomeronic mini-jets model
[18, 19]. These models, like DL, confine their investigation exclusively to
the elastic channel and do not include diffraction in their analysis. As such,
they disregard the GWmechanism. In my opinion, this is a serious deficiency
shared also by the KP model.

7. The interface between theory and data

In this section I shall refer mostly to updated IP models: GLM, KMR,
KP and Os. These models share a basic approach, but they differ signifi-
cantly in their modelings. In my opinion these differences can be traced, at
lease in part, to the complexity of these model which is reflected in a large
number of free parameters.

The four essential parameters which specify the main features of the
Pomeron are ∆IP , α′IP , G3IP and γ, the low energy colorless dipole–target
amplitude (alternatively we may refer to the p–IP–p vertex). Recall, though,
that these are just four out of a large number of IP model free parameters.
Current Pomeron models adjust, out of necessity, their free parameters from
the data analysis of relatively small data bases. This practical constraint
was addressed differently by each of the quoted groups.

7.1. Data bases

GLM fit a data base of 58 points: σtot, σel, σsd, σdd and Bel in the
ISR–Tevatron range. We add a consistency check of SD forward slopes and
CDF data on dσel

dt (t ≤ 0.5 GeV2) and dσsd
dtd(M2/s)

(t = 0.05 GeV2). The wide
energy range of this base necessitates the addition of a secondary Regge
contribution.

KMR tune a smaller data base containing just the measured values of
σtot, dσel

dt (t ≤ 0.5 GeV2) and dσsd
dtd(M2/s)

(t = 0.05 GeV2). Os and KP tune a
similar, somewhat larger, data base. KP did not specify their adjustment
procedure. In this approach the integrated σel, σsd, and σdd are predicted
rather than adjusted.

7.2. Adjustment of the free parameters

The incompatibility between the number of free parameters and size of
the adjusted data base results with shortcuts and simplifications in the data
analysis particular to each group.
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The data analysis of GLM aims to simultaneously fit the 9 IP and 5 Regge
free parameters. We define σ = 1

2(σ(pp) + σ(p̄p)). Our fitted parameters
are displayed in Table II. Our fit has χ2/d.o.f.= 1.56. A very large contribu-
tion to the overall χ2 stems from 2 Spp̄S SD data points and CDF σtot at
1800 GeV. Neglecting these 3 points we obtain an excellent χ2/d.o.f.= 0.86.
Our fit provides a good reproduction of σdd.

TABLE II

σtot, σrl, σsd, σdd and S2
H calculated by GLM, KMR, Kp and Os.

1.8 TeV 7 TeV 14 TeV 100 TeV
GLM KMR Os GLM KMR KP GLM KMR Os KP GLM KMR

σtot 74.4 72.8 73.0 91.3 89.0 96.4 101.0 98.3 114.0 108.0 128.0 127.1
σel 17.5 16.3 16.8 23.0 21.9 24.8 26.1 24.2 33.0 29.5 35.6 35.2
σsd 8.9 11.4 9.6 10.2 15.4 12.0 10.8 17.6 11.0 14.3 12.7 24.7
σdd 3.5 7.0 3.9 6.4 6.1 6.5 13.5 4.8 6.4 7.8
S2

H 0.11 0.06 0.024 0.04 0.015

KMR, KP and Os data bases are predominantly sets of differential cross-
sections. Such sets have a systemic behavior and, as such, it is non-trivial
to obtain a significant “best fit” with a parameter rich model. KMR and Os
assume (rather than adjust) the values of some parameters. Notably, they
assume that g1 = g2. As we shall see, this choice determines the rate at
which the elastic amplitude approaches the black disc bound.

There is a fundamental difference between the free parameter adjust-
ment executed by GLM as compared with the procedure practiced by KMR
and Os. GLM fit the complete data base, adjusting their model which is
GW+IP -enhanced. KMR and Os factorize their tuning, adjusting the GW
and non-GW sectors independently. Following Kaidalov, their diffraction is
predominantly “high mass”. In order to check the factorized procedure we
have fitted our data base twice. Once using our procedure and once using
the factorized one. The two sets of fitted parameter we have obtained are
significantly different [20].

7.3. Diffractive low mass versus high mass

A systemic study of diffraction has to address a conceptual ambiguity.
Whereas the definition and signature of elastic scattering are straight for-
ward, there are no unambiguous definitions and signatures of soft diffraction.
This problem is disturbing conceptually, and more, so practically. The lack
of a uniformity introduces some level of ambiguity in the attempts to deter-
mine the energy dependence of soft diffractive channels.
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GW original study incorporated the few known discrete nucleon isobar
states as the diffractive component in their mechanism. Mueller’s triple
IP approximation is valid when s � M2 � mp. The added “high mass”
diffraction is continuous. Its common (arbitrary) high limit is M2

s ≤ 0.05.
ISR experimental SD studies, at the time, used in most (but not all) of
their publications a reasonable lower mass limit of 1.4 GeV2. Their SD mass
distribution above this limit is smooth.

Kaidalov, in his break-through studies of high energy diffraction, adopted
the original GW point of view defining the GW diffracted mass to be Y ≤ 3,
corresponding to M2 ≤ 4.5 GeV2. Y > 3 defines the non-GW “high mass”.
KMR, and Os adopt Kaidalov’s original definitions. Note that with such a
definition the smooth continuity of M is not maintained at Y = 3.

GLM offers a radically different approach in which GW diffraction has
no Y cut, and it is continuous in M2 up to 0.05 s. Multi IP diagrams
generating the non-GW diffraction are summed above Y = 3. The net
result is that GLM diffraction has a significant GW component, whereas
KMR and Os diffraction is predominantly non-GW. KP is a single channel
model. As such, its SD is strictly “high mass”. In the ISR–Tevatron range the
difference between the two definitions is relatively small. At LHC energies
the difference becomes significant.

7.4. Calculated cross-sections

Table III displays the output results of the soft cross-sections and central
Higgs gap survival factor as calculated by the IP models which are compat-
ible with s and t unitarity.

TABLE III

GLM adjusted free parameters.

∆IP β α′IP g1 g2 m1 m2

0.2 0.388 0.020 GeV−2 2.53 GeV−1 88.4 GeV−1 2.648 GeV 1.37 GeV
∆R γ α′R gR

1 gR
2 R2

0,1 G3IP

−0.466 0.0033 0.4 GeV−2 14.5 GeV−1 1343 GeV−1 4.0 GeV−2 0.0173 GeV−1

• GLM, KMR and Os total, elastic and SD cross-sections are compatible
at 1800 GeV.
• GLM and Os SD cross-sections are compatible. KMR are moderately

larger at 1.8 TeV, increasing fast with energy.
• KMR σdd is consistently much larger. This may be considered as a

signature of the KMR model.
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• GLM and KMR total and elastic cross-sections are compatible over a
remarkable energy range spanning 1.8 to 100 TeV.
• Os total and elastic predictions grow much faster than GLM and KMR,

probably because of the hard IP component of his model.
• KP σtot are larger than GLM and KMR.

Recall that, the main difference between the quoted models is in the for-
mulation and summation procedures of their multi IP sector which becomes
significant at higher energies.

8. Exceedingly high energy behavior

The basic GW amplitudes of the GLM model are AS
1,1, AS

1,2 and AS
2,2.

These are the building blocks with which we construct ael, asd and add

(3.21)–(3.23). The AS
i,k amplitudes are bounded by s-channel unitarity black

disc bound of unity. ael(s, b) reaches this bound at a given (s, b) when, and
only when, AS

1,1(s, b) = AS
1,2(s, b) = AS

2,2(s, b) = 1, independent of the value
of β. Consequently, when ael(s, b) = 1, asd(s, b) = add(s, b) = 0.

Checking GLM fitted parameters in Table III we observe that g2 � g1.
As a consequence, the three basic GW amplitudes reach the black disc bound
at different energies. The net result is that GLM approach toward the black
disk bound is somewhat slower than in KMR and Os in which g1 = g2.

The behavior of the ratio RD(s) = σel(s)+σsd(s)+σdd(s)
σtot(s)

conveys informa-
tion on the onset of s-unitarity as a function of s. Assume that diffrac-
tion originates exclusively from the GW mechanism, we obtain the Pumplin
bound [21] RD ≤ 0.5. The non-GW diffraction is not included in this bound
as it originates from Gin

i,k. Hence, the non-screened non-GW diffraction
which is rising monotonically with energy is suppressed by by the LRG sur-
vival probability, which is decreasing with energy at a faster rate.

One should be careful when checking unitarity properties that are ob-
tained from a b-integration. An interesting example is to check σel

σtot
at ex-

ceedingly high energy where the elastic amplitude is mostly black. Recall,
though that this does not apply at the high b-tail where ael(s, b) < 1. As
a consequence we have a very small, but non-zero diffractive cross-section.
See Fig. 9.

9. LHC data and its interpretation

9.1. From the Tevatron to LHC

LHC preliminary data, relevant to this presentation, become available
only recently. The phenomenological relevant predictions, obtained from
either dynamical models or simulation Monte Carlo programs, are based on
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Fig. 9. GLM El, SD, and DD b-space amplitudes at the Planck scale.

relatively low energy data input. We have, thus, to consider a few essential
issues:

1. A successful reproduction of the soft scattering data in the ISR–
Tevatron range is a pre-requisite for a model or a simulation to be
considered as a source of LHC predictions. As we noted, the Tevatron
data, on its own, does not have the resolution to discriminate between
models. Consequently, a successful reproduction of the Tevatron data
does not secure a similar success at the LHC.

2. From a dynamical point of view, the question is if we have to consider
some new dynamics above the Tevatron. Specifically, the analysis
of the Tevatron soft scattering data is consistent with IP -enhanced
dynamics, but not sufficient to verify it conclusively.

3. The condition for multi IP dynamics to be significant depends on a
delicate balance between ∆IP , α′IP , G3IP and γ. The analysis [8, 10]
of the Tevatron soft scattering data implies a relevance of multi IP
interactions at the LHC.

4. In a very interesting presentation at this meeting, Rick Field com-
pared the Tevatron and LHC inclusive pseudorapidity distributions
dNch/dη. His method was to check if Monte Carlo programs, which
reproduced the CDF data well, could be tuned so as to fit the LHC
new data at 7 TeV. Field’s conclusion was that the tunes he checked
under estimated the LHC data by 20–50%.
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9.2. Inclusive pseudorapidity distributions

ALICE, CMS and ATLAS [23] have recently published the NSD charged
multiplicity density

dNch/dη = (1/σNSD)dσ/dη , (9.39)

at central pseudorapidity −2.5 ≤ η ≤ 2.5. This data provides an additional
angle to assess IP models. The following is a short summary of the GLM
approach. In the framework of Gribov’s IP calculus, single inclusive cross-
sections can be calculated using Mueller diagrams [6] (see Fig. 10). In the

Y

y

0

−a
PP

a
RP

a
PR

−

= =

a)

b) c)

IP IR

G3P

Fig. 10. (a) Mueller inclusive diagrams, (b) IP Green function, (c) IP -hadron vertex.
A bold waving line = IP . A zigzag line = R.

calculation, we have used the fitted parameters of the GLM IP model, to
which we have to add 3 additional phenomenological parameters [24]: aIPIP
and aIPR = aRIP , which account for hadron emission from the IP or Reggeon
propagators. Q is the average transverse momentum of the produced mini-
jets with a mass Q0Q. In BNL mini-jets studies [25] Q0 = 2 GeV.

The inclusive data fit depends, thus, on 3 free parameters. The data
base for this fit is obtained from experiments spread over many years with
different approaches to their cuts and error estimates. We have fitted the
data twice. Once, fitting the 546, 900, 1800, 2369, 7000 GeV data [23, 26].
The second fit was confined to the very recent CMS data [23] at 900, 2360,
7000 GeV. The 2 sets of fitted parameters are close but not identical. In
particular, the difference between the 2 values of Q/Q0 is significant for the
CMS fits at small η. See Table IV and Figs. 11 and 12.
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TABLE IV

GLM fitted parameters for the two data sets of inclusive distributions.

Data aIPIP aIPR Q0/Q

CMS 0.390 0.186 0.427
All 0.413 0.194 0.356
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Fig. 11. GLM fit to inclusive charged pseudorapidity distributions. Data from
Refs. [23, 26].
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Fig. 12. GLM fit to CMS inclusive charged pseudorapidity distributions.

Our results are important in as much as we offer a simultaneous repro-
duction of the Tevatron and LHC data.
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9.3. Inelastic cross-sections

Cross-sections contributing to σtot are

σtot = σel + σsd + σdd + σnd = σel + σinel . (9.40)

The first measurements of the inelastic cross-section derive from the mini-
mum bias data samples. This procedure requires, though, an extrapolation
aimed to include also high η tracks which are out of the detection acceptance.

σinel can be also determined as the difference σinel = σtot− σel, provided
both σtot and σel are measured. Regardless of the measuring procedure, σinel

values at 7 TeV have been recently published by ALICE, ATLAS, CMS and
TOTEM [27,28].

σinel have been predicted by multi channel unitary models [8,10,12] and,
also, by single channel models in which the GW mixing is ignored [11,19,18].
I shall discuss this issue in the discussion subsection.

Tables V and VI compare between LHC measured values of σinel at
7 TeV and five model predictions. The four experimental values of σinel are
consistent. Note, though, that TOTEM’s errors are considerably smaller.
Within the experimental errors, the predicted σinel values are consistent
with the data, even though they are consistently some what lower.

TABLE V

LHC σinel at 7 TeV.

ATLAS ALICE CMS TOTEM

69.4± 2.4± 6.9 72.7± 1.1± 5.1 71.8± 1.1± 2.0± 7.9 73.5± 0.6 + 1.8− 1.3

TABLE VI

σinel theoretical predictions.

Achilli et al. Block–Halzen GLM Kaidalov–Poghosyan KMR
60–75 69.0 68.3 70.0 62.6–67.1

9.4. Total and elastic cross-sections

Tables VII presents the LHC values [28,29] of σtot and σel. A sample of
the corresponding predictions [19, 18, 8, 11, 10] are presented in Table VIII.
As seen, the predictions of KP and Block–Halzen are compatible with the
data while GLM and KMR are systematically lower.
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TABLE VII

LHC σtot and σel.

TOTEM ATLAS CMS
σtot mb 98.3± 0.2± 2.7 + 0.8− 0.2 96.0± 3.3± 9.5 94.0± 2.8± 5.5
σel mb 24.8± 0.2± 2.8 26.6 22.2

TABLE VIII

σtot and σel theoretical predictions.

Achilli et al. Block–Halzen GLM KP KMR
σtot mb 91.6 95.4 91.3 96.4 89.0
σel mb 26.4 23.0 24.8 21.9

9.5. Discussion

A comparison between the presently available LHC soft cross-sections
with the corresponding theoretical predictions (Tables V–VIII) leads to a
few observations:

• The 7 TeV total cross-section predictions of GLM and KMR, are lower
than the LHC data, which are well reproduced by Block–Halzen and
KP. Note that, all σtot values obtained by the LHC groups are larger
than the DL prediction [3] of 90.7 mb. See also Ref. [30].
• Block–Halzen and Achilli et al. are non-Pomeronic single channel mini-

jets models, which refrain from discussing diffraction. In my opinion
this is a major deficiency of these models. Recall also that single chan-
nel models are prone to produce relatively large survival probabilities.
Indeed, S2 calculated by Refs. [18,19] are considerably higher than the
GLM and KMR S2 estimates which are compatible with the Tevatron
di-jets data.
• KP is a single channel IP model i.e. its diffraction is exclusively “high

mass”. This is in disagreement with a recent analysis of LHC data by
KMR [30] in which σlowM

sd was estimated to be 7–10 mb. An addi-
tional deficiency of KP is that this is a model with 4 trajectories. As
such, it depends on exceedingly high number of free parameters in no
proportion to the size of its adjusted data base.
• Considering the above, an assessment of the necessity of advanced

Pomeron model phenomenology in the analysis of LHC soft scattering
data remains opened. Both GLM and KMR can improve their output
with a careful tune of their parameters. The issue at stake, though, is
the exclusivity of this option.
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