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I discuss two topics of importance to phenomenological applications of
perturbative high energy evolution. In the first part I discuss a mechanism
which leads to long range rapidity and angular correlations in particle pro-
duction in dense environment. I argue that positive angular correlations
are leading 1/Nc effect and may be responsible for the “ridge” structure
observed in high multiplicity p–p collisions at LHC. In the second part I
describe the setup for calculation of particle production at high transverse
momenta and high energy, which fully takes into account the perturbative
saturation effects and the leading twist physics. Here I note that recent cal-
culations of inclusive particle production within the high energy approach
are missing a term due to inelastic scattering of projectile partons. This
piece has to be included in order that the results have proper perturbative
limit. Its inclusion is expected to affect strongly the high momentum tail
of the particle spectrum.
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1. Introduction

The last several years have seen a lot of activity applying the ideas of
gluon saturation [1], or Color Glass Condensate [2] to analyze various data.
The saturation based on calculational techniques have advanced consider-
ably during the last two–three years. In particular, large part of next-to-
leading corrections [3] is now taken into account in calculating the evolution
of gluon density to high energy. This allowed for good fits to the HERA DIS
data at low x [4]. Lately many aspects of the RHIC (and the LHC) data
have been analyzed in the framework of saturation physics. These include
the single inclusive particle production [5,6] and the two hadron correlations
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at forward rapidity [5, 7] in dA collisions, and more recently description of
single particle spectra [8] and attempts to understand [9] ridge in p–p colli-
sions at the LHC [10].

Although the saturation based interpretation is philosophically very sim-
ple and appealing, alternative interpretations are also available and it is
important to be able to differentiate between them. One would like to un-
derstand to what extent the data really unambiguously supports, the idea
of saturation. One of the problems we are faced with in this regard, is
that the saturation based calculations, although in principle rooted in con-
trolled perturbative approach to fundamental QCD physics, in practical im-
plementations rely on phenomenological or semi-phenomenological ansatze
and variety of shortcuts. As a result, it is sometimes difficult to understand
what features of the theoretical results are genuine and robust predictions
of saturation, and which are model dependent transient features.

This paper is based on two recent papers [11,12] which try to contribute
to clarification of these issues. The first part is based on [11]. Here I argue
that the appearance of long range rapidity and angular correlations at high
energy is a very generic phenomenon and qualitatively does not depend on
models of high energy scattering. In the second part, based on [12] I reana-
lyze the basis of the calculational approach to particle production at forward
rapidity, and conclude that an important contribution to particle production
has been omitted in the recent numerical calculation. This contribution is in
fact most sensitive to saturation in high energy evolution, and thus it would
be especially interesting to include it in future calculations.

2. Angular correlations in gluon emission
The CMS observation of angular and long range rapidity correlations in

the hadron spectrum, the so-called “ridge” in proton–proton collisions [10],
has triggered a lot of discussions in recent literature [13, 9]. The purpose of
this paper is to point out that at high energy, rapidity and angular correla-
tions between produced particles are to be expected on very general grounds.
The framework of our discussion here is similar to that of [9], but the argu-
mentation will be quite general without referring to specific models of high
energy evolution and/or hadronic wave function.

Consider high energy scattering of a hadronic projectile on a stationary
target in the lab frame. Since the projectile is very energetic, its wave func-
tion is approximately boost invariant. The boost invariance is of course only
approximate, since at too high energy the rapidity evolution is important,
and that introduces rapidity dependence inside the wave function. However,
for rapidity intervals ∆Y < 1

αs
the evolution is not important [14], and thus

can be neglected if the produced particles are separated by rapidity interval
which is not parametrically large.
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The boost invariance leads naturally and straightforwardly to long range
rapidity correlations. Simply put, the incoming wave function is the same
at rapidity Y1 and Y2. The gluon distribution at rapidity Y1 and Y2 are the
same, these gluons scatter exactly on the same target, and thus whatever
happens at Y1 also happens at Y2. If for a particular target field configuration
a gluon is likely to be produced at Y1 at some impact parameter, a gluon
is also likely to be produced at Y2 at the same impact parameter: et voilà
— correlations. This is especially true in the context of the projectile wave
function dominated by the large “classical” Weizsacker–Williams field, since
in this case fluctuations in the wave function are small and the gluon density
configuration by configuration is almost the same at all rapidities. This is
the property of the hadronic wave function at high energy [15]

|Ψ〉 = exp
{
i

∫
d2xbai (x)

∫
dη
(
a†ai (x, η) + aai (x, η)

)}
B
(
a, a†

)
|ψ〉 . (1)

Here ψ is the wave function of valence charges, determining the distribution
of the charge density ρ, B is a Bogolyubov-type operator of the soft gluon
fields a, and the Weizsacker–Williams field b is given in terms of ρ via clas-
sical Yang–Mills equations of motion. For large projectile the WW field is
parametrically large b ∼ 1

g , while the Bogolyubov operator B produces the
fluctuations of the gluon field of the order of unity. Thus for fixed ρ(x) the
gluon density fluctuates very weakly around large average value determined
by the classical field

n =
〈
a†a
〉
∝ b2 ∼ O

(
1
αs

)
,

〈
n2
〉
− 〈n〉2 ∼ 1 . (2)

The smallness of the fluctuations is clearly helpful. Although the wave func-
tion at different rapidities in a boost invariant projectile must be the same,
the magnitude of the color field (and therefore the number of gluons) may
differ at different values of Y for the same configuration of the valence color
charge density ρ, if the fluctuations in this wave function are significant.
Thus in the same scattering event there may be significant differences be-
tween particle production at different rapidities. Still, although the quasi-
classical nature of the state Eq. (1) ensures long range rapidity correlations
at large values of ρ, it is not absolutely necessary. Even in the presence of
considerable fluctuations in the soft gluon wave function, one nevertheless
would expect positive correlations in rapidity. The only really necessary con-
dition is that the density of incoming partons is large enough, so that there
is a large probability to produce more than one particle at a given impact
parameter (we will quantify what we mean by “given impact parameter”
shortly).
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Thus the long range rapidity correlations come practically for free when-
ever the energy is high enough so that the wave function of the incoming
hadron is approximately boost invariant, and there is very little in the actual
dynamics of the collision that can affect this feature. But by almost exactly
the same logic we must conclude that positive angular correlations are also
almost unavoidable. Indeed, if two gluons hit the target at the same impact
parameter, their scattering amplitude is determined by the same configu-
ration of the target field. Thus, if the first gluon is likely to be scattered
with momentum q, the same is true for the second gluon. One, therefore,
expects clear forward correlations for gluons that scatter at the same impact
parameter. Of course, the two gluons will not scatter always with exactly
the same momentum transfer even if they hit at exactly the same impact
parameter, since even a fixed configuration of target fields corresponds to
a nontrivial probability distribution of momentum transfer. Nevertheless,
given that this distribution has a maximum at some particular momentum
transfer, the angular correlations must be very generic.

To better understand why angular correlations naturally arise in the
context of high energy let us briefly recap our understanding of the transverse
structure of the hadron in the saturation regime. It is convenient to think
of the distribution of the (color) electric field configurations in the target.

The target wave function is characterized by the saturation momentum
Qs. The saturation momentum plays a dual role in the hadronic wave
function. First, it measures the typical magnitude of electric field in the
wave function. The scattering amplitude of a dipole on the target is given
in terms of simple parton scattering amplitude S(x) = Peig

R
dx+A−(x) as

N(r) = 1 − 1
Nc

tr[S†(0)S(r)]. The vector potential is simply related to the
electric field as ∂iA− = F−i. Let us for, convenience, define electric field
integrated over the longitudinal extent of the target, Ei =

∫
dx+F−i. The

dipole scattering amplitude is then given in terms of gE, and assuming for
illustrative purposes that odd powers of E average to zero in the hadronic
ensemble, we have roughly

N(~r) ∼ 1− e−
1
2(g~r· ~E)2

. (3)

This is of the order of unity for r2
s = Q−2

s = (gE)−2.
On the other hand, it is known that the field components with transverse

momenta pT < Qs are suppressed in the wave function [16]. This means that
the electric fields in the target are correlated on the length scale λ ∼ Q−1

s .
Thus the saturation momentum doubles up as the inverse of the correlation
length of target color fields. Typical field configurations in the target can
thus be thought of having a domain-like structure of Fig. 1.
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Q s

−1

E

Fig. 1. Typical color electric field configuration in the target.

Now consider a projectile parton with charge q impinging on one of the
domains of the target. While traversing the target field, the parton acquires
transverse momentum

δ ~P = gq

∫
dx+ ~F− = gq ~E . (4)

A parton at a different rapidity but with the same charge will pick up exactly
the same transverse momentum if it scatters on the same “domain”. This,
of course, results in positive angular correlation of produced gluons.

We note that this simple picture also suggests that angular correlations
at angle φ and φ+ π have equal strength. At high energy, particle produc-
tion is dominated by gluons. Gluons, of course, belong to real representation
of the gauge group, thus it is equally probable to find an incoming gluon
with charge q and charge −q in the projectile wave function at any rapid-
ity. Suppose, for example, that on a given configuration the color field in
the target is in the third direction in the color space Eai = Eiδ

a3, while
in the incoming projectile the gluon corresponds to the vector potential in
the second direction A2

i . One can always write A2 = −i/2(A+−A−), where
A+ = A1 + iA2 is positively charged with respect to color charge in the third
direction, and A− is negatively charged. Thus, necessarily equal number of
gluons in the incoming projectile have opposite sign charges and are kicked
in opposite directions while scattering on the target. This produces equal
strength correlations at angles zero and π. This feature of equal forward
and backward correlations was noted in [11]. For quarks which carry funda-
mental charges, this degeneracy should be absent and taking into account
the projectile quarks will lead to stronger positive angular correlation than
the negative one.
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The previous discussion is clearly oversimplified, since it does not ad-
dress some important points. For example, for a soft gluon to be produced
in the final state, it is not enough for it to acquire some transverse momen-
tum. It also must decorrelate from the valence charge that emitted it in the
incoming wave function. Otherwise, it will not be produced as a particle in
the final state, but rather as part of the Weizsacker–Williams field of the
produced valence parton. We will, therefore, turn to an explicit formula
that determines the gluon double inclusive spectrum in order to see to what
extent this explicit expression is consistent with our simple discussion.

According to [17] (see also [18]) the inclusive two gluon production prob-
ability is given by

dN

d2pd2kdηdξ
=
〈
Aabij (k, p)A∗abij (k, p)

〉
P,T

(5)

with the amplitude

Aabij (k, p) =
∫
u,z

eikz+ipu
∫

x1,x2

×{fi(z − x1) [S(x1)− S(z)] ρ(x1)}a {fj(u− x2) [S(u)− S(x2)] ρ(x2)}b

−g
2

∫
x1

fi(z − x1)fj(u− x1)
{

[S(x1)− S(z)] ρ̃(x1)
[
S†(u) + S†(x1)

]}ab
+g
∫
x1

fi(z − u)fj(u− x1)
{

(S(z)− S(u)) ρ̃(x1)S†(u)
}ab

. (6)

Here
fi(x− y) =

(x− y)i
(x− y)2

(7)

and we have defined ρ̃ ≡ −iT aρa. The charge density is normalized such
that for a single gluon ρa = gT a. In these formulae ρa(x) is the valence
color charge density in the projectile wave function, while Sab(x) is the
eikonal scattering matrix determined by the target color fields. The average
in Eq. (5) denotes averaging over the projectile and the target wave func-
tions. We also note that in this expression the gluon with momentum p is
assumed to have larger rapidity, and thus the emission of the two gluons is
not completely symmetric.

The physical meaning of the three terms in Eq. (6) is straightforward.
The first term corresponds to independent production of the two gluons.
This term is leading in the limit of large color density ρ ∼ 1/g. One should
keep in mind, however that in this limit other terms not included in Eq. (6)
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are equally important [19, 20]. The second term corresponds to production
of two gluons emitted from the same color source in the incoming projectile
wave-function. The third term corresponds to the process whereby the softer
gluon has been emitted in the wave function by the harder one, with both
gluons subsequently produced in the collision. In terms of BFKL ladders, the
(square of the) first term is a part of the diagram containing two independent
ladders, while the (square of the) last two terms describe emission of two
gluons contained in the same BFKL ladder.

To calculate the cross-section one has to square the amplitude. This
produces many terms, but in the text we only reproduce one part of this
expression which arises from squaring the first term in the amplitude Eq. (6)
which is responsible for independent production of the two gluons.

dN

d2pd2kdηdξ
=
〈
σ4
〉

P,T
(8)

with

σ4 =
∫

u,z,ū,z̄

eik(z−z̄)+ip(u−ū)

∫
x1,x2,x̄1,x̄2

×~f(z̄ − x̄1) · ~f(x1 − z) ~f(ū− x̄2) · ~f(x2 − u)

×
{
ρ(x1)

[
S†(x1)− S†(z)

]
[S(x̄1)− S(z̄)] ρ(x̄1)

}
×
{
ρ(x2)

[
S†(u)− S†(x2)

]
[S(ū)− S(x̄2)ρ(x̄2)]

}
. (9)

It is very easy to see that it indeed produces angular correlations. One
can write it as

σ4(k, p) = 〈σ(k)σ(p)〉P,T , (10)

where

σ(k) =
∫
z,z̄

eik(z−z̄)
∫

x1,x̄1

~f(z̄ − x̄1) · ~f(x1 − z)

×
{
ρ(x1)

[
S†(x1)− S†(z)

]
[S(x̄1)− S(z̄)] ρ(x̄1)

}
. (11)

For fixed configuration of the projectile sources ρ(x) and target fields S(x),
the function σ(k) as a function of momentum has a maximum at some value
k = q. Therefore, clearly the product in Eq. (10) is maximal for k = p = q.
The value of the vector q of course differs from one configuration to another,
but the fact that momenta k and p are parallel does not. Therefore, after
averaging over the ensemble σ4(k, p) has maximum at relative zero angle
between the two momenta.
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We reiterate, that even though averaged over all configuration 〈σ(k)〉P,T
must be isotropic, there is absolutely no reason for it to be isotropic for any
given configuration. The strength of the maximum depends, of course, on
the detailed nature of the field configurations constituting the two ensembles
(the projectile and the target). We will discuss some qualitative features of
these in the next section. But first, it is interesting to ask is the maximum
of σ(k) unique, or perhaps there is finite degeneracy. It is in fact easy to
see that the maximum is doubly degenerate. The probability σ(k) can be
written in terms of the single gluon production amplitude a(k)

aai (k) =
∫
dzeikz

∫
x1

fi(z − x1)[S(x1)− S(z)]abρb(x1) . (12)

Since the amplitude a is real in coordinate space, we have

σ(k) = a(k)a∗(k) = a(k)a(−k) . (13)

Configuration by configuration this is clearly symmetric

σ(k) = σ(−k) . (14)

The “classical” contribution to the two-particle inclusive production proba-
bility is therefore symmetric under

σ4(k, p) = σ4(−k, p) (15)

and must have two degenerate maxima — at relative angles ∆φ = 0, π. This
degeneracy was alluded to earlier.

The third term in Eq. (6), where the gluon produced at the point z is
emitted from the other observed gluon at the point u, disfavors production
at the same impact parameter because of the suppression factor S(u) −
S(z). The two gluons when scattered at the same impact parameter do not
decohere, but rather scatter as a single coherent state, with the gluon at z
emerging in the final state as part of the Weizsacker–Williams field of the
gluon at u. On the other hand, whenever the two gluons do decohere, since
they were correlated in the incoming wave function, they emerge in the final
state with large relative transverse momentum. Thus this particular term
in the amplitude mostly leads to back-to-back production in the final state
and is responsible for the large away side, rapidity independent maximum
at relative angle π, prominently present in the data.

The second term in Eq. (6) favors production at the point u close to x1,
but z far from x1. Thus one expects the momentum of the gluon produced
at z to be uncorrelated with that of the gluon produced at u. Whenever the
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gluon at u is produced with significant transverse momentum, the balancing
transverse momentum resides at the “valence” rapidity. This term is there-
fore responsible for the away side peak between one of the observed particles
and another particle produced at a more forward rapidity.

One can estimate the overall magnitude of the correlation by the follow-
ing simple argument. In order for two produced gluons to be correlated in
the final state, they have to be close in the initial state and also scatter off
the same target field. We will assume that both the target and the pro-
jectile are characterized by corresponding saturation momenta QP(T)

s . The
inverse of the correlation momentum is the correlation length in the hadron
L ∼ 1/Qs. It is reasonable to expect that typical field configurations con-
tributing to the hadronic ensemble of, say the target, have variation only on
distance scale greater than 1/Qs. Thus the two gluons that hit the target at
distance x < 1/QT

s apart from each other scatter on the same field. By the
same argument, for the two incoming gluons to be in the same state they
have to be located in the impact parameter plane no further than 1/QP

s

away from each other. Thus for correlated production the two gluons need
to be within the radius 1

Qmax
c

of each other, where Qmax
c is the larger of the

two saturation momenta QP
s and QT

s . On the other hand, the total number
of produced gluons is proportional to the total transverse area of the smaller
between the two objects participating in collision. Thus parametrically[

d2N

d2pd2k
− dN

d2k

dN

d2p

]/
dN

d2k

dN

d2p
∼ 1

(Qmax
s )2Smin

. (16)

This estimate is parametrically the same as given in [14].
We would like at this point to make contact with the recent paper [9].

The calculation of gluon production in [9] is based on simplified version
of Eq. (10) supplemented with specific prescription for averaging over the
projectile and target fields. Specifically, [9] expands the scattering matrix
S to first order in target fields, and keeps only the leading term S(x) →
1 + α(x). The expression for σ4 then becomes a homogeneous function of
the target and projectile fields

σ4 ∼ (ρααρ)(ρααρ) . (17)

For simplicity we suppress the color indices and transverse coordinates on
all the functions. One next averages over the charge densities assuming
Gaussian ensemble 〈

ρ4
〉

= 3
〈
ρ2
〉 〈
ρ2
〉

(18)
and similarly for the target. And finally, the high energy evolution is in-
cluded by substitution

〈ρ(x)ρ(y)〉 → Φ(x− y) (19)
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with Φ taken to be a solution of the Balitsky–Kovchegov equation [21]. Al-
though the angular distribution has not actually been calculated in [9], the
authors argued that the correlation should, in fact, have a maximum at
collinear momenta.

Our general discussion provides an intuitive explanation for this result
and also makes it clear that the presence of the correlations does not depend
on the specifics of the approximation used to estimate d2N

d2kd2p
. The magnitude

of the effect, however, may depend on the approximation quite strongly. We
next want to comment on this issue.

From Eqs. (10), (11) we know that the basic averages that one needs to
calculate are of the type〈[

S†(x)S(z)
]ab [

S†(y)S(u)
]cd〉

T

(20)

and similarly for the projectile〈
ρa(x)ρb(x̄)ρc(y)ρd(ȳ)

〉
P
. (21)

The Gaussian averaging procedure described above is fairly restrictive, in
the sense that as any Gaussian averaging it probably tends to underestimate
correlations. In particular, Gaussian averaging over color singlet ensemble
necessarily puts the densities in Eq. (21) pairwise into color singlet states.
As pointed out in [22] this leaves out some possible configurations which are
overall color singlets, but where no two factors of ρ form a color singlet sepa-
rately. This for example happens, when the factors of ρ are pairwise in color
octets, with the two octets forming an overall singlet. Such configurations
in principle can also contribute to the correlated part of the particle pro-
duction. Formally, they are suppressed in the large Nc limit. However, the
correlated part of the production probability itself when calculated with the
Gaussian averaging is also suppressed by 1/N2

c relative to the uncorrelated
part, and thus omission of these terms may be dangerous [22]. Physically
these terms correspond to interference contributions. For example, when the
two factors of ρ in Eq. (11) are in an octet, this corresponds to a situation
when the charge densities in the amplitude and complex conjugate ampli-
tude are different, but still the same gluon in the final state is produced
due to the difference in the scattering factors S in the amplitude and the
conjugate amplitude.

Although these 1/N2
c suppressed terms are interesting, taking them prop-

erly into account requires one to go beyond the dipole model [23] and the
BK equation, and in the dense region studying the full B-JIMWLK evolu-
tion [2]. However, it is not obvious that even in the leading order in 1/Nc the
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Gaussian approximation is adequate to discuss correlated production. Here
we would like to discuss only these leading order terms. We will argue that
Gaussian averaging procedure is likely to miss terms in the correlated pro-
duction probability which are of the same order in 1/Nc as the uncorrelated
piece.

The leading Nc piece in Eq. (10) comes from the configuration where the
charge densities in each one of the single gluon production amplitudes are
in the color singlet. The relevant average to calculate is〈
ρa(x1)ρa(x̄1)ρb(x2)ρb(x̄2)

〉
P
×〈

tr
{[
S†(x1)−S†(z)

]
[S(x̄1)−S(z̄)]

}
tr
{[
S†(x2)−S†(u)

]
[S(x̄2)−S(ū)]

}〉
T
.

(22)

Let us first concentrate on the projectile average. As mentioned above,
averaging with a Gaussian weight one obtains in the leading order in 1/Nc〈

ρa(x1)ρa(x̄1)ρb(x2)ρb(x̄2)
〉

Gaussian

= 〈ρa(x1)ρa(x̄1)〉Gaussian

〈
ρb(x2)ρb(x̄2)

〉
Gaussian

. (23)

In this approximation therefore, clearly the correlated piece in the produc-
tion probability vanishes, and only the subleading in 1/Nc correction res-
urrects the correlations. We stress, however, that this is not the result of
the leading Nc approximation per se, but rather of the Gaussian averaging
procedure.

It may be tempting to think that factorization in the large Nc limit is
natural due to presence of large number of degrees of freedom, and therefore
in some sense large Nc might act similarly to heavy nucleus. However, this
is not the case. Even though the number of degrees of freedom is large, even
in the large Nc limit the theory has legitimate states which contain small
number of particles. A color dipole is an example of such state. It is a
superposition of many states (different color orientations) of two particles,
rather than a state with many particles. In a state like this the central limit
theorem does not hold, the fluctuations in density can be large even in the
large Nc limit, and it is the large fluctuations in the ensemble that break
factorization of correlation functions.

In fact, a very similar question was considered a while ago in [24] in
connection with factorization of dipole densities in the dipole model [23].
Indeed the observable we are interested in Eq. (22) is rather similar to the
dipole density

n(x1, x̄1) = (ρa(x1)− ρa(x̄1))2 . (24)
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As shown in [24] within the dipole model (which is defined entirely within
the large Nc limit [27]) the product of two densities does not factorize, but
rather behaves as

〈n(x1, x̄1)n(x2, x̄2)〉 − 〈n(x1, x̄2)〉 〈n(x2, x̄2)〉 ∼ 〈n(x1, x̄2)〉 〈n(x2, x̄2)〉 b−λ ,
(25)

where b is the transverse distance between the two dipoles and λ is a number,
whose exact value is unimportant for us. This result hods in the limit where
the distance between the two dipoles is much greater than their respective
sizes, and thus it does not display any angular correlation between the ori-
entations of the two dipoles. Nevertheless Eq. (25) clearly exhibits the fact
that factorization is not an inherent property of the large Nc limit. Once we
accept that the factorization is broken, it is natural to expect that the actual
correlation function in the regime where the two dipoles overlap in space,
also exhibits angular correlations in the orientation of the two dipoles.

Note that this is precisely the regime relevant to our discussion of angular
correlations in emission. The same configuration of color charges produces
the same gluons (at different rapidities), which produce correlated hadrons in
the final state. Thus the most important region of the phase space is when all
four points in the correlator Eq. (22) are close to each other, in the sense that
they are all within the correlation length 1/Qs. It is very hard to imagine
that in this regime factorization holds (see [25,26] for more discussion of such
correlations). Thus we indeed expect that any realistic non-Gaussian weight
function for the ensemble averaging will lead to a nonvanishing contribution
to the correlated piece of gluon production even in the large Nc limit.

Turning to the target averaging in Eq. (22), the terms that have to be
averaged are of the type of observables described in the large Nc limit by
the dipole model [23]〈

tr
{[
S†(x)S(z)

]}
tr
{[
S†(y)S(u)

]}〉
T

= 〈s(x, z)s(z, x)s(y, u)s(u, y)〉T ,

(26)
where s(x, y) = tr[S†F(x)SF(y)] — is the scattering amplitude of the fun-
damental dipole, and the equality in Eq. (26) holds in the large Nc limit.
The approximation which is frequently used in the literature to calculate the
averages of this type also invokes factorization

〈s(x, y)s(u, v)〉 = 〈s(x, y)〉〈s(u, v)〉 . (27)

The target averaging of [9] would follow from this approximation in the limit
of weak fields. When the dipole (x, y) is far from the dipole (u, v) (much
further than 1/Qs), the factorization is a good approximation since the fields
on which the scattering amplitude is calculated are not correlated with each



Particle Production and Angular Correlations at High Energy 2729

other. However, as before, we are clearly interested in the case where all the
points are within the distance of the order of 1/Qs or smaller. In this case,
just like for the projectile, the factorization of Eq. (27) is not a property of
the large Nc limit but is rather an ad hoc assumption, used only due to its
simplicity.

Strict factorization of the type Eq. (27) is only possible if the statistical
ensemble consists of a single configuration. There is, however, no reason to
expect that in the large Nc limit fluctuations around some leading configu-
rations are suppressed by powers of 1/Nc. For example, the energy evolution
of s is given by the dipole model Hamiltonian, which does not contain Nc

at all. The probability distribution of the dipole model W [s] evolves with
rapidity according to [25,27]

d

dY
W [s] =

ᾱs

2π

∫
x,y,z

(x− y)2

(x− z)2(z − y)2
[s(x, y)− s(x, z) s(y, z)] δ

δs(x, y)
W [s]

(28)
with ᾱ — the ’t Hooft coupling, which is finite at infinite Nc. Thus any
nontrivial initial distribution W [s] evolves smoothly to higher energy and
remains nontrivial.

The recent paper [28] explores the question of what happens to correla-
tions that are present in the initial ensemble, as rapidity grows. Technically
one chooses an ensemble W0[s] of initial configurations s(x, y), which con-
tains short range correlations. These correlations should be confined to
within the saturation radius, that is 〈s(x, y)s(u, v)〉 6= 〈s(x, y)〉〈s(u, v)〉 only
when |x − u|, |y − v| < 1/Qs. In [28] no impact parameter dependence
was included, and the results should be understood as correlations at the
same impact parameter. Each configuration of the ensemble was evolved
independently according to the BK equation [27]. The correlations at the
final rapidity are then calculated by averaging the correlator calculated in
the final ensemble over the ensemble of initial conditions. The results are
that initial correlations decrease very quickly with rapidity, approximately
exponentially. The physics of this decrease, as elucidated in [28], is fairly
simple. It amounts to the fact that the correlations are expected to appear
at distances smaller than saturation radius, and the BK equation is simply
not a valid evolution in this regime. To properly include correlations one
should use the KLWMIJ evolution [29] at short distances stitched to the
JIMWLK (or BK) evolution at large separation. In other words, one must
include the Pomeron loop contributions.

To summarize, there are good reasons to expect that the factorization
of both projectile and target averages is broken at leading order in 1/Nc in
the kinematical domain relevant to the correlated production of particles.
To study this question one certainly has to go beyond simple rotationally
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invariant solutions of the BK equation and moreover, include Pomeron loops
in high energy evolution. While technically challenging, it would be very
interesting to understand and quantify this effect.

The angular correlations originate from configuration by configuration
fluctuations of the projectile and target structure in the transverse plane
away from a rotationally invariant state. The effect we have discussed here
has several tell-tale features. Produced particles are correlated in angle,
with forward and backward correlations being of equal strength in the case
where the two colliding objects are nuclei. When the colliding objects are
not dense, there is an additional contribution to particle production, from a
“single ladder” which significantly enhances back-to-back correlations. This
contribution is responsible for the bulk of the observed back-to-back corre-
lated production. The correlation is present also in the magnitude of the
transverse momentum and not just in the angle. The single gluon production
probability σ(k) must have a maximum at momenta of the order of Qs. Thus
most of the correlated gluons are emitted with the momentum of roughly
this magnitude and the correlation is maximal at |k|, |p| ∼ Qs. The latter
correlation in fact does not require local rotational asymmetry of the projec-
tile/target configurations. It would be interesting to try and measure these
correlations as well.

The relative magnitude of the forward correlations should initially in-
crease with energy for p–p collisions, since the relative importance of the sin-
gle ladder terms diminishes. Interestingly however, the estimate of Eq. (16)
suggests that the effect decreases with energy, once the colliding systems
can be treated as saturated objects with well defined saturation momen-
tum, since the saturation momentum grows with energy. Thus at very high
energies the effect should disappear. If we apply this logic also to nuclear
collisions, we should conclude that the effect if observed by ALICE should
be significantly smaller than that observed by PHOBOS and STAR. Our
discussion, of course, disregards the effects of flow, which are generally be-
lieved to be very important for nucleus–nucleus collisions. The latest STAR
data [30] support this view. It is possible therefore, that our considerations
about angular correlations are not valid for nuclear collisions, in the sense
that the main mechanism of collimation is indeed due to the flow. It would
nevertheless be interesting to try and disentangle the flow effects from the
intrinsic correlations in the initial state discussed in this note. We also note
that the estimate Eq. (16) refers not only to angular correlation, but rapidity
correlation in general. Thus independently of the question of radial flow, if
the observed long range rapidity correlations are due production from cor-
related domains in the boost invariant incoming wave function, the trend
should be that of decreasing correlated production going to higher energy.
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We have also argued that the correlations must survive also in the lead-
ing order in 1/Nc expansion. Their subleading nature in current numerical
implementations is due to the factorization assumption which is not valid
in the region of the phase space relevant for the correlated production. We
believe that improvement of this aspect of current calculations is imperative
in order for the results to be quantitatively reliable.

Finally, we want to elaborate a little more on possible relation of our
considerations with ridge observed by CMS [10]. The ridge is not observed
in minimal bias events but only in a small fraction of all events, which have
high multiplicity. This suggests that the energy of the collision is not high
enough so that the “average” configurations of the proton wave function do
not contain enough gluons at different rapidities and the same impact pa-
rameter for correlations to be observable. The high multiplicity events are
presumably due to rare fluctuations in the proton wave function which create
“hot spots” — collisions between these hot spots then produce high multi-
plicity final states. Such hot spots will then, naturally, also lead to enhanced
correlations since more particles than average are concentrated at the same
impact parameter. This picture is also qualitatively consistent with the
range of transverse momenta at which the correlation is actually observed.
The ridge appears at transverse momenta in the range 1 GeV < pT < 3 GeV.
Given that experimentally one observes hadrons which are products of the
hadronization of the emitted gluons, the transverse momentum of the glu-
ons emitted initially must have been in the range 3–5 GeV. This is much
too high to be associated with the saturation momentum Qs, which at these
energies should not be higher than 2 GeV. Hot spots however have a small
radius and high density, and thus have a saturation momentum significantly
higher than the minimal bias configurations Q(hot spot)

s � Qs. The corre-
lated gluons will then naturally have momentum of order Q(hot spot)

s which
is much higher than the expected value of Qs.

If the hot spot scenario is correct, it would mean that in order to describe
the effect quantitatively one needs to have knowledge not of the “standard
deviation” which characterizes fluctuations (and correlations) in the bulk of
the wave function, but to understand the “tail” of the distribution which
contains the hot spots.

3. Particle production at high transverse momenta

This paper addresses the calculation of single particle production in dense
environment. RHIC experiments observed strong suppression in the particle
production in dA at forward rapidities. The “state of the art” saturation
calculation of this effect appears in [6]. Although the data is described quite
well, there are some peculiarities to the results of [6]. First, a very small
K-factor is required to fit the overall magnitude of the production of neutral
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pions, while no K-factor is required to fit the charged hadron multiplicity.
Secondly and perhaps more worryingly, the suppression in the theoretical
curves of [6] when extended to the LHC energies persists to extremely high
transverse momenta, where one expects perturbation theory to be long ap-
plicable and RdA to be equal to one.

The calculations of [6] are based on the “hybrid formalism” of [31]. In
this approach the wave function of the projectile at large values of x is
calculated perturbatively, without soft approximation, while the scattering
of the projectile partons on the target fields is treated in the eikonal ap-
proximation. The exact treatment of the projectile function is of course
necessary to describe particle production at forward rapidity, since these
partons cannot be in any way considered soft. It has another advantage
over the soft approximation in the projectile wave function since it satisfies
energy (longitudinal momentum) conservation for the incoming projectile.
The energy conservation in the scattering process is still violated, since the
recoil (and radiation) in the scattering event itself is not taken into account
in the eikonal approximation. Although energy conservation must be very
important at large values of xF and its effect has to be understood to make
sure the treatment is consistent, we have nothing new to add to this point.
In this paper we will revisit the derivation of inclusive particle production
within the hybrid formalism per se relaxing only the collinear approximation
made in [31]. Our goal is to identify the terms which where omitted in [31]
but may nevertheless be important when the transverse momentum of pro-
duced particles is significantly higher than the saturation momentum of the
target. As we will show, such terms, which do not correspond to collinear
emission of the incoming projectile partons do indeed exist and contribute
at leading twist. These terms have a simple physical interpretation and also
have a simple form amenable to numerical implementations.

The expression derived in [31] and used in [6] for particle production has
a very intuitively appealing and simple form

dN

d2kdη
=

1
(2π)2

1∫
xF

dz

z2

[
x1fg

(
x1, Q

2
)
NA

(
x2,

k

z
, b = 0

)
Dh/g(z,Q)

+Σqx1fq
(
x1, Q

2
)
NF

(
x2,

k

z
, b = 0

)
Dh/q(z,Q)

]
, (29)

where NA(F)(k) is the Fourier transform of the forward scattering ampli-
tudes of the adjoint (fundamental) dipole. It describes the process whereby
incoming low pT partons scatter on the target independently of each other,
acquiring large momentum kT in the process, and subsequently fragment
into observed hadrons. This process is certainly the origin of large part of
produced particles.
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However, there is another physical mechanism which produces large kT

particles in leading twist, whereby high pT particles preexisting in the wave
function of the incoming projectile scatter with only a small momentum
transfer from the target. The soft scattering is nevertheless enough to deco-
here the incoming partons from the rest of the wave function so that they
materialize as on shell particles in the final state. The high pT partons in the
projectile wave function arise due to DGLAP splitting of very forward par-
tons. The scattering process is essentially just the inelastic scattering of the
forward projectile partons with emission of gluons (or quarks/antiquarks).
As we will show explicitly within the hybrid formalism, this mechanism of
production is equally important as the one taken into account in Eq. (29)
when the saturation momentum of the target is small. When Qs is large, this
contribution is somewhat suppressed, but may still be quantitatively quite
large. Parametrically, while the contribution of Eq. (29) is roughly pro-
portional to ln kT

ΛQCD
, the additional inelastic scattering contribution scales

like ln kT
Qs

. It is thus only suppressed for kT ∼ Qs when Qs � ΛQCD, and
even then the suppression is merely logarithmic. Given that for RHIC data
Qs/ΛQCD ∼ 5, it seems prudent to keep this contribution in numerical cal-
culations.

It is quite clear that taking into account the inelastic mechanism must
bring the calculation of particle production into agreement with the pertur-
bative result at large pT. Thus we hope that including this contribution will
bring RdA close to unity at reasonable values of pT. It is also interesting to
note that the final states of the inelastic scattering are quite different from
those of the elastic one. The elastic piece is dominated by quarks in the
final state, while the inelastic one contains comparable number of quarks
and gluons. Since the fragmentation functions of quarks are very different,
we expect it to affect the relative magnitude of neutral pion and charged
hadron production and thus be relevant to the problem of a very small K
factor for neutral pion production encountered in [6]. Whether it helps or
makes things worse remains to be seen. Naively one expects gluons to frag-
ment predominantly into neutral mesons, and thus the problem of the K
factor may become even more acute, since the neutral to charged hadron
ratio is likely to increase after including the inelastic contribution.

We also note, that it is the inelastic term which is especially sensitive
to the saturation effects. The wave function of the incoming hadron knows
nothing about saturation by itself. The effects of saturation come entirely
from the distributions of the target. The target fields are directly affected
by saturation at momenta k < Qs. The elastic scattering probes the large
momentum component of target fields, equal to the final momentum of the
produced parton. Thus as long as pT > Qs, this part of hadron produc-
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tion should be less affected by the saturation effects and one could expect
that its dependence on energy and atomic number stems from perturbative
physics. Any nonleading twist scaling then presumably comes from effects
of a possible “nonperturbative” initial condition propagated to higher mo-
menta via perturbative evolution. The inelastic scattering contribution on
the other hand probes the target fields at kT � pT which includes the re-
gion kT < O(Qs). It is this region of momenta which is strongly affected by
target saturation effects. Thus if one neglects the inelastic contribution, one
also severely limits one’s options of studying effects of saturation.

We start our discussion by deriving the expression for gluon contribu-
tion to hadron production in the hybrid formalism. We will include the
quark and antiquark contributions later. Our approach in the formal sense
is similar to that of [32], although like in [31] we are not approximating the
gluon splitting function by its low x limit. This will give us a possibility to
compare our results with the kT factorized formula which arises very simply
in the approach of [32], to get some intuition from the simple kT factorized
expression and also to see the similarities and differences between the hybrid
and the kT factorized results.

We consider a process where an energetic projectile scatters off a static
target. The wave function of the incoming projectile is an eigenstate of the
QCD Hamiltonian. When calculated in the perturbation theory it can be
represented as

|Ψ〉in = Ω|v〉 , (30)

where |v〉 is the zeroth order wave function (an eigenfunction of the free
Hamiltonian), and Ω is a unitary operator which diagonalizes the QCD
Hamiltonian in perturbation theory

Ω†HQCDΩ = Hdiag . (31)

The gluonic state immediately after scattering is

|Ψ〉out = S|Ψ〉in , (32)

where S is the eikonal scattering matrix for the projectile partons which
propagate through the static target fields.

The number of produced gluons is then given by

dN

d2kdk+
=

1
(2π)3

〈v|Ω†S†Ωa†
(
k, k+

)
a
(
k, k+

)
Ω†SΩ|v〉 . (33)
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Our first goal is to find the operator Ω. We start with the light-cone
Hamiltonian of QCD

H =
∫

k+>0

dk+

2π
d2z

(
1
2Π
−
a

(
k+, z

)
Π−a (−k+, z) + 1

4G
ij
a (k+, z)Gija (−k+, z)

)
,

(34)
where the electric and magnetic pieces have the form

Π−a (x−, x) = − 1
∂+

(Di∂+Ai)a(x−, x) ,

Gija (x−, x) = ∂iA
a
j (x
−, x)− ∂jAai (x−, x)− gfabcAbi(x−, x)Acj(x

−, x) . (35)

Our convention for the covariant derivative is

Dab
i Φ

b =
(
∂iδ

ab − gfacbAci
)
Φb . (36)

We are working in the light cone gauge, hence A+ = 0 and, as usual, other
light cone component of the vector potential A− is expressed via the solution
of Maxwell’s equations as A− = − 1

∂+∂iAi. The transverse components of
the vector potential Ai which are the only dynamical degrees of freedom
are expanded in the standard way in terms of the creation and annihilation
operators

Aai (x
−, z) =

∞∫
0

dk+

2π
1√
2k+

{
aai (k

+, z)e−ik
+x− + aa†i (k+, z)eik

+x−
}
, (37)

where the creation and annihilation operators satisfy the canonical commu-
tation relations[

aai (k
+, x), ab†j (p+, y)

]
= 2πδabij (k+ − p+)δ2(x− y) . (38)

We will calculate gluon production to the leading order in the coupling
constant, and we therefore require to know the Hamiltonian only to first
order in g. After some algebra we find

H = H0 +H1 ,

H0 =
∫

k,k+>0

k2

2k+
aa†j (k+, k)aaj (k

+, k) ,
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H1 = −igfabc
∫

k,p,k+,p+>0

1√
2k+p+(k+ + p+)

×
{
−
[
p+

k+
ki − pi

]
abi(k

+, k)acj(p
+, p)aa†j (k+ + p+, k + p)

+
p+

p+ + k+
kja

b
i(k

+, k)aci (p
+, p)aa†j (k+ + p+, k + p)

}
+ h.c. , (39)

where the integration measure is understood as dk+

2π and d2k
(2π)2

.
As Ω is a unitary operator, we define Hermitian operator G by

Ω = e−iG = 1− iG− 1
2G

2 + . . . . (40)

The unitary operator Ω as discussed above is the operator that diagonalizes
the Hamiltonian. To first order in the coupling constant the eigenvalues of
the Hamiltonian are those of the free Hamiltonian H0. To this order we have

Ω†HΩ = H − i[H,G] = H0 . (41)

Thus the operator G is determined from

i[H0, G] = H1 . (42)

This immediately gives

G = −gfabc
∫

k,p,k+,p+>0

1√
2k+p+(k+ + p+)

1
ωp+k − ωp − ωk

×
{
−
[
p+

k+
ki − pi

]
abi(k

+, k)acj(p
+, p)aa†j (k+ + p+, k + p)

+
p+

p+ + k+
kja

b
i(k

+, k)aci (p
+, p)aa†j (k+ + p+, k + p)

}
+ h.c. (43)

with

ω(k) =
k2

2k+
. (44)

The number of produced gluons to leading order in the coupling is
given by

dN

d2kdk+
=

1
(2π)3

〈v|
[
Ŝ†G−GŜ†

]
aa†k (k+, k)aak(k

+, k)
[
GŜ − ŜG

]
|v〉 .

(45)
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Here the factor 1
(2π)3

is due to our normalization of the creation and anni-
hilation operators Eq. (38). For simplicity of the calculation we will assume
that the longitudinal momentum of the observed gluon is (at least) slightly
smaller that the momentum of gluons in the state |v〉, although, in fact, our
formulae will be valid in a more general case.

The calculation of the matrix element is straightforward. The S ma-
trix operator acts as a color rotation on all gluon creation and annihilation
operators in coordinate space

Ŝ†aai (q
+, v)Ŝ = Sab(v)abi(q

+, v) . (46)

Since by assumption there are no gluons with longitudinal momentum k+ in
the state |v〉, one of the creation operators in the operator G in the amplitude[
GŜ−ŜG

]
|v〉 must be at momentum k+ and is “contracted” with a(k+)

in the observable. This then leaves us with (apart from the various factors
of S, and omitting for simplicity transverse dependences) expectation value
of the type

〈v|a†(p+ + k+)a(p+)a†(q+)a(q+ + k+)|v〉
= δ(p+ − q+)〈v|a†(p+ + k+)a(p+ + k+)|v〉
+〈v|a†(p+ + k+)a†(q+)a(p+)a(q+ + k+)|v〉 . (47)

The second term involves a two-particle density in the state |v〉. It is sup-
pressed in the leading twist “partonic” approximation. Since we keep to this
approximation in the present paper, we neglect this term. We note that
in the soft approximation, where the gluon production is given by the kT

factorized expression of [33] this term does indeed give a nonvanishing contri-
bution. We will make explicit connection with the soft approximation later.

Keeping only the first term in Eq. (47) and reverting to coordinate space,
where the S-matrix is diagonal we obtain

dN

d2kdk+

=
1

(2π)3

∫
eik(z−z̄)〈v|

[
Ŝ†G−GŜ†

]
aa†k (k+, z̄)aak(k

+, z)
[
GŜ − ŜG

]
|v〉

=
g2

(2π)3

1
N2
c − 1

∫
1
k+

eik(z−z̄)+ip̄v+iq̄z̄−i(p̄+q̄)ū−ipv−iqz+i(p+q)u

× tr
{[
S†ūT

aSū−S†vT aSz̄
][
S†uT

aSu−S†zT aSv
]}〈

ab†j

(
k+

ξ
, ū

)
abj

(
k+

ξ
, u

)〉
× 2

(1−ξ)

[
(1−ξ)2 + ξ2 + (1−ξ)2ξ2

]
[ξp̄i−(1−ξ)q̄i]
[ξp̄−(1−ξ)q̄]2

[ξpi−(1−ξ)qi]
[ξp−(1− ξ)q]2

. (48)
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To arrive at this expression we assumed that the projectile state is color and
rotationally invariant, so that〈

aa†i (p+, ū)abj(p
+, u)

〉
=

1
2(N2 − 1)

δabδij

〈
ac†k (p+, ū)ack(p

+, u)
〉
. (49)

Changing the integration variables

ξp̄− (1− ξ)q̄ = ω̄ , p̄+ q̄ = κ̄ ,

ξp− (1− ξ)q = ω , p+ q = κ (50)

and integrating over ω, ω̄, κ, κ̄, u and ū one obtains

dN

d2kdk+
=

αs

2π2

1
(2π)2

1
N2
c − 1

1∫
x

dξ

ξ

1
k+

eik(z−z̄)

× 2
(1− ξ)

[
(1− ξ)2 + ξ2 + (1− ξ)2ξ2

] (v − z̄)i
(v − z̄)2

(v − z)i
(v − z)2

×tr
{[
S†((1− ξ)v + ξz̄)T aS((1− ξ)v + ξz̄)− S†vT aSz̄

]
×
[
S†((1− ξ)v + ξz)T aS((1− ξ)v + ξz)− S†zT aSv

]}
× k+

2πξ

〈
ab†j

(
k+

ξ
, (1− ξ)v + ξz̄

)
abj

(
k+

ξ
, (1− ξ)v + ξz

)〉
.

(51)

Throughout the rest of this paper we will continue using the notations u
and ū to make notations less cumbersome, however it should be understood
that they are not independent variables, but rather as shorthand for

u ≡ (1− ξ)v + ξz , ū = (1− ξ)v + ξz̄ . (52)

To get some intuition about this expression we first consider the soft
limit. This corresponds to the situation when the longitudinal momentum
of the observed gluon is much smaller than the momentum of the gluons in
the valence state |v〉. Taking ξ → 0 we obtain this limit

dN

d2kdk+
=
αs

π2

1
(2π)2

1
N2
c − 1

∫
1
k+

eik(z−z̄) (v − z̄)i
(v − z̄)2

(v − z)i
(v − z)2

×tr
{[
S†vT

aSx−S†vT aSz̄
][
S†vT

aSv−S†zT aSv
]}〈

aω†j

(
k+

ξ
, v

)
aωj

(
k+

ξ
, v

)〉
=
αs

π2

1
(2π)2

Nc

N2
c − 1

∫
1
k+

eik(z−z̄) (v − z̄)i
(v − z̄)2

(z − v)i
(z − v)2

×tr
{

1− S†vSz − S
†
z̄Sv + SzS

†
z̄

}〈
aa†j

(
k+

ξ
, v

)
aaj

(
k+

ξ
, v

)〉
. (53)
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The kT factorized form reads ([33] and also [32,17] corrected for typos)

dN

d2kdη
=
αs

π2

1
(2π)2

∫
eik(z−z̄)

×
{
SzS

†
z̄ + SvS

†
v̄ − SzS

†
v̄ − SvS

†
z̄

}ab (z − v)i
(z − v)2

(z̄ − v̄)i
(z̄ − v̄)2

〈
ρavρ

b
v̄

〉
=
αs

π2

1
(2π)2

∫
eik(z−z̄) 1

N2
c − 1

×tr
{
SzS

†
z̄ + SvS

†
v̄ − SzS

†
v̄ − SvS

†
z̄

} (z − v)i
(z − v)2

(z̄ − v̄)i
(z̄ − v̄)2

〈ρavρav̄〉 , (54)

where the last equality follows from color neutrality of the hadronic state.
The color charge density operator here ρav =

∫ dp+

2π a
†
i (p

+, v)T aai(p+, v). In
the leading twist approximation the correlator of the charge density opera-
tors is local in the transverse space. Physically, this is the case since in this
(parton model) approximation there is only a small number of gluons in the
hadron, and there are no correlations between different gluons. For a color
singlet hadronic state we therefore have

〈ρa(v)ρa(v̄)〉 = δ2(v − v̄)Nc

〈∫
dp+

2π
a†ai (p+, v)aai (p

+, v)
〉
. (55)

Thus, in the leading twist approximation Eq. (53) is indeed equivalent to
Eq. (54).

It is customary to define the transverse momentum dependent gluon
distribution in terms of the gluon distribution function fg(x,Q) as

xfg

(
x,Q =

1
|u− v|

)
≡ p+

2π

∫
d2b
〈
aa†i (p+, u)aai (p

+, v)
〉

=
∫
d2b

∫
d2p

π
eip·(u−v)φ(p, b;x)

≈
∫
d2b

1
|u−v|2∫
0

dp2φ(p, b;x) , (56)

where b = u+v
2 . In the soft limit the color charge correlation function and

the scattering amplitude are then expressed in terms of the projectile and
the target distributions as

〈ρa(v)ρa(v̄)〉 =
1

8παs

∫
d2peip·(v−v̄)p2φP(p, b) , (57)

tr[1− S†(v)S(v̄)] = 2παsNc

∫
d2peip·(v−v̄) 1

p2
φT(p, b) . (58)
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In terms of the transverse momentum distribution the single inclusive gluon
spectrum in the soft limit has the familiar kT factorized form

dN

d2kdη
= S

αsNc

N2
c − 1

1
k2

∫
l

φT(l + k, Y − η)φP(l, η)

= S
αsNc

N2
c − 1

∫
l

[
1

(l+k)2
+

1
(l+k)2

l2

k2
+2

1
(l+k)2

l · k
k2

]
φT(l+k)φP(l) ,

(59)

where we have assumed translational invariance in the transverse plane.
Here S is the total transverse area of the collision and Y denotes the total
rapidity difference between the projectile and the target in the process.

In the limit of large momentum of the produced gluon k � Qs, ΛQCD the
momentum integral in Eq. (59) is dominated by two regions of momentum
space.

In the first region, l� k the dominant term is the first term in Eq. (59)
(which corresponds to the first term in Eq. (53)). In this kinematics the
incoming projectile gluon has a small transverse momentum (in accordance
with the simple parton model picture) and it acquires a large transverse
momentum due to elastic scattering from the target field. We will refer to
this contribution as elastic[

dN

d2kdη

]
elastic

=
αsNc

N2
c − 1

1
k2
φT(k)

∫
l<Q∼k

SφP(l) . (60)

The final states that correspond to this contribution have a single high pT

gluon at forward rapidity. The balancing transverse momentum is carried
by another gluon kicked out of the target by recoil, and it resides at a very
different rapidity, close to the target.

There is, however, another contribution which is equally important at
the leading twist. This comes from the momentum range l = k + q with
q � k. Changing variables from l to q the other contribution is clearly just
the mirror image of Eq. (60). For reasons explained below we will refer to
it as inelastic contribution[

dN

d2kdη

]
inelastic

=
αsNc

N2
c − 1

1
k2
φP(k)

∫
q<Q∼k

SφT(q) . (61)
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In this kinematics all terms in Eq. (59) are equally important. This con-
tribution corresponds to a projectile gluon coming in with large transverse
momentum in the wave function and subsequently scattering with small mo-
mentum transfer. The scattering practically does not add to gluons trans-
verse momentum, but decoheres the gluon from the incoming hadronic wave
function. One can naturally ask, how do high transverse momentum gluons
find themselves in the projectile wave function. The answer is, that they
are always there as “unresolved” components of the “parton model” gluons.
A low pT gluon can split via a standard DGLAP evolution into a two-gluon
state with large relative transverse momentum. The “parton model” gluons
are therefore not point like objects, but rather composites, which at first
order in αs contain an admixture of a two-gluon state.

We stress that it is not the collinear part of the DGLAP kernel that is
responsible for this structure. The collinear emission contributes to multi-
plication of low momentum gluons in the wave function (“low” momentum
here technically means momentum lower than that imparted by the scatter-
ing). The splitting however contains also an ultraviolet contribution, which
produces gluon pairs with large relative transverse momentum, which sit
close to each other in the impact parameter plane. It is the presence of this
compact two-gluon configuration that makes a projectile gluon behave as a
composite object. When such a composite parton scatters inelastically off a
soft target field, its different components can be put on shell, emerging as
high pT partons in the final state. Correspondingly, the structure of the final
state incidentally is quite different from those that arise from the contribu-
tion Eq. (60), as both high pT partons from the projectile wave function end
up close to forward rapidity. The inelastic contribution therefore, takes into
account production of forward dijets with large pT.

At high pT, both contributions are of the same order of magnitude. The
probability to find a low pT gluon in the projectile is of the order of unity, but
then the probability of scattering with large momentum transfer is small, of
the order of αs. On the other hand, the probability to find a high pT parton
in the incoming wave function is of the order of αs, however the probability
of it scattering softly off the target is of the order of one. If one assumes
that the projectile and target wave functions have standard perturbative
behavior, φ = µ2

p2
, one finds[

dN

d2kdη

]
elastic

= αsµ
2
Pµ

2
T ln

p2

Λ2
QCD

,[
dN

d2kdη

]
inelastic

= αsµ
2
Pµ

2
T ln

p2

Q2
s

, (62)
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where we have assumed that the perturbative behavior for the target kicks
in at momenta above Qs. If the energy of the process is large enough so
that the target distributions manifest extended geometric scaling [34], the
Q2

s in the last equation should be substituted by a higher scale which marks
the upper end of the geometric scaling window. At any rate, it is clear
that at parametrically large transfer momentum the two contributions are
comparable, and both must be kept. In the application we have in mind,
the transverse momentum is probably not much higher than Qs and so the
inelastic contribution does not have a logarithmic enhancement. However,
the logarithm in the elastic contribution is also not very large, perhaps a
factor of 3 or 4. Thus, whether the inelastic contribution can be neglected
or not is a numerical question, and one would be well advised not to throw
it away prematurely.

We now return to Eq. (51). Our aim is to identify the two contributions
described above in this more general formula, and to write the leading twist
result in as simple form as possible.

The elastic contribution, as before, corresponds to the region of the phase
space where all the transverse momentum of the produced gluon originates
from the momentum transfer from the target. This comes from the prod-
uct of the two last terms in the brackets in Eq. (51). Assuming that the
momentum in the rest of the expression is small is equivalent to take z = z̄
everywhere else apart from the scattering amplitude S†(z)S(z̄)[

dN

d2kdη

]
elastic

=
αsNc

2π2

1
(2π)2

1∫
xF

dξ

ξ

2
(1− ξ)

[
(1− ξ)2 + ξ2 + (1− ξ)2ξ2

]
×
∫
z

1
(v−z)2

k+

2πξ

〈
ab†j

(
k+

ξ
, ū

)
abj

(
k+

ξ
, u

)〉
1

N2
c −1

∫
z−z̄

eik(z−z̄)tr
[
S†(z)S(z̄)

]

' αs

π

1
(2π)2

∫
p2<Q2

dp2

2p2

1∫
xF

dξ

ξ
Pg/g(ξ)xFfg

(
xF

ξ
, p2

)
NA(k) , (63)

where
Pg/g =

2Nc

ξ(1− ξ)
[
(1− ξ)2 + ξ2 + (1− ξ)2ξ2

]
(64)

is the standard gluon–gluon splitting function. As explained in [31] the first
line is just the DGLAP contribution to the evolution of the gluon distribu-
tion. The “parton model” term is not present in our explicit formula because
we have for simplicity assumed that the rapidity of the observed gluon is
lower than that of any of the valence partons, and thus such gluons can be
present in the wave function only as a result of evolution. This assumption
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is, of course, not necessary. Relaxing it restores the parton model contribu-
tion to the elastic gluon production. The elastic term then simply becomes
the contribution discussed in [31] (we do not include yet the fragmentation
function contribution)[

dN

d2kdη

]
elastic

=
1

(2π)2
xFfg

(
xF, Q

2
)
NA(k) (65)

with NA(k) = 1
N2

c−1

∫
d2(z − z̄)eik·(z−z̄)tr[S†(z̄)S(z)]; and the factorization

scale Q must be chosen so that it is of order but smaller than the external
momentum k.

To extract the inelastic term in the leading twist approximation we note
that it arises as the leading order expansion in powers of |x− z| and |x− z̄|,
since the separation between the two gluons in the wave function must be
much smaller than the typical variation scale of the scattering amplitude
S(x). Referring back to Eq. (51) we write

Sū ' Sv − ξ(v − z̄)i∂iSv , Su ' Sv − ξ(v − z)i∂iSv ,
Sz̄ ' Sv − (v − z̄)j∂jSv , Sz ' Sv − (v − z)j∂jSv . (66)

Then for the amplitude in Eq. (51) we find

tr
{[
S†ūT

σSū − S†vT σSz̄
] [
S†uT

σSu − S†zT σSv
]}

= Nc(v − z̄)i(v − z)j
{

(1− ξ)2 + ξ2
}

tr
[
∂iSv∂jS

†
v

]
−2ξ(1− ξ)(v − z̄)i(v − z)jtr

[
T σSv∂iS

†
vT

σSv∂jS
†
v

]
=

Nc

2
(v − z̄) · (v − z)

{
(1− ξ)2 + ξ2

}
tr
[
∂iSv∂iS

†
v

]
−ξ(1− ξ)(v − z̄) · (v − z)tr

[
T σSv∂iS

†
vT

σSv∂iS
†
v

]
, (67)

where the last line strictly speaking holds only after averaging over rotation-
ally invariant target for which 〈∂iS†∂jS〉 = 1

2δij〈∂kS
†∂kS〉. One can further

simplify this expression noting that Sv∂iS
†
v = 1

Nc
T atr[Sv∂iS

†
vT a] i.e. it is a

“pure gauge” vector potential. Then using simple color algebra we find

tr
[
S∂iS

†T aS∂iS
†T a
]

= −Nc

2
tr
[
∂iS
†∂iS

]
. (68)

So that we can write

tr
{[
S†ūT

σSū − S†vT σSz̄
] [
S†uT

σSu − S†zT σSv
]}

=
Nc

2
{

1− ξ + ξ2
}

(v − z̄) · (v − z)tr
[
∂iSv∂iS

†
v

]
= N2

c

{
1− ξ + ξ2

}
(v − z̄) · (v − z)tr

[
∂iSF (v)∂iS

†
F (v)

]
, (69)



2744 A. Kovner

where we have given the final answer in terms of the fundamental repre-
sentation matrices SF. It is clear from our derivation that in the above
expressions the target field average should be understood as calculated with
resolution Q, where just as in the elastic piece, the factorization scale Q is of
order of, but smaller than the transverse momentum of the observed gluon
Q < k

tr
[
∂iSF(v)∂iS

†
F(v)

]
→ tr

[
∂iSF(v)∂iS

†
F(v)

]
Q

= Nc

∫
p2<Q2

p2NF(p) . (70)

The leading twist part of the inelastic contribution can therefore be writ-
ten as[

dN

d2kdη

]
inelastic

=
αs

2π2

1
(2π)2

N2
c

N2
c − 1

×
∫
eik(z−z̄) (v − z̄)i

(v − z̄)2

(v − z)i
(v − z)2

(v − z̄) · (v − z)tr
[
∂iSF(v)∂iS

†
F(v)

]
Q

× 2
(1−ξ)

[
(1−ξ)2+ξ2+(1−ξ)2ξ2

] {
1−ξ+ξ2

}〈
ab†j

(
k+

ξ
, ū

)
abj

(
k+

ξ
, u

)〉
.

(71)

This expression can be rewritten in terms of the gluon distribution. To
leading twist the dependence of the vacuum average 〈ab†j (k

+

ξ , ū)abj(
k+

ξ , u)〉
can be substituted by 〈ab†j (k

+

ξ , v)abj(
k+

ξ , v)〉Q. Performing the Fourier trans-
form we then obtain[

dN

d2kdη

]
inelastic

=
αs

π2

N2
c

N2
c − 1

× 1
k4

1∫
xF

dξ

ξ

{
1− ξ + ξ2

}
Pg/g(ξ)xFfg

(
xF

ξ
,Q

) ∫
p2<Q2

d2p

(2π)2
p2NF(p) .

(72)

Of course, in order to calculate the spectrum of produced hadrons, we
have to include the gluon fragmentation functions. We assume, as always,
that produced gluons fragment into hadrons independently. Taking this into
account our result for production is
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dN

d2kdη
=

1∫
xF

dz

z2
Dh/g(z,Q)

[
x1fg

(
x1, Q

2
)
NA

(
x2,

k

z
, b = 0

)

+
αs

π2

N2
c

N2
c − 1

z4

k4

1∫
x1

dξ

ξ

{
1− ξ + ξ2

}
×Pg/g(ξ)x1fg

(
x1

ξ
,Q

) ∫
p2<Q2

d2p

(2π)2
p2NF(x2, p, b = 0)

]
, (73)

where

NA

(
k, b =

z̄ + z

2

)
=

1
N2
c − 1

∫
d2(z − z̄)eik·(z−z̄)tr

[
S†A(z̄)SA(z)

]
,

NF

(
k, b =

z̄ + z

2

)
=

1
Nc

∫
d2(z − z̄)eik·(z−z̄)tr

[
S†F(z̄)SF(z)

]
(74)

and the longitudinal momentum fractions (neglecting the hadron mass) are

xF =
k

√
sNN

eη , x1 =
xF

z
, x2 = x1e

−2η . (75)

Eq. (73) is our result for hadron production in a toy theory that does
not contain quarks. This is obviously not a good approximation to real-
ity especially at forward rapidities, where the quark contribution must be
the leading one. We now turn to generalizing the previous discussion by
including the quark contribution.

It is straightforward to include the quark contribution to this calcu-
lation [12]. Omitting calculational details, the final answer generalizing
Eq. (73) is

dNh

d2kdη
=

1
(2π)2

1∫
xF

dz

z2

[
x1fg

(
x1, Q

2
)
NA

(
x2,

k

z

)
Dh/g(z,Q)

+Σqx1fq
(
x1, Q

2
)
NF

(
x2,

k

z

)
Dh/q(z,Q)

]
+

1∫
xF

dz

z2

αs

2π2

z4

k4

×
∫

p2<Q2

d2p

(2π)2
p2NF(p, x2)x1

1∫
x1

dξ

ξ
Σj=q,q̄,gwi/j(ξ)Pi/j(ξ)fj

(
x1

ξ
,Q

)
Dh/q(z,Q) ,

(76)
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where the momentum fractions x1 and x2 are defined in Eq. (75) and the
inelastic weights wi are

wg/g(ξ) = 2
N2
c

N2
c − 1

(
1− ξ + ξ2

)
, (77)

wg/q(ξ) = wg/q̄(ξ) =
N2
c

N2
c − 1

[
1 + (1− ξ)2 − ξ2

N2
c

]
, (78)

wq/q(ξ) = wq̄/q̄(ξ) =
N2
c

N2
c − 1

[
1 + ξ2 − (1− ξ)2

N2
c

]
, (79)

wq/g(ξ) = wq̄/g(ξ) =
1
2

[
(1− ξ)2 + ξ2 − 2ξ(1− ξ)

N2
c − 1

]
(80)

in Eq. (77). This is our final result.
In this paper we have derived the complete leading twist expression for

inclusive hadron production in the hybrid formalism. We have shown that
in addition to elastic scattering terms first derived in [31], there are also
terms that correspond to inelastic scattering of the projectile partons on low
momentum components of the target field. These terms are given by the
second line in Eq. (76). We note that although the inelastic piece has an
explicit factor of αs while the elastic contribution does not, the two terms at
high kT are in fact of the same order in αs. The reason is that at momenta
k � Qs the dipole scattering amplitude NA(F)(k), which enters the elastic
scattering term is itself of the order of αs, while the integral of the amplitude
appearing in the inelastic term is of the order of unity.

The final states that correspond to the inelastic process are dihadron
pairs where both hadrons are emitted at forward rapidity and have strong
back-to-back correlation. Since both produced hadrons have large rapidity,
such pairs with large transverse momentum are kinematically allowed only
at large collision energy. Thus one might expect this contribution not to be
of great importance in RHIC kinematics, however it may be sizable at the
LHC.

In this context we believe that including this contribution in calcula-
tion à la [6] should produce faster approach of nuclear modification factor
RpA to unity at large transverse momenta. Here we wish to elaborate on
possible role of saturation in the results of [6]. As we have noted above,
as long as the transverse momentum is above Qs, saturation should mainly
affect the inelastic production piece. This contribution involves the tar-
get distribution

∫
p2<Q2

d2p
(2π)2

p2NF(p, x2) ∝ ftarget(Q, x2) and is thus directly
sensitive to saturation effects which suppress the contribution of small mo-
menta p < Qs to the integral. The elastic production probability (first line
of Eq. (76)) depends only on N(k) at large momentum. Naively one ex-
pects that this part is unaffected by saturation in the evolution. This does
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not necessarily mean that the RpA calculated using only this contribution
(as done in [6]) should be equal to unity, but rather that any departure
from unity is the effect of a nonscaling initial condition. This should be
true if the transverse momentum of the measured particle is in the so-called
“geometric scaling” window, where the anomalous dimension is finite, since
geometric scaling is not a result of saturation physics but rather of the linear
BFKL evolution of the gluon density [34]. To be a little more precise, recall
that solution of the BFKL equation above the saturation scale has the form
φBFKL(k, Y ) ∝ [Qs(Y )/k]2−2γ where γ is the anomalous dimension. The
anomalous dimension is a slowly varying function of transverse momentum.
It is almost constant in a wide window of momenta above Qs, but neverthe-
less vanishes asymptotically as k → ∞. It also weakly depends on rapidity
Y . The saturation momentum Qs is defined within the BFKL solution per
se as the momentum at which the scattering amplitude is of the order of
one. Within leading order BFKL solution Qs(Y ) = Q0 exp{λY }, where Q0

is the soft nonperturbative scale which characterizes the initial condition
φ0(k, Y = 0). In the case of calculations of [6] this would be the initial
saturation scales, Q0p for the proton target and Q0A for the nuclear target.
The nuclear modification factor RpA within a BFKL calculation would then
be

RpA(Y ) =
1

Ncoll

[
QsA(Y )
Qsp(Y )

]2−2γ(Y )

=
[
Q0p

Q0A

]2γ(Y )

(81)

with the identification Ncoll = Q2
0A/Q

2
0p. Within the running coupling cal-

culation the saturation scale is not a simple exponential of rapidity and thus
the explicit expression for the nuclear modification factor and the rapidity
dependence is somewhat different. It nevertheless remains the case that as
long as the initial conditions for proton and nucleus do not simply scale
with A1/3 at all momenta, φp(k, Y = 0) 6= A1/3φA(k, Y = 0), the linear
BFKL evolution produces a nuclear modification factor different from unity
and slowly varying with rapidity. It is an interesting question whether the
numerical results of [6] are consistent with BFKL, or whether saturation
effects in the evolution nevertheless give a significant contribution to RpA.

Finally, we note that the final states that contribute to the inelastic pro-
duction are precisely the states which give the bulk of the contribution to the
dihadron correlation function considered in [7]. The calculation of [7] does
not address the estimate of large uncorrelated background of produced par-
ticles. The small “signal to background” ratio is indeed a very pronounced
feature of the data [5,35]. In this respect it would be interesting to calculate
both in a unified framework discussed here. We note that our earlier discus-
sion suggests that the saturation has two distinct effects on the correlated
dihadron production. First, as discussed in [17, 36] and [6], the back-to-
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back correlation is weakened due to independent momentum transfer from
the target to each one of the produced hadrons. This does not reduce the
number of hadrons produced at forward rapidity, but reduces the correlation
between the direction of their transverse momenta. Another distinct effect is
that the dihadron production probability is suppressed by the effect of sat-
uration on

∫
p2<Q2

d2p
(2π)2

p2NF(p, x2), thus reducing the ratio of the correlated
signal to the total number of produced particles.
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