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In this paper, the basics of finite temperature lattice QCD are sum-
marised. At high temperatures there is a transition from a state domi-
nated by colourless hadrons to a state dominated by coloured particles.
The nature of this transition is determined to be an analytic cross-over.
The absolute scale (the transition temperature Tc) is calculated for vari-
ous observables. Finally, the equation of state of the strongly interacting
matter is presented.
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1. Introduction

The theory of the strong interaction is quantum chromo-dynamics (QCD).
The Lagrangian of QCD contains only quarks and gluons, which are unob-
servable in experiments. Instead of free quarks and gluons we observe bound
state hadrons. The perhaps most important feature of QCD is asymptotic
freedom. At small energies the interaction is strong, the value of the cou-
pling constant is large. For large energies the coupling constant decreases
and approaches zero, which means that the particles are interacting less and
less. Since the coupling constant is large at small energies, we cannot use one
of the most powerful methods of particle physics, the perturbative approach.

At small energies (below about 1 GeV) the bound states and their in-
teractions can be described only by non-perturbative methods. The most
systematic non-perturbative technique today is lattice field theory. The field
variables of the Lagrangian are defined on a discrete space-time lattice. The
continuum results are obtained by taking smaller and smaller lattice spacings
(a) and extrapolating the results to vanishing a. Though lattice field theory
has been an active field for about 35 years, the first continuum extrapolated
full results appeared only recently.
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A consequence of asymptotic freedom is that the coupling decreases for
high temperatures (they are also characterised by large energies). According
to the expectations at very high temperatures (Stefan–Boltzmann limit) the
typical degrees of freedom are no longer bound state hadrons but freely
moving quarks and gluons. Since there are obvious qualitative differences
between these two forms of matter, we expect a phase transition between
them at a given temperature Tc. The value of Tc can be estimated to be the
typical QCD scale (≈ 200 MeV).

In this paper, the QCD transition at non-vanishing temperatures will be
studied. We will use lattice gauge theory to give non-perturbative predic-
tions. First, the phase diagram at vanishing chemical potential is discussed.
In the next section, we summarise the necessary techniques of lattice gauge
theory. After that, we determine the nature of the transition (first order, sec-
ond order or analytic crossover) and the characteristic scale of the transition
(we call it transition temperature Tc). According to the detailed analyses
there is no singular phase transition in the system, instead, one is faced with
an analytic — crossover like — transition between the phases dominated by
quarks/gluons and that with hadrons (from now on we call these two differ-
ent forms of matter phases). As a consequence, there is no unique transition
temperature. Different quantities give different Tc values (which are then
defined as the most singular point of their temperature dependence). We
will determine the equation of state as a function of the temperature, too.

2. The phase diagram of QCD

Before we discuss the results, let us summarise the qualitative picture of
the QCD phase diagram. Figure 1 shows the conjectured phase diagram of
QCD as a hypothetical function of the mud light quark mass and ms strange
quark mass. In nature, these quark masses are fixed and they correspond to
a single point on this phase diagram. The figure shows our expectations for
the nature of the transition. QCD is a gauge theory, which has two limiting
cases with additional symmetries. One of these limiting cases correspond to
the infinitely heavy quark masses (point D of the diagram). This is the pure
SU(3) Yang–Mills theory, which has not only the SU(3) gauge symmetry but
an additional Z(3) center symmetry, too. At high temperatures this Z(3)
symmetry is spontaneously broken. The order parameter which belongs
to the symmetry is the Polyakov loop. The physical phenomenon, which
is related to the spontaneous symmetry breaking is the deconfining phase
transition. At high temperatures the confining feature of the static potential
disappears. The first lattice studies were carried out in the pure SU(2) gauge
theory [1,2]. The transition turned out to be a second order phase transition.
Later on the increase of the computational resources allowed to study the
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SU(3) Yang–Mills theory. It was realized that in this case we are faced with
a first order phase transition, which happens around 270 MeV in physical
units [3, 4, 5, 6, 7].
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Fig. 1. The conjectured phase diagram of QCD on the hypothetical ms–mud plane
(strange quark mass versus light — up and down — quark mass, from now on
we use degenerate light quark masses). The middle region corresponds to analytic
crossover. In the lower left and upper right (purple) regions one expects a first
order phase transition. On the boundaries between the first order phase transition
regions and the crossover region and along the AE line the transition is of second
order.

The other important limiting case corresponds to vanishing quark masses
(points A and B). In this case the Lagrangian has an additional global
symmetry, namely chiral symmetry. Left and right handed quarks are
transformed independently. Point A corresponds to a two flavour theory
(Nf = 2), whereas the three flavour theory (Nf = 3) is represented by
point B. The chiral symmetry can be described by U(Nf )L × U(Nf )R. At
vanishing temperature the chiral symmetry is spontaneously broken, the cor-
responding Goldstone bosons are the pseudoscalar mesons (in the Nf = 2
case we have three pions). Since in nature the quark masses are small but
non-vanishing the chiral symmetry is only an approximative symmetry of
the theory. Thus, the masses of the pions are small but non-zero (though
they are much smaller than the masses of other hadrons; for a full cal-
culation within the lattice framework see [8]). At high temperatures the
chiral symmetry is restored. There is a phase transition between the low
temperature chirally broken and the high temperature chirally symmetric
phases. The corresponding order parameter is the chiral condensate. For
this limiting case we do not have reliable lattice results (lattice simulations
are prohibitively expensive for small quark masses, thus to reach the zero
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mass limit is extremely difficult). There are model studies, which start from
the underlying symmetries of the theory. These studies predict a second
order phase transition for the Nf = 2 case, which belongs to the O(4) uni-
versality class. For the Nf = 3 theory these studies predict a first order
phase transition [9]. For intermediate quark masses we expect an analytic
crossover (see Fig. 1). One of the most important questions is to locate the
physical point on this phase diagram, thus to determine the nature of the
T > 0 QCD transition for physical quark masses.

The determination of the phase diagram for non-vanishing chemical po-
tentials by dynamical lattice simulations (initiated by [10, 11]) will be not
discussed here. The interested reader can consult the review [12] or some
original papers (e.g. the first physical quark mass result [13] or the first one
with an additional continuum limit extrapolation [14]).

3. QCD thermodynamics on the lattice

We summarise the most important ingredients of lattice QCD. Instead of
providing a complete introduction we focus on those elements of the theory
and techniques, which are essential to lattice thermodynamics. A detailed
introduction to other fields of lattice QCD can be found in Ref. [15].

Thermodynamic observables are derived from the grand canonical parti-
tion function. The Euclidean partition function can be given by the following
functional integral

Z =
∫
DUDψ̄Dψe−SE(U,ψ̄,ψ) . (1)

Here U represent the gauge fields (gluons), whereas ψ and ψ̄ are the fermionic
fields (quarks). QCD is an SU(3) gauge theory with fermions in the fun-
damental representation. Thus, at various space-time points the four com-
ponents of the U gauge field can be given by SU(3) matrices for all four
directions. The fermions are represented by non-commuting Grassmann
variables.

The Boltzmann factor is given by the Euclidean action, which is a func-
tional of the gauge and fermionic fields. Equation (1) contains additional
parameters (though they are not shown in the formula explicitely). These
parameters are the β gauge coupling (it is related to the continuum gauge
coupling as β = 6/g2) and the quark masses (mi). For simplicity, Eq. (1)
describes only one flavour. More than one flavour can be described by intro-
ducing several ψi fields. In nature there are six quark flavours. The three
heaviest flavours (c, b, t) are much heavier than the typical energy scales in
our problem. They do not appear as initial or final states and they cannot
be produced at the typical energy scales. Their effects can be included by
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a simple redefinition of the other bare parameters (for some quantities they
should be included explicitly as dynamical degrees of freedom). The three
other quarks are the u, d and s quarks. The masses of the u, d quarks are
much smaller than the typical hadronic scale, therefore one can treat them
as degenerate degrees of freedom (exact SU(2) symmetry is assumed). This
approximation is satisfactory, since the mass difference between the u and
d quarks can explain only ≈ 50% of the mass difference between different
pions. For the remaining ≈ 50% the electromagnetic interaction is respon-
sible (the up and down quarks have different electric charges). Including
the mass differences would mean that one should include an equally impor-
tant feature of nature, namely the electromagnetic interactions, too. This
is usually far beyond the precision lattice calculations can reach today. As-
suming mu = md is a very good approximation, the obtained results are
quite precise, uncertainty related to this choice is clearly subdominant. For
the degenerate up and down quark mass we use the shorthand notationmud.
The s quark is somewhat heavier, its mass is around the scale of the Λ pa-
rameter of QCD. In typical lattice applications one uses the mu = md < ms

setup, which is usually called as Nf = 2 + 1 flavour QCD.
In order to give the integration measure (DUDψ̄Dψ), one has to reg-

ularise the theory. Instead of using the continuum formulation we intro-
duce a hypercubic space-time lattice Λ. The fields are defined on the sites
(fermions) and on the links (gauge fields) of this lattice. It is easy to show
that this choice automatically respects gauge invariance. For a given site
x ∈ Λ four (x;µ) links can be defined (here µ denotes the direction of the
link, µ = 1 . . . 4). Using this choice the integration measure is given by

DUDψ̄Dψ =
∏

x∈Λ,µ=1...4

dUx;µ

∏
x∈Λ

dψx
∏
x∈Λ

dψ̄x . (2)

With this regularisation one can imagine the functional integral as a sum
of the Boltzmann factors exp(−E/kT ) over all possible

{
U,ψ, ψ̄

}
configu-

rations (here we use the k = 1 convention). Thus, our system corresponds
to a four-dimensional classical statistical system. The energy functional is
simply replaced by the Euclidean action. An important difference is that
in statistical physics the temperature is included in the Boltzmann factor,
whereas in our case it is related to the temporal extent of the lattice (it is
the inverse of it). It is easy to show that using periodic boundary conditions
for the bosonic fields and antiperiodic boundary conditions for the fermionic
fields our Eq. (1) reproduces the statistical physics partition function.
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3.1. The action in lattice QCD

The lattice regularisation means that one should discretise the Euclidean
action SE. This step is not unambiguous. There are several lattice actions,
which all lead to the same continuum action. The difference between them
is important, since these differences tell us how fast they approach the con-
tinuum result as we decrease the lattice spacing. Calculating a given A
observable on the lattice of a lattice spacing a, the result differs from the
continuum one

〈A〉a = 〈A〉+O (aη) . (3)

The power η depends on the way we discretised the action. The larger the
power η the better the action (for large η we can obtain a result, which is
quite close to the continuum one, already at large lattice spacing).

The most straightforward discretisation is obtained by simply taking
differences at neighbouring sites to approximate derivatives. Actions, which
have better scaling behaviour (larger η or smaller prefactor) are called im-
proved actions.

In the following paragraphs we summarise the most important actions.
The action SE usually can be written as a sum SE = Sg + Sf , where

Sg is the gauge action (it depends only on the gauge fields) and Sf is the
fermionic action (it depends both on the gauge and fermionic fields).

The simplest gauge action is the Wilson gauge action which is the sum
of the

UP(x;µν) = Ux;µUx+aµ̂;νU
†
x+aν̂;µU

†
x;ν (4)

plaquettes. Here µ̂ denotes the unit vector in the µ direction. The Wilson
action reads

Sg,Wilson = −β
(

1
3

∑
x,µ<ν Re TrUP(x;µν)− 1

)
. (5)

This action is the simplest real, gauge invariant expression, which can be
constructed using the gauge fields. One can show, that in the continuum
limit the above expression leads to the usual Yang–Mills gauge action.

One can improve the action by adding other gauge invariant terms. The
simplest such improvement term is provided by the 2×1 rectangles, for which
— analogously to the plaquette term — we multiply the SU(3) link matrices
around the rectangle. Denoting this term by U2×1(x;µν) one obtains the
following action

Sg = −β
3

c0

∑
x,µ<ν

Re TrUP(x;µν) + c1

∑
x,µ6=ν

Re TrU2×1(x;µν)

 . (6)
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It can be shown that this choice improves the scaling. On the tree level the
condition c0 + 8c1 = 1 should be fulfilled and c1 = −1/12. This is the (tree
level improved) Symanzik gauge action. Other improvements use also chair-
like closed paths and non-perturbative coefficients. Note, however, that the
tree level improvement is usually enough for thermodynamic studies, the
main source of difficulties is in the fermionic part (further improvements in
the gauge sector can be considered as a sort of “over-killing”).

Discretising the fermionic fields is more difficult than discretising gauge
fields. The naive discretisation leads to the following action

Sf,naive =
∑
x

[
amψ̄ψ + 1

2

∑
µ=1...4

(
ψ̄xUx;µγµψx+aµ̂ − ψ̄xU†x−aµ̂;µγµψx−aµ̂

)]
(7)

in the free case (U = 1) the propagator has 16 poles in the Brillouin zone
(we expected only one). Thus, contrary to the continuum case our lattice
action describes 16 degenerate fermions instead of 1 fermion.

There are several ways to resolve this problem. The two most popular
solutions are the Wilson and the Kogut–Susskind regularisations. The prob-
lem is related to the fact that the continuum fermion action contains only
first derivatives. The basic idea of the Wilson fix is to add a second deriva-
tive term — Wilson term — to the action: aψ̄∂µ∂µψ. This term vanishes
in the continuum limit. For non-vanishing lattice spacings the Wilson term
increases the masses of the 15 non-physical modes so that they are at the
cutoff scale (1/a). As we approach the continuum limit these 15 particles de-
couple. Generally, one can use a Wilson term with an arbitrary coefficient r.
The usual choice is r = 1. In this case the action reads

Sf,Wilson =
∑
x

[
ψ̄ψ + κ

∑
µ=1...4

(
ψ̄xUx;µ(1+γµ)ψx+aµ̂+ψ̄xU

†
x−aµ̂;µ(1−γµ)ψx−aµ̂

)]
.

(8)

Here the fields are rescaled appropriately. The disadvantage of Wilson
fermions is the loss of chiral symmetry for vanishing quark masses. This
symmetry is restored only in the continuum limit. The quark mass receives
an additive renormalisation and the asymptotic scaling (cf. Eq. (3)) is linear
in a.

Kogut and Susskind introduced another formalism, namely the stag-
gered fermions. The spinor components of the fermionic field are distributed
among the corners of a 24 hypercube. This leads to a diagonal expression
in the spinor index. By using only 1 out these 4 diagonal components one
can reduce the number of degrees of freedom by a factor of 4. This action
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describes 16/4 = 4 fermions of the same mass. The action can be written as

Sf,staggered =
∑
x

[
amχ̄χ+ 1

2

∑
µ=1...4

αx;µ

(
χ̄xUx;µχx+aµ̂ − χ̄xU†x−aµ̂;µχx−aµ̂

)]
, (9)

where αx;µ = (−1)x1+···+xµ−1 . Contrary to the naive or Wilson fermion
formulations, the χ field has only one spin component. For simplicity, we
use the Greek letter ψ also for staggered fermions. The most important
advantage of the staggered formalism is, that the action has a U(1)L×U(1)R

symmetry (which is a remnant of the original chiral symmetry). Due to this
symmetry there is no additive mass renormalisation. The asymptotic scaling
is better than for Wilson fermions, it is proportional to a2. An additional
advantage is of computational nature. Since we do not have Dirac indices the
computations are faster. The most important disadvantage of the staggered
fermions is the fourfold degeneracy of the fermions. Later we discuss the
technique, which allows one to use less than four fermions.

There are two other fermion formulations (overlap and domain-wall) with
very attractive theoretical features. Note, however, that they are numerically
so expensive and did not provide yet full thermodynamical results.

Both equations (8) and (9) are bilinear in the fermionic fields (it is true
for other actions, too)

Sf =
∑
x,y

ψ̄xMxy(U)ψy , (10)

here the specific form of the matrixM can be derived from Eqs. (8) and (9).
It means that the fermionic integrals can be evaluated exactly. Using the
known Grassmann integration rules one obtains∫

Dψ̄Dψe−Sf = detM(U) . (11)

Thus the partition function (1) can be written as follows

Z =
∫
DU detM(U)e−Sg(U) =

∫
DUe−{Sg(U)−ln detM} . (12)

This simple step resulted in an effective theory, which contains only bosonic
fields. The action reads: Seff. = Sg − ln detM . Unfortunately, this action
is non-local. Due to the fermionic determinant fields at arbitrary distances
interact with each other (the original action SE = Sg +Sf is local in the field
variables). This non-locality is the most important source of difficulties. It
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is much more demanding to study full QCD (with dynamical fermions) than
pure SU(3) gauge theory.

In the rest of this work, we will deal with staggered theory, only. Since
staggered fermions are computationally less demanding than other fermion
formulations, the vast majority of the results in the literature are obtained
by using staggered fermions. Another reason why the staggered fermions are
so popular for thermodynamic studies is related to the fact that staggered
fermions are invariant under (reduced) chiral symmetry, which might play
an important role for questions such as chiral symmetry restoration (at the
finite temperature QCD transition).

In numerical simulations we use finite size lattices of N3
s Nt. The three

spatial sizes are usually the same (Ns), they give the spacial volume of the
system, whereas the temporal extension in Euclidean space-time is directly
related to the temperature

V = (Nsa)3 , T =
1
Nta

. (13)

Lattices with Nt ≥ Ns are called “zero temperature” lattices, and lattices
with Nt � Ns are called “non-zero temperature” lattices. In thermodynamic
studies a small temperature region around the transition temperature is the
main focus of the analyses (an exception is the determination of the equation
of state, which can be studied at much higher temperatures, too). According
to T = 1/(Nta) one can fix the temperature by using smaller and smaller
lattice spacings and larger and larger Nt temporal extensions. Thus, the
resolution of an analysis is usually characterised by the temporal extension.
In the literature, one finds typically Nt values of 4, 6, 8, 10, 12 and 16,
which correspond to lattice spacings (at and around Tc) of approximately
a = 0.3, 0.2, 0.15, 0.12, 0.1 and about 0.07 fm, respectively. We give here
only approximative values and it is impossible to give precise values for the
lattice spacings, particularly for the relatively coarse lattices. The reason for
this “no-go” observation can be summarised as follows. QCD predicts only
dimensionless combinations of observables. These combinations are only ap-
proximated on the lattices, they have aη scaling corrections, which vanish as
we approach the continuum limit. Since different combinations have differ-
ent scaling corrections, the lattice spacing cannot be given unambiguously.

3.2. Continuum limit

The final goal of lattice QCD is to give physical answers in the continuum
limit. Results at various lattice spacings, a, are considered as intermediate
steps. Since the regularisation (lattice) is inherently related to the non-
vanishing lattice spacing it is not possible to carry out calculations already
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in the continuum limit in our lattice framework. The continuum physics
appears as a limiting result. Obviously, the a → 0 limit should be carried
out according to Eq. (3). During this procedure the physical observables,
more precisely their dimensionless combinations should converge to finite
values. On the way to the continuum limit one should tune the parameters
of the Lagrangian as a function of the lattice spacing. The renormalisation
group equations tell us how the parameters of the Lagrangian depend on
the lattice spacing. For small gauge coupling (thus, for large cutoff or close
to the continuum limit) the perturbative form of the renormalisation group
equations can be used. For somewhat larger gauge couplings one should use
non-perturbative relationships.

Usually, when one changes the lattice spacing (e.g. all the way to the con-
tinuum limit) the form of the action remains the same, only its parameters
are changed. The way the parameters change is called renormalisation group
flow or line of constant physics (LCP). It can be obtained by choosing a few
dimensionless combinations of observables and demanding that their values
remain the same “predefined” value as we change the lattice spacing. Using
different sets of observables result in different LCPs; however, these different
LCPs merge when we approach the continuum limit. The LCPs are usually
determined by non-perturbative techniques. The simplest procedure is to
measure the necessary dimensionless combinations at various parameters of
the action (bare parameters) and interpolate to those bare parameters, at
which the dimensionless combinations take their predefined value. A few
iterative steps are usually enough to reach the necessary accuracy.

4. The nature of the transition

As we will see the nature of the transition is a cross-over. This is a highly
non-trivial result obtained with physical quark masses extrapolated to the
continuum limit and performing a finite volume analysis. This result affects
our understanding of the universe’s evolution (see e.g. Ref. [16]). In a strong
first order phase transition scenario the quark-gluon plasma super-cools be-
fore bubbles of hadron gas are formed. These bubbles grow, collide and
merge during which gravitational waves could be produced [17]. Baryon
enriched nuggets could remain between the bubbles contributing to dark
matter. Since the hadronic phase is the initial condition for nucleosynthe-
sis, the above picture with inhomogeneities could have a strong effect on
it [18]. As the first order phase transition weakens, these effects become
less pronounced. Recent calculations provide strong evidence that the QCD
transition is an analytic transition (what we call here a crossover), thus the
above scenarios — and many others — are ruled out.
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In order to determine the nature of the transition, one should apply
finite size scaling techniques for the chiral susceptibility [19]. χ = (T/V )×
(∂2 logZ/∂m2

ud). This quantity shows a pronounced peak as a function of
the temperature. For a first order phase transition, such as in the pure gauge
theory, the peak of the analogous Polyakov susceptibility gets more and more
singular as we increase the volume (V ). A second order transition shows a
similar singular behaviour with critical indices. For an analytic transition
(crossover) the peak width and height saturates to a constant value.

One can carry out a finite size scaling analysis with the continuum
extrapolated height of the renormalised susceptibility. The renormalisa-
tion of the chiral susceptibility can be done by taking the second deriva-
tive of the free energy density (f) with respect to the renormalised mass
(mr). The logarithm of the partition function contains quartic divergences.
These can be removed by subtracting the free energy at T = 0: f/T 4 =
−N4

t [logZ(Ns, Nt)/(NtN
3
s )− logZ(Ns0, Nt0)/(Nt0N

3
s0)]. This quantity has

a correct continuum limit. The subtraction term is obtained at T = 0, for
which simulations are carried out on lattices with Ns0, Nt0 spatial and tem-
poral extensions (otherwise at the same parameters of the action). The
bare light quark mass (mud) is related to mr by the mass renormalisa-
tion constant mr = Zm · mud. Note that Zm falls out of the combination
m2

r∂
2/∂m2

r = m2
ud∂

2/∂m2
ud. Thus, m2

ud [χ(Ns, Nt)− χ(Ns0, Nt0)] also has a
continuum limit (for its maximum values for different Nt, and in the contin-
uum limit we use the shorthand notation m2∆χ).

In order to carry out the finite volume scaling in the continuum limit,
three different physical volumes were taken. For these volumes the dimen-
sionless combination T 4/m2∆χ was calculated at 4 different lattice spacings:
0.3 fm was always off, otherwise the continuum extrapolations could be car-
ried out. Figure 2 shows these extrapolations. The volume dependence of
the continuum extrapolated inverse susceptibilites is shown in Fig. 3.

Fig. 2. Normalized susceptibilities T 4/(m2∆χ) for the light quarks for aspect ratios
r = 3 (left panel) r = 4 (middle panel) and r = 5 (right panel) as functions of the
lattice spacing. Continuum extrapolations are carried out for all three physical
volumes and the results are given by the leftmost blue diamonds.
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Fig. 3. Continuum extrapolated susceptibilities T 4/(m2∆χ) as a function of
1/(T 3

c V ). For true phase transitions the infinite volume extrapolation should be
consistent with zero, whereas for an analytic crossover the infinite volume extrap-
olation gives a non-vanishing value. The continuum-extrapolated susceptibilities
show no phase-transition-like volume dependence, though the volume changes by a
factor of five. The V →∞ extrapolated value is 22(2) which is 11σ away from zero.
For illustration, we fit the expected asymptotic behaviour for first-order and O(4)
(second order) phase transitions shown by dotted and dashed lines, which results
in chance probabilities of 10−19 (7× 10−13), respectively.

The result is consistent with an approximately constant behaviour, de-
spite the fact that there was a factor of 5 difference in the volume. The
chance probabilities, that statistical fluctuations changed the dominant be-
haviour of the volume dependence are negligible. As a conclusion we can
say that the staggered QCD transition at µ = 0 is a crossover.

5. The transition temperature

One of the most interesting quantities that can be extracted from lattice
simulations is the transition temperature Tc at which hadronic matter is sup-
posed to undergo a transition to a deconfined, quark-gluon phase. This quan-
tity has been vastly debated over the last few years, due to the disagreement
on its numerical value observed by different lattice collaborations, which in
some cases is as high as 20% of the absolute value. Indeed, the analysis
of the HotQCD Collaboration (performed with two different improved stag-
gered fermion actions, asqtad and p4, and with physical strange quark mass
and somewhat larger than physical u and d quark masses, ms/mu,d = 10),
indicates that the transition region lies in the range of T = (185–195) MeV.
Different observables lead to the same value of Tc [20, 21,22,23,24]. Recent
simulations using the p4 action with the quark mass ratio ms/mu = 20
yielded about 5 MeV shift (towards the smaller values) in the temperature
dependence of the studied observables [25]. On the other hand, the re-
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sults obtained by our collaboration using the staggered stout action (with
physical light and strange quark masses, thus ms/mu,d ' 28) are quite dif-
ferent: the value of the transition temperature lies in the range 150–170
MeV, and it changes with the observable used to define it [26, 27]. This
is not surprising, since the transition is a cross-over [19]: in this case it is
possible to speak about a transition region, in which different observables
may have their characteristic points at different temperature values, and the
temperature dependences of the various observables play a more important
role than any single Tc value. Unfortunately, the 25–30 MeV discrepancy
was observed between the two collaborations for the T dependences of the
various observables, too.

A lot of effort has been invested, in order to find the origin of the dis-
crepancy between the results of the two collaborations1. In Refs. [26, 27],
we emphasized the role of the proper continuum limit with physical quark
masses, showing how the lack of them can distort the result. In [30, 31] we
pointed out that the continuum limit can be approached only if one reduces
the unphysical pion splitting (the main motivation of our choice of action).
From the lattice point of view, we present (for details see [32] our most re-
cent results for several physical quantities: our previous calculations [26,27]
have been extended to an even smaller lattice spacing (down to a<∼ 0.075 fm
in the transition region), corresponding to Nt = 16. We use physical light
and strange quark masses: we fix them by reproducing fK/mπ and fK/mK

and by this procedure [27] we get ms/mu,d = 28.15. The HRG model re-
sults are obtained both for the physical resonance masses, as listed in the
Particle Data Book, and for the distorted spectrum which corresponds to
the quark masses and finite lattice spacings of [24]. Our analysis indicates
that the discretization effects on hadron masses (and in particular on the
nondegenerate, taste-split light pseudoscalar meson masses which emerge as
a consequence of the staggered formalism) affect more severely the asqtad
and p4 actions than the stout one, in the temperature regime below and
around Tc.

In order to illustrate the most important differences between a real phase
transition and an analytic cross-over, we recall the water–vapor phase dia-
gram on the temperature versus pressure plane (cf. [26] and Fig. 4 of the
present paper). We study the transition by fixing the pressure to a given
value and then varying the temperature. For smaller pressures (p<∼ 22 MPa)
there is a first order phase transition. The density jumps, the heat capacity
is infinite, and these singular features appear simultenously, thus exactly at
the same critical temperature. At pressure p ≈ 22.064 MPa and temperature

1 Note that quite recently preliminary results were presented [28,29] and the results of
the HotQCD Collaboration moved closer to our results. (We include some of these
data in our comparisons.)
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T ≈ 647.096 K, there is a critical point with a second order phase transition.
This phase transition is also characterized by a singular behaviour2.

Fig. 4. The phase diagram of water around its critical point (CP). For pressures
below the critical value (pc) the transition is first order, for p > pc values there is
a rapid cross-over. In the cross-over region the critical temperatures defined from
different quantities are not necessarily equal. This can be seen for the temperature
derivative of the density (dρ/dT ) and the specific heat (cp). The bands show the
non-negligible experimental uncertainties (see [35]).

At even larger pressures (p>∼ 22.064 MPa) the water–vapor transition is
an analytic one (the behaviours of various observables are analytic, even in
the infinite volume limit). As a consequence, in this pressure region there is
no jump in the density when we change the temperature, only a rapid but
continuous change. The inflection point of this density–temperature func-
tion (the point with the largest, though finite, derivative) can be used to
define the pseudocritical temperature (another usual name for it is “tran-
sition temperature”) related to the density. Similarly, the heat capacity is
always finite, but it has a pronounced peak as we increase the temperature.
The position of this peak can be used to define the pseudocritical tempera-
ture related to the heat capacity. Despite the fact that there is no singularity,
the inflection point and peak position are well defined. The corresponding
pseudocritical or transition temperature is usually denoted as Tc.

The most important message here is that the various transition temper-
atures (e.g. those related to the density or heat capacity) behave differently
depending on whether we are in the singular (real phase transition) or non-
singular (analytic cross-over) region. As it is indicated in the figure, for
a real phase transition these critical temperatures coincide, whereas in the

2 Note that a real singularity, a phase transition, takes place only in infinite size sys-
tems. In our example we have a macroscopic amount of water with O(1023) molecules.
From the practical point of view, this is an infinitely large system.
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non-singular region (for pressures above 22.064 MPa) the pseudocritical tem-
peratures can differ considerably. The fast change (though no jump) in the
density is at a lower temperature than the peak in the heat capacity. The
transition is a broad cross-over. The pseudocritical temperatures, related
to various observables, are separated, but both of them are in the broad
transition temperature region. This separation does not mean that we have
two transitions (one for the density and one for the heat capacity), it merely
reflects the broadness of the transition.

Let us illustrate the situation by increasing the temperature for a pres-
sure of e.g. 50 MPa. The density change has its most singular point around
730 K, whereas the heat capacity has its most singular point around 750 K.
Physically, we interpret the rapid change in the density as a liberation of
the molecules from the liquid phase. The most singular point of the heat
capacity corresponds to the remnant of the boiling point of a real first order
phase transition. At this point the latent heat indicates the real singular-
ity. At this pressure and at about 740 K one might think to be faced with
a state, which has already liberated the molecules but has not boiled yet.
This paradox interpretation is not really reasonable, as we said earlier this
situation merely reflects the broadness of the transition. Similarly, if we
found for QCD the remnant of the confinement transition is at a somewhat
higher temperature than the remnant of the chiral transition. It does not
mean that we have a phase with chiral symmetry restored with confinement
still active. The transition is just a broad one, as found in the previous
section.

Now, we present here the temperature dependences with their most sin-
gular points for several quantities. We study strange susceptibility, the
Polyakov-loop and the chiral condensate, and extract the value of Tc as-
sociated to these observables. The Tc values are different which reflects the
nature of the crossover transition. For details we refer the reader to Ref. [32].

The strange susceptibility does not need any additional renormaliza-
tion. The renormalization procedure of the Polyakov loop was given in [27].
The temperature dependences of the strange susceptibility and the Polyakov
loop are shown in Fig. 5. The chiral condensate is defined as 〈ψ̄ψ〉q =
T∂ lnZ/(∂mqV ) for q = u, d, s. It is an indicator for the remnant of the
chiral transition, since it rapidly changes around Tc. Its renormalization
is given in [32]. We also calculate the quantity ∆l,s, which is defined as
[〈ψ̄ψ〉l,T −ml/ms〈ψ̄ψ〉s,T ]/[〈ψ̄ψ〉l,0 −ml/ms〈ψ̄ψ〉s,0] for l = u, d. Since the
results at different lattice spacings are essentially on top of each other, we
connect them to lead the eye (see Fig. 6). The value of Tc that we obtain
from the inflection point of the latter observable is Tc = 157(3)(3).
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Fig. 5. Left: strange quark number susceptibility as a function of the temperature.
Right: renormalized Polyakov loop as a function of the temperature. In both
figures, the different symbols correspond to different Nt. The gray band is the
continuum extrapolated result.

It is also instructive to compare the present results obtained on Nt = 6,
8, 10, 12 and 16 with the results of the HotQCD Collaboration (cf. [32]).
Figure 6 shows this comparison, too. As it can be seen, the results of the
HotQCD Collaboration are getting closer and closer to our predictions. The
long standing discrepancy is disappearing.
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the HotQCD Collaboration.
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6. QCD equation of state

Next, we present our results regarding the equation of state. The details
of this calculation can be found in [33]. It is important to emphasize that
quark masses were set to their physical values and we used quite fine lattices
upto Nt = 12. We have explicitely showed that four our systems the finite
volume corrections are under control. The left panel of Fig. 7 shows two
systems. One of them with a volume V the other one with a volume of
8V . As it can be seen for the whole temperature range, there are practi-
cally no finite volume corrections, the two curves are lying on top of each
other. The right panel shows the continuum limits at three representative
temperatures based on simulations upto temporal extension of 12. In Fig. 8
the T dependence of the trace anomaly is shown for the 2+1 flavour system.
We have results at four different lattice spacings. Results show essentially
no dependence on a, they all lie on top of each other. Only the coarsest
Nt = 6 lattice shows some deviation around ∼ 300 MeV. In the same figure,
we zoom in to the transition region. Here we also show the results from the
Hadron Resonance Gas model: a good agreement with the lattice results is
found up to T ∼ 140 MeV.

Fig. 7. Left: the trace anomaly on lattices with different spatial volumes: Ns/Nt =3
(grey (red) band) and Ns/Nt = 6 (blue points). Right: the trace anomaly at three
different temperatures as a function of 1/N2

t . Filled (blue) symbols represent the
results within the lattice tree-level improvement framework, (red) opened symbols
show the results without this improvement. The error of the continuum extrapo-
lated value is about 0.4 for all three temperatures.

In order to obtain the pressure, we determine its partial derivatives with
respect to the bare lattice parameters. p is then rewritten as a multidimen-
sional integral along a path in the space of bare parameters. The result is
shown in Fig. 9. To obtain the EoS for various mπ, we simulate for a wide
range of bare parameters on the plane of mu,d and β (ms is fixed to its phys-
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Fig. 8. The trace anomaly I = ε − 3p normalized by T 4 as a function of the
temperature on Nt = 6, 8, 10 and 12 lattices.

ical value). Having obtained this large set of data we generalize the integral
method and include all possible integration paths into the analysis [33, 34].
We remove the additive divergence of p by subtracting the same observables
measured on a lattice, with the same bare parameters but at a different T
value. Here we use lattices with a large enough temporal extent, so it can
be regarded as T = 0.

Fig. 9. The pressure normalized by T 4 as a function of the temperature on Nt = 6,
8 and 10 lattices. The Stefan–Boltzmann limit pSB(T ) ≈ 5.209T 4 is indicated by
an arrow. For our highest temperature T = 1000 MeV the pressure is almost 20%
below this limit.

It is also instructive to compare the present results obtained on Nt =
6, 8, 10 and 12 with the results of the HotQCD Collaboration (cf. [32]).
Figure 10 shows this comparison for the trace anomaly. As it can be seen the
results of the HotQCD Collaboration are still quite far away from our results.
Their peak position is about at a 20 MeV higher temperature, whereas their
peaks heights are about 50% larger than in our. The clarification of this
discrepancy remains for the future.



Lattice QCD Thermodynamics 2809

à

à

à

à

à

à

à

ààà
à

à

à

à

æ

ææ

æ
æ

æ

æ

æ

ææææ

æ
æ

æ

æ

æ

á
á
á

á

á

á

á

á

á

á

á

á

á

á

á
á
á

á

á

á

á

á

á

á

á

á

á

á

¨¨

¨

àà

ææ

áá ¨̈

hotQCD results

p4 Nt=8

asqtad Nt=8

Wuppertal-Budapest results

stout Nt=8

stout Nt=10, 12

100 150 200 250 300 350 400

1

2

3

4

5

6

7

T @MeVD

HΕ
-

3
p
L�

T
4

Fig. 10. The normalized trace anomaly obtained in our study is compared to recent
results from the HotQCD Collaboration [24,25].

REFERENCES

[1] J. Kuti, J. Polonyi, K. Szlachanyi, Phys. Lett. B98, 199 (1981).
[2] L.D. McLerran, B. Svetitsky, Phys. Lett. B98, 195 (1981).
[3] T. Celik, J. Engels, H. Satz, Phys. Lett. B125, 411 (1983).
[4] J.B. Kogut et al., Phys. Rev. Lett. 50, 393 (1983).
[5] S.A. Gottlieb et al., Phys. Rev. Lett. 55, 1958 (1985).
[6] F.R. Brown et al., Phys. Rev. Lett. 61, 2058 (1988).
[7] M. Fukugita, M. Okawa, A. Ukawa, Phys. Rev. Lett. 63, 1768 (1989).
[8] S. Durr et al., Science 322, 1224 (2008) [arXiv:0906.3599v1 [hep-lat]].
[9] R.D. Pisarski, F. Wilczek, Phys. Rev. D29, 338 (1984).
[10] Z. Fodor, S.D. Katz, Phys. Lett. B534, 87 (2002) [arXiv:hep-lat/0104001].
[11] Z. Fodor, S.D. Katz, J. High Energy Phys. 03, 014 (2002)

[arXiv:hep-lat/0106002].
[12] Z. Fodor, S. Katz, Landolt–Boernstein, vol. 1-23A, Springer-Verlag, Berlin

Heidelberg 2010, pp. 2–27 [arXiv:0908.3341v1 [hep-ph]].
[13] Z. Fodor, S.D. Katz, J. High Energy Phys. 04, 050 (2004)

[arXiv:hep-lat/0402006].
[14] G. Endrodi, Z. Fodor, S. Katz, K. Szabo, J. High Energy Phys. 1104, 001

(2011) [arXiv:1102.1356v1 [hep-lat]].
[15] I. Montvay, G. Munster, Quantum Fields on a Lattice, Cambridge, UK:

Univ. Pr., 1994, 491 p. (Cambridge monographs on mathematical physics).
[16] D.J. Schwarz, Ann. Phys. 12, 220 (2003) [arXiv:astro-ph/0303574].
[17] E. Witten, Phys. Rev. D30, 272 (1984).
[18] J.H. Applegate, C.J. Hogan, Phys. Rev. D31, 3037 (1985).
[19] Y. Aoki et al., Nature 443, 675 (2006) [arXiv:hep-lat/0611014].

http://dx.doi.org/10.1016/0370-2693(81)90987-4
http://dx.doi.org/10.1016/0370-2693(81)90986-2
http://dx.doi.org/10.1016/0370-2693(83)91314-X
http://dx.doi.org/10.1103/PhysRevLett.50.393
http://dx.doi.org/10.1103/PhysRevLett.55.1958
http://dx.doi.org/10.1103/PhysRevLett.61.2058
http://dx.doi.org/10.1103/PhysRevLett.63.1768
http://dx.doi.org/10.1126/science.1163233
http://dx.doi.org/10.1103/PhysRevD.29.338
http://dx.doi.org/10.1016/S0370-2693(02)01583-6
http://dx.doi.org/10.1088/1126-6708/2002/03/014
http://dx.doi.org/10.1088/1126-6708/2004/04/050
http://dx.doi.org/10.1007/JHEP04(2011)001
http://dx.doi.org/10.1007/JHEP04(2011)001
http://dx.doi.org/10.1002/andp.200310010
http://dx.doi.org/10.1103/PhysRevD.30.272
http://dx.doi.org/10.1103/PhysRevD.31.3037
http://dx.doi.org/10.1038/nature05120


2810 Z. Fodor, S.D. Katz

[20] M. Cheng et al., Phys. Rev. D74, 054507 (2006) [arXiv:hep-lat/0608013].
[21] [HotQCD Collaboration] C.E. Detar, R. Gupta, PoS LAT2007, 179 (2007)

[arXiv:0710.1655v1 [hep-lat]].
[22] F. Karsch, PoS LAT2007, 015 (2007) [arXiv:0711.0661v1 [hep-lat]].
[23] [RBC Collaboration] F. Karsch, J. Phys. G 35, 104096 (2008)

[arXiv:0804.4148v1 [hep-lat]].
[24] A. Bazavov et al., Phys. Rev. D80, 014504 (2009) [arXiv:0903.4379v1

[hep-lat]].
[25] M. Cheng et al., Phys.Rev. D81, 054504 (2010) [arXiv:0911.2215v2

[hep-lat]].
[26] Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B643, 46 (2006)

[arXiv:hep-lat/0609068].
[27] Y. Aoki et al., J. High Energy Phys. 06, 088 (2009) [arXiv:0903.4155v1

[hep-lat]].
[28] [HotQCD Collaboration] A. Bazavov, P. Petreczky, PoS LAT2009, 163

(2009) [arXiv:0912.5421v1 [hep-lat]].
[29] [HotQCD Collaboration] A. Bazavov, P. Petreczky, J. Phys. Conf. Ser. 230,

012014 (2010) [arXiv:1005.1131v1 [hep-lat]].
[30] Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, J. High Energy Phys. 01, 089

(2006) [arXiv:hep-lat/0510084].
[31] Z. Fodor, PoS LAT2007, 011 (2007) [arXiv:0711.0336v1 [hep-lat]].
[32] [Wuppertal–Budapest Collaboration] S. Borsanyi et al., J. High Energy

Phys. 1009, 073 (2010) [arXiv:1005.3508v1 [hep-lat]].
[33] S. Borsanyi et al., J. High Energy Phys. 1011, 077 (2010)

[arXiv:1007.2580v2 [hep-lat]].
[34] G. Endrodi, Comput. Phys. Commun. 182, 1307 (2011)

[arXiv:1010.2952v2 [physics.comp-ph]].
[35] B. Spang, http://www.cheresources.com/iapwsif97.shtml

http://dx.doi.org/10.1103/PhysRevD.74.054507
http://dx.doi.org/10.1088/0954-3899/35/10/104096
http://dx.doi.org/10.1103/PhysRevD.80.014504
http://dx.doi.org/10.1103/PhysRevD.81.054504
http://dx.doi.org/ 10.1016/j.physletb.2006.10.021
http://dx.doi.org/10.1088/1126-6708/2009/06/088
http://dx.doi.org/10.1088/1742-6596/230/1/012014
http://dx.doi.org/10.1088/1742-6596/230/1/012014
http://dx.doi.org/10.1088/1126-6708/2006/01/089
http://dx.doi.org/10.1088/1126-6708/2006/01/089
http://dx.doi.org/10.1007/JHEP09(2010)073
http://dx.doi.org/10.1007/JHEP09(2010)073
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1016/j.cpc.2011.03.009

	1 Introduction
	2 The phase diagram of QCD
	3 QCD thermodynamics on the lattice
	3.1 The action in lattice QCD
	3.2 Continuum limit

	4 The nature of the transition
	5 The transition temperature
	6 QCD equation of state

