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In this paper, we discuss physics of dense matter, which are expected
to happen inside compact stars such as neutron stars. After the general
introduction to basic properties of dense hadronic and quark matter as well
as compact stars, we first focus on QCD phase transitions and its phase
structures, based on the Ginzburg–Landau analysis. Then, we show some
astrophysical applications into neutron star phenomena such as equation
of state, cooling and gravitational wave radiation and some recent devel-
opments.
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1. Introduction

Just after the discovery of asymptotic freedom in QCD [1], it had been
demonstrated that QCD matter might undergo some phase transitions at
high temperature and/or high baryon density [2]. Since then, space-time
evolution of hadronic and quark matter in various temperature and/or den-
sity regimes has been extensively studied from both theoretical and experi-
mental/observational points of view.

QCD at high temperature is connected to physics of the early universe
after Big Bang as well as heavy ion collision experiments such as RHIC and
LHC [3]. Experimental results have shown us that created matter, called
quark-gluon plasma (QGP) is strongly correlated to each other and behaves
like almost the perfect fluid. On the other hand, QCD at finite baryon den-
sity is related to physics of compact stars such as neutron star [4]. Neutron
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star is the densest object in the universe. Its mass is around 1.4 MSUN

(MSUN is the solar mass), its radius only 10 km. Neutron star is made af-
ter the Type-I supernova explodes and cools down via neutrino emissions
particularly in the early stage. Some neutron stars are called the magnetar,
since they have a gigantic magnetic field. Binary collision of neutron stars
is considered to be one of the best candidates to produce the gravitational
wave radiation, which might be detected in the future. All the above prop-
erties of neutron star are definitely connected to the stellar structure, matter
compositions inside it.

In this paper, we demonstrate properties of dense QCD matter, mainly
concentrating on the thermodynamic properties and the astrophysical appli-
cations. In Sec. 2, we provide our study in dense QCD based on a particular
method, i.e., the Ginzburg–Landau analysis. We see the resultant phase
structure. In Sec. 3, the astrophysical applications of studies performed
in Sec. 2 are shown, with some introduction of recent observational conse-
quences for the neutron star mass and the thermal behavior. Section 4 is
devoted to summary of this lecture.

2. Ginzburg–Landau study in dense QCD

2.1. Chiral-super interplay — anomaly-driven critical point

Ginzburg–Landau (GL) analysis for investigating phase transition prop-
erties of matter has been utilized in general and universal contexts, from
condensed matter to particle physics. Through the analysis, one can reach
(1) topological structure of the phase diagram, (2) order of the phase tran-
sition and (3) critical properties. The key ingredient for the GL study is to
identify the order parameters of the system and construct the effective free
energy in terms of them, based on symmetries of underlying theory.

Application of the GL analysis into color superconductivity, which is
expected to happen at high density, had been pioneered by the classic work
by Bailin and Love [5]. Afterwards, Iida and Baym had developed their
work [6]. Let us now construct the GL free energy in dense QCD. At classical
level, QCD Lagrangian with 3-flavor massless quarks is invariant under the
transformation G = SU(3)L × SU(3)R × U(1)B × U(1)A × SU(3)C. Here,
SU(3)L × SU(3)R denotes chiral transformation, U(1)B baryon one, U(1)A

axial one and SU(3)C local color one, respectively. While in the case for
massive quarks, chiral symmetry is explicitly broken. At quantum level,
on the other hand, U(1)A is explicitly broken down to a discrete symmetry
group Z6 by the QCD axial anomaly.

Let us define the order parameter fields in QCD at intermediate baryon
density regime, which might be relevant for neutron stars. One knows that
at zero or low density, chiral condensate, a signal of chiral symmetry break-
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ing, plays a crucial role whereas at high baryon density, diquark condensate,
a signal of color superconductivity, is expected to happen. Thus it is nat-
ural to consider both chiral and diquark fields as the order parameters at
intermediate region. Let us denote Φ, dL and dR as chiral, left- and right-
handed diquark fields, respectively. Their transformation laws under the
quantum QCD symmetry group are provided by Φ → e−2iαAVLΦV

†
R, dL →

e2iαAe2iαBVLdLV
†

C and dL → e−2iαAe2iαBVLdLV
†

C. Here, VL(R) denotes chiral
transformation, VC a color rotation, eiαB a transformation associated with
U(1)B, and eiαA an axial transformation.

Given these transformation laws and assuming that the order parameters
are small enough to write a power series, one can construct the general GL
free energy. Below we work at mean field level, i.e., neglecting the quantum
fluctuations. Then, the GL free energy Ω(Φ, dL, dR), measured with respect
to that for Φ = dL = dR = 0, is given as follows

Ω (Φ, dL, dR) = Ωχ (Φ) +Ωd (dL, dR) +Ωχd (Φ, dL, dR) , (1)

where
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2
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[(
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. (2)

Here, “Tr” and “det” are taken over the flavor indices. The coefficients
a0, b1, b2, . . . , λ3 are called the GL parameters, which are functions of tem-
perature and chemical potential. Ωχ denotes the chiral part, which was
originally studied by Pisarski and Wilczek [7]. Ωd is the diquark part, orig-
inally written down by Iida and Baym. What is new is the third part, Ωχd,
which represents the interactions between chiral and diquark fields [8].

Note here that the terms proportional to c0 and γ1 are cubic in order
parameter fields and not invariant under U(1)A transformation, but break
it down to the discrete symmetry group Z6. This is exactly showing the fact
that they originate from the axial anomaly. c0 should be positive so as for



2856 M. Tachibana

the η′ mass positive. Since c0 and γ1 terms have the same origin, the sign
and the magnitude of γ1 should be related to those of c0. This observation
is crucial for our analysis of the phase structure performed below.

Let us now restrict ourselves to maximally symmetric condensates, name-
ly, a flavor symmetric chiral condensate in which chiral condensate takes
place only within the same flavor, and a color-flavor-locked (CFL) diquark
condensate [9] which takes place only in the different flavors: Φ=diag(σ, σ, σ),
dL = −dR = diag(d, d, d). Then, the reduced GL free energy becomes

Ω(σ, d) =
(
a

2
σ2 − c

3
σ3 +

b

4
σ4

)
+
(
α

2
d2 +

β

4
d4

)
− γd2σ + λd2σ2 . (3)

In principle, the system described by Eq. (3) has four possible phases:

Normal (NOR) phase : σ = 0 , d = 0 ,
Color superconducting (CSC) phase : σ = 0 , d 6= 0 ,

Nambu−Goldstone (NG) phase : σ 6= 0 , d = 0 ,
Coexistence (COE) phase : σ 6= 0 , d 6= 0 .

The symmetry breaking pattern of each phase can be summarized as fol-
lows: in the CSC phase, G → SU(3)C+L+R × Z(2)B; in the NG phase,
G → SU(3)C × SU(3)L+R × U(1)B × Z(2)A, and in the COE phase, G →
SU(3)C+L+R × Z(2)B. Note that the CSC and COE phases have the same
symmetry.

The resultant phase structure in this case has been studied in detail [8].
The most essential point is that the cubic coupling γ, which is positive,
favors the coexistence of chiral and diquark condensates. This is what we
call chiral-super interplay thorough the axial anomaly. A non-zero d2 acts
as external field for σ. As a consequence, the γ term plays a role of quark

Fig. 1. Schematic phase diagram with two light (up and down) quarks and a
medium heavy (strange) quark. The arrows show how the critical point and the
phase boundaries move as the strange-quark mass increases.
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mass term and then chiral symmetry is all the way down broken. Thus
we expect that at very low temperature and intermediate baryon density,
a new anomaly-driven critical point might appear in the phase diagram. If
we take into account the strange quark mass, another critical point at high
temperature and low density will appear [10]. See Fig. 1.

2.2. Excitation spectra — a possible realization of quark–hadron continuity

In this subsection, we examine the mass spectra of mesons in the inter-
mediate density region for the degenerate three-flavor case [11]. We focus on
the region near the phase boundaries, where σ and d are sufficiently small
in the COE phase, and consider energy scales, p, smaller than the pairing
gap d, so that we can neglect excitations of the quarks.

To derive the effective Lagrangian for the light excited states, the pions
(π, K and η) in the intermediate density region, we fix the magnitude of
the chiral and diquark fields and consider only fluctuations of their phases
about their vacuum configurations. We thus parameterize the fields as Φ =
σΣe−2iθ, dL = dULe

2i(θ̃+φ), dR = −dURe
−2i(θ̃−φ). Here, Σ, UL and UR are

SU(3) matrices, and the angles θ and θ̃ are U(1)A phases, and φ the U(1)B

phase. Below we just highlight SU(3) matrix fields UL and UR.
In CFL phase, all eight gluons acquire a mass of the order of gfπ̃ ∼

O(gµ) by “eating” the eight colored fluctuations of UL,R, where g is the QCD
coupling constant and fπ̃ is the decay constant associated with UL,R. On the
low momentum scales, we consider p < d � gfπ̃, gluons are not low-lying
modes. The remaining color-singlet fluctuations correspond to CFL pions,
π̃ and are parametrized by the field ∆̃ = ULU

†
R, which transforms under

SU(3)L × SU(3)R as ∆̃→ VL∆̃V
†

R [12]. Then, the standard pion πj and the
CFL pion π̃j are defined by Σ = exp

(
iλjπj/fπ

)
and ∆̃ = exp

(
iλj π̃j/fπ̃

)
,

respectively. Here, the λj (j = 1, . . . , 8) are Gell-Mann matrices normalized,
so that Trλiλj = 1

2δ
ij .

Plugging the expression for the fields Φ, dL and dR into Eq. (2) and
expanding in terms of π and π̃, one obtains the effective Lagrangian for the
ordinary and CFL pions interacting to each other. Due to the interactions,
the original pion fields are not the mass eigenstates so that we have to
diagonalize the mass matrix, which is expressed as

M(π) =

(
1
f2

π

(
γ1d

2σ+λ3d
2σ2+A0mqσ

)
− 1
fπfπ̃

(
γ1d

2σ+λ3d
2σ2
)

− 1
fπfπ̃

(
γ1d

2σ+λ3d
2σ2
)

1
f2

π̃

(
γ1d

2σ+λ3d
2σ2+Γ1mqd

2
)) .(4)

Here, we are taking into account the non-zero quark mass effect mq, which
is supposed to be equal to all up, down and strange quarks. The eigenstates
of the mass matrix M(π) can be written as
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(
π1

π2

)
=
(

cosϑ sinϑ
− sinϑ cosϑ

)(
π
π̃

)
, (5)

with mixing angle ϑ. One can compute the pion masses mπ1 and mπ2 with
and without quark masses. For non-vanishing mq, one finds
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f2
π + f2

π̃

(
A0σ + Γ1d

2
)
, (6)

m2
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= m2
π2
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f2
π + f2
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(
f2
π̃

f2
π

A0σ +
f2
π

f2
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Γ1d
2

)
, (7)

with the mixing angle

tanϑ =
fπ̃
fπ

+
fπ
fπ̃

f2
πΓ1d

2 − f2
π̃A0σ(

f2
π + f2

π̃

)
(γ1d2σ + λ3d2σ2)

mq . (8)

Eq. (6) is a generalized form in dense QCD of the Gell-Mann–Oakes–Renner
(GOR) relation, connecting the masses of pseudoscalar bosons to the chiral
and diquark condensates. The Γ1 term, which originates from the effect
of the axial anomaly in the pion Lagrangian, shows the crucial role of the
axial anomaly, not only for the phase structure but also for the excitation
spectra in the intermediate density region. When the diquark condensate d
decreases as the density becomes low, Eq. (6) reduces to the standard GOR
relation f2

πm
2
π = A0mqσ. On the other hand, at asymptotically high density,

the chiral condensate σ is small and the axial anomaly is highly suppressed
as Γ1 ∼ µ(ΛQCD/µ)9(1/g)14 [13]. Then, the linear term in mq disappears
on the right side of Eq. (6) and the leading term becomes O(m2

q), with
m2
π1
∝ m2

qd
2. This result is consistent with observations given in [9, 12] at

asymptotically high density.

2.3. Meson condensation — CFLK0 condensate

Up to the previous subsections, we have only considered the cases with
massless quarks or quarks of equal mass. In reality, however, it is not the
case, i.e. the strange quark mass ms is never small and it is comparable with
typical values of the chemical potential in realized neutron stars. Thus it is
important to examine the effect of ms against the phase structure.

To this end, we classify the ms effects into two parts [14]. One is what
we call the direct effect, which means that it gives rise to some modifications
of the original GL free energy. The other is the indirect effect, which affects
the ansatz for the parametrization of order parameter fields.
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We put the quark mass matrix as M = diag(mu,md,ms), which trans-
forms under G as M → e−2iαAVLM V †R. Accordingly, the chiral field Φ is
modified from the previous case as Φ = diag(σu, σd, σs). On the other hand,
for the diquark field, we make the following ansatz

dL = −d†R = d

 1 0 0
0 cos(φ/2) i sin(φ/2)
0 i sin(φ/2) cos(φ/2)

 . (9)

When φ = 0, Eq. (9) reduces to the previous ansatz for the massless case. So
a new field φ corresponds to a new condensate by the effect of non-zero ms.
Since φ describes a relative phase between SU(3)L and SU(3)R rotations, we
call it a meson condensate. In the current case, the meson to condense is
neutral kaon K0.

Similarly to the previous subsections, one can construct the GL free
energy based on symmetries of QCD [14]. The most crucial point is that
with the above parameterizations, the Bedaque–Schafer term [15], which is
the onset of kaon chemical potential µK0 , is obtained. As the consequence,
in a certain GL parameter region, µK0 gets bigger than the kaon mass mK0

and then Bose–Einstein condensate (BEC) of neutral kaon occurs. Fig. 2
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Fig. 2. Ginzburg–Landau phase diagrams with strange quark mass and kaon con-
densation.
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shows the phase diagram in the GL parameter (α, a)-plane, corresponding
to four different choices of the parameter set (a0, µK0). The result shows
that the critical point vanishes for large quark chemical potential.

3. Astrophysical applications of dense QCD

In Sec. 2, we have shown theoretical aspects for the QCD phase tran-
sitions and the excited states at finite baryon density, based on a general
ground of the Ginzburg–Landau method. As was already explained in Sec. 1,
physics of dense matter is intimately connected to the observational conse-
quences of neutron stars. So far, the experimental effort to investigate prop-
erties of dense matter is still a bit far from providing us sufficient data. Also
the numerical lattice simulation of dense QCD suffers from the sign prob-
lem. Therefore, the application of our study for dense matter into physics of
neutron stars potentially constrain theoretical uncertainties. In this section,
let us see some recent developments for the observations and theoretical
considerations for them.

3.1. Mass-radius relationship of neutron star

Neutron star can be described by the balance between the gravitational
force which is attractive and the pressure of the matter inside the star which
is repulsive. Assuming spherical symmetry of the star, from the Einstein
equation of general relativity, we end up with the following equations to
determine the mass (M) and radius (R) of the star

dP (r)
dr

= −GM(r)ρ(r)
r2

(
1 +

P (r)
ρ(r)

)(
1 +

4πr3P (r)
M(r)

)(
1− 2GM(r)

r

)−1

,

dM(r)
dr

= 4πr2ρ(r) . (10)

This equation is called the Tolman–Oppenheimer–Volkov (TOV) equa-
tion [16]. Here, M(r) is the mass of the star up to a radius r < R and
P (r) and ρ(r) are the pressure and the energy density at r. To solve the
equations, one needs the relation between the pressure and the energy den-
sity. This is nothing but the equation of state for the matter inside the
star.

Recently, there was a report for the observation of the neutron star
mass [17], with which people were very excited. The observed mass is al-
most 2 MSUN, which should be compared with the standard neutron star
mass 1.4 MSUN. Moreover, the observation is quite accurate owing to the
use of the Shapiro delay. The authors of [17] have argued that this obser-
vation rules out almost all currently proposed hyperon or boson condensate
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EOSs. The quark matter can support a star this massive, only if the quarks
are strongly interacting and therefore not “free quarks”. Here, we show a
theoretical study for quark matter on this issue below [18].

In [18], quark matter EOS is parametrized as P (µ) = a4µ
4−a2µ

2−Beff .
For the massless and non-interacting quarks, a4 = 1 and a2 = 0. Interaction
of quarks and the resultant paring affects both a4 and a2, while the effect
of non-zero strange quark mass affects a2. The effective bag constant Beff is
fixed so as to provide nuclear to quark matter transition at 1.5 nsat.. Then,
the authors estimated the mass for various values of a4 and a2. As the con-
sequence, they found that a4 ≤ 0.6 and a2 ≤ 104 MeV2 is consistent with
the observed mass. This means that the interaction among quarks is fairly
strong and the pairing gap is not too small compared to strange quark mass.

In the analysis of [18], however, possible effects stemming from temper-
ature as well as magnetic field have not been taken into account. So it will
be interesting to seek how these effects come out into the current issue.

3.2. Cooling behavior of neutron star

Thermal history of neutron star provides us another important infor-
mation for the stellar structure. When a neutron star was born just after
the supernova explosion, temperature of the star is a few tens of MeV, but
afterwards it cools down via neutrino emissions for the first million years.
Then, the star is thermalized and the photon emission on the surface gets
dominant. The cooling behavior is described by the following equation

CV
dT (t)
dt

= −Lν − Lγ , (11)

where T (t) is the temperature as a function of time t, CV heat capacity and
Lν , Lγ luminosities of neutrino and photon, respectively. Once the stellar
structure and the interaction rates such as mean free path and emissivity of
neutrinos are given, one can draw the cooling curve.

Recently, there was a report for rapid cooling of the neutron star in
Cassiopeia A [19]. The authors have proposed that this is triggered by
neutron 3P2 superfluidity. They studied the issue based on the “minimal
cooling” paradigm, which means that the cooling of neutron star via neutrino
emissions can be dominated by the so-called modified URCA process and
nucleon superfluidity. This is still under investigation.

3.3. The r-mode instability of neutron star

The last interesting property of neutron star to introduce here is asso-
ciated with its rotation. In fact, the first neutron star was discovered as
a rapidly rotating object, namely, pulsar [20]. When the star rotates, the



2862 M. Tachibana

rotation accompanies some flow of matter inside the star. According to the
general relativity, such a matter flow causes gravitational wave (GW) radi-
ation. There are various rotational modes. Among them certain non-radial
oscillatory modes, in particular, the r(otational)-modes are known to be un-
stable against the GW radiation [21]. On the other hand, the rotational
frequency of neutron stars have been accurately measured. Thus if dissipa-
tive phenomena are not strong enough, the oscillations grow exponentially
and the star will keep slowing down until some mechanism can damp the
r-modes. Therefore, the systematic study of the r-modes is useful in con-
straining the stellar structure.

So far, some mechanisms have been taken into account for providing
enough dissipation to explain the observational data. The simplest solution
is to consider the effect of viscosities [22]. But here we show another mech-
anism, called the mutual friction [23]. The mutual friction is a friction force
between normal and superfluid components of matter, provided by the pres-
ence of vortices. It manifests in experiment as a certain dissipation present
in rotating superfluid state.

We start with considering the so-called Magnus force between superfluid
component and a vortex

~FM = κρs (~vs − ~vL)× ~̂z , (12)

where κ is a circulation, ρs superfluid density and ~vs, ~vL superfluid and vortex
velocities, respectively. On the other hand, there is a force produced by the
normal component as

~FN = −D(~vn − ~vL)−D′~̂z × (~vn − ~vL) (13)

with the coefficients D and D′ which are computed microscopically. Then,
the force valance condition for the vortex is given by ~FM + ~FN = 0 and then
the vortex velocity is obtained as ~vL = ~vs + α′(~vn − ~vs) + α~̂z × (~vn − ~vs).
Here, the coefficients α and α′ are called the Hall–Vinen parameters [23].
If a perturbation of the superfluid velocity δ~vL is introduced, there is no
more guarantee that two forces ~FM and ~FN are balanced. That is the origin
of the energy dissipation, i.e., (dE/dt)MF = δ ~F · δ~vL. In [24], the mutual
friction of CFL baryon superfluid has been estimated in terms of a rotational
(Nambu–Goldstone) mode around the vortex. This can be extended so as
to include the mode perpendicular to the vortex (the Higgs mode) [25].
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4. Summary

In this paper, we have emphasized an intimate connection between phys-
ics of dense matter and that of astrophysics. Dense hadronic and quark
matter can be described by QCD with finite chemical potential, but since
QCD is strongly coupled in density regime of our interest and the lattice
simulation does not work in the regime so far, one needs some effective field
theory approaches to describe QCD phase transitions and the phase dia-
gram. As such an example, we have present the Ginzburg–Landau analysis.
On the other hand, in order to comprehend physical properties of neutron
stars such as stellar structure, cooling behavior, origin of strong magnetic
field and stability for gravitational wave radiation, we have shown some ap-
plications of theoretical study for dense matter, i.e., equation of state (EOS),
neutrino interaction rates and the r-mode instability. In the future, much
more progress in both theoretical and observational/experimental directions
is expected.

M.T. would like to appreciate the hospitality of the organizers of the
Cracow School of Theoretical Physics, LI Course.
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