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The horizon hypothesis of quantum cosmology was put forward pre-
viously to justify the derivation of the Wheeler–DeWitt equation for the
wave function of the Universe Ψ in the mini-superspace, assuming the Fried-
mann line element ds2 = dt2 − a2(t)dx2, when the three-space dx2 is flat,
by imposing a cut-off on spatial integrals at the causal horizon ξ−1(t) ≡
{d [ln a(t)] /dt}−1. If the theory is defined by a Lagrangian L which includes
higher-derivative gravitational terms R2, the resulting Schrödinger equa-
tion contains a potential that is constant in the case of cosmic dust, and
after Wick rotation of the comoving time coordinate, t→ −iτ , the solution
for Ψ takes the form of a Boltzmann distribution, from which it is possible
to ascribe a finite temperature T ≡ λ/τ to the dust, where the parameter
λ subsumes the details of the cut-off, and which can be understood from
the Heisenberg time-energy indeterminacy principle ∆t∆E ∼ ~ applied to
the observable Universe. Recently, Cai et al. have shown that the appar-
ent horizon r̃a in Friedmann cosmology possesses thermal characteristics,
associated with a temperature T = 1/2πr̃a when measured by a Kodama
observer comoving with the horizon. This result thus vindicates the horizon
hypothesis, and leads to the exact value λ = 3π/2. The infra-red cut-off at
the apparent horizon applies to all quantum field theoretical phenomena,
and the inclusion of length scales that lie only inside the horizon is equiva-
lent to the inclusion only of length scales lying outside their Schwarzschild
radius, as conjectured by Cohen et al., following earlier speculation by
’t Hooft. Analogies with the theory of superfluidity are also discussed.
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1. Introduction

The classical solution to the spherically symmetric vacuum Einstein
equations for a source of mass M is the Schwarzschild metric, expressed
in coordinates (t̃, r, θ, φ) by the line element

ds2 =
(
1− 2Mr−1

)
dt̃ 2 −

(
1− 2Mr−1

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)
. (1)

Units are chosen such that c = ~ = kB = GN = 1. Next, let us transform to
the Vaidya coordinate system (t∗ ≡ t̃− r+ r∗, r, θ, φ), where r∗ ≡

∫
dr/(1−

2Mr−1) is the tortoise radial coordinate, the line element being

ds2 =
(
1− 2Mr−1

)
dt∗2 − 4Mr−1dt∗dr −

(
1 + 2Mr−1

)
dr2

−r2
(
dθ2 + sin2 θdφ2

)
. (2)

The application of quantum mechanics on the apparent horizon r = 2M ,
where all the metric components gij are now finite, including an additional
scalar matter field ζ, yields the Wheeler–DeWitt equation [1, 2] for the wave
function Ψ in the form of a Schrödinger equation, obtained by Tomimatsu [3]
(see also Refs. [4–6]).

From this equation, it is possible to derive the Hawking temperature [7]

TH = 1/(8πM) , (3)

after Euclideanization of the time coordinate, as described in Refs. [5,6].
Macroscopic quantum mechanics can also be applied to the whole Uni-

verse, yielding the Wheeler–DeWitt equation [8–13] for the cosmological
wave function Ψ . If the Lagrangian L defining the theory includes a contri-
bution from higher-derivative gravitational terms R2, this again takes the
form of a Schrödinger equation, in the mini-superspace (Friedmann space-
time) approximation. Expressly, starting from the ten-dimensional effective
action for the heterotic superstring theory of Gross et al. [14–16], let us
consider the reduced D ≡ (M + 1)-dimensional Lagrangian

L = −1
2κ
−2
D R+BN

(
R2 −RijRij

)
+ . . . . (4)

Here κ2D ≡ 8πGD is the D-dimensional gravitational coupling, GD being
the D-dimensional Newton constant, the coefficient of R2 is given by the
integral over the internal N ≡ (10−D)-dimensional space ḡµν ,

BN =
1

512
ζ(3)

Arα
′3

B2
r κ

2
D

∫
dNy
√
ḡR̄µνξoR̄

µνξo/dNy
√
ḡ , (5)
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ζ(3) = 1.202 is the Riemann zeta-function, α′ is the Regge slope parameter,
Ar and Br are moduli defined from the ten-metric as

ĝAB = diag
(
A−1r gij , Brḡµν

)
, (6)

g = det gij , ḡ = det ḡµν , Rij is the Ricci tensor and R the Ricci scalar.
Thus, we assume the Friedmann line element, which is expressible in the

alternative forms

ds2 = dt2 − a2(t)dx2 ≡ habdxadxb − r̃2dΩ2
D−2 , (7)

where t is comoving time and a(t) ≡ a0e
α(t) is the radius function of the

M -space dx2 of curvature K, hab = diag[1,−a2/(1−Kr2)], xa = (x0, x1) ≡
(t, r) and r̃ = ar. From the first of expressions (7), the canonical coor-
dinates are (α, ξ ≡ α̇), where ˙ ≡ d/dt, and Ψ satisfies the Schrödinger
equation (Eq. (78) of Ref. [8])

i
∂Ψ

∂t
≡ i ξ ∂Ψ

∂α
=

(
−AMa−M

∂2

∂ξ2
+ V(α, ξ) +Hm

)
Ψ , (8)

where
AM = [4M(3M − 1)BN ]−1 . (9)

The (densitized) potential, assuming the N -space to be Ricci-flat, is given
by

V(α, ξ) =

{
1
2κ
−2
D M(M − 1)

(
ξ2 −Ka−2

)
+BN

[
1
3M

3(M − 3)ξ4

+ 2KM(M − 1)
(
M2 − 5M + 2

)
ξ2a−2 −K2M(M − 1)3a−4

]}
aM (10)

and Hm is the matter Hamiltonian density.
Note that the potential (10) is positive semi-definite only if the M -space

is flat and of dimensionality no less than three, that is

K = 0 , M ≥ 3 . (11)

To lowest order in α′, we can relate the geometry to the matter semi-
classically through the Einstein equations. For a perfect-fluid source char-
acterized by energy density ρ and pressure p, linked through the adiabatic
index γ by the equation of state

p = (γ − 1)ρ , (12)
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the Friedmann and Raychaudhuri equations read

ξ2 =
2

M(M − 1)
κ2Dρ−

K

a2
(13)

and
ξ̇ = − 1

M − 1
γκ2Dρ+

K

a2
, (14)

respectively, the solution to which, when K = 0, is

a = a0 t
2/Mγ . (15)

For reasons that will become clear below, and have been discussed in
detail in Ref. [4], we are especially interested in the case when V(α, ξ) is
constant. By inspection of Eqs. (10), (13) and (15), we find that this condi-
tion is satisfied if, and only if,

M = 3 , γ = 1 , (16)

that is for dust in a flat three-dimensional space, where the contribution to
V(α, ξ) quartic in ξ vanishes, so that Hm = V and the pseudo-Hamiltonian
is

H̃ ≡ Hm + V = 2V . (17)

Ignoring the kinetic term in a−3∂2/∂ξ2, this enables us to rewrite Eq. (8)
in the standard form

i
∂ Ψ

∂ t
≈ H̃Ψ , (18)

which is Eq. (35) of Ref. [13] and can be integrated to yield

Ψ ' Ψ0 exp
(
−iH̃t

)
. (19)

After Euclideanization of the time via the Wick rotation

t→ −iτ , (20)

Eq. (19) assumes the form of a Boltzmann distribution,

Ψ ≈ Ψ0 exp
(
−H̃τ

)
, (21)

and as first noted by Bloch [17], τ can be reinterpreted as inverse temperature
— see also Feynman [18] (and Ref. [19]).
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2. Unitarity

It has long been known that a wave function obeying the Schrödinger
equation, which contains only a single time derivative ∂/∂t, evolves without
violation of unitarity, as discussed by von Neumann [20, 21], implying no
loss of information, and in the case of radiating black holes, constancy of
total entropy. Therefore, by analogy we expect this feature to manifest
itself in cosmology as well — that is, when V, and hence H̃, are constant,
the evolution should proceed isentropically.

From the discussion of Sec. 1, we see that this is exactly what happens,
for constancy of V requires γ = 1, corresponding to a dust Universe with zero
pressure, which expands without doing work against the boundary of a(t).
The total mass of the Universe also remains constant during the expansion
— in the present normalization of a, whereby the fundamental, or fiducial,
three-volume is set equal to unity,

V3 ≡
∫ √

−g d3x = 1 , (22)

we have Eq. (23) of Ref. [12],

MU = ρa3 . (23)

The first law of thermodynamics,

dU = TdS − pdV, (24)

then implies that the total entropy S remains constant.
In obtaining this result, we have to clarify the semi-classical approxima-

tion of Eq. (17). The derivation of the quantum-cosmological Schrödinger
equation (8) from the classical Hamiltonian constraint H = 0 proceeds by
quantization of the gravitational degrees of freedom (α, ξ) remaining in the
mini-superspace, via the operator replacements of the corresponding classi-
cal momenta,

πα → −i∂/∂α , πξ → −i∂/∂ξ , (25)

while the matter source is treated classically — that is the matter fields
(ζ, ψ,Ai, . . .) have not been quantized.

The justification for this seeming disparity consists simply in the fact that
we are dealing with the whole Universe, which is a macroscopic quantum-
mechanical system, characterized by a very large quantum number, and it
is therefore self-consistent not to quantize the matter.

It is interesting to contrast this cosmological case with that of the
Schwarzschild black hole [3–6], which involves quantization on the appar-
ent horizon of the dynamical variables, both gravitational and matter, the
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background space-time being otherwise treated as classical. In the theory
of black-hole evaporation [7], it is self-consistent, in the fixed background
geometry created by a macroscopic black hole of mass Mbh � MP, instead
to quantize the matter, which is now treated microscopically. The back re-
action of the emitted radiation on the geometry can be taken into account
by quantizing not only the matter degrees of freedom, but also the resultant
motion of the apparent horizon.

Both situations exemplify the Born–Oppenheimer [22] approximation, in
which moving horizons or test particles are treated quantum mechanically as
microscopic in a classical background space-time, in the former cosmological
instance because the mass of the whole Universe is a macroscopic quantity,
in the sense that MU � MP, and in the latter because the black-hole mass
is macroscopic.

3. The horizon hypothesis

The description of a generic four-dimensional gravitational theory in
terms of the one-parameter mini-superspace or Friedmann space-time (7)
is in the first instance a statement concerning the symmetry of the metric
gij(x

k), which is now expressible through one function a(t), depending only
upon the comoving time coordinate t. When this is possible, the three spa-
tial coordinates xα(α = 1, 2, 3) become redundant and the four-action S4
can be converted into a one-action S as

S4 =

∫
d4xL4

(
xi
)
→ S = V3

∫
dtL(t) , (26)

where V3 is defined by Eq. (22).
Classically we do not require the absolute magnitude of the action, the

equation of motion following in the standard way by variation of S4 with
respect to gij or S with respect to α. In quantum theory, on the other
hand, the magnitude of the action determines the precise expressions for the
operator replacements of the canonical momenta πn by the derivatives of
the canonical coordinates −i∂/∂qn, assuming the wave function to be of the
form

Ψ ≈ Ψ0 exp (iS) . (27)

The fundamental three-volume (22) is defined from the Friedmann
metric (7) as

V3 = 4π

r∫
0

r2dr√
1−Kr2

=


2π2

4
3πr

3

2π
(
r
√

1 + r2 − sinh−1 r
) for K =


1

0

−1 .

(28)
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Strictly speaking, V3 is only finite for a closed three-space, when K = 1 and
V3 = 2π2. Here, however, we assume a flat three-space, in accordance with
the quantum-theoretical argument leading to Eqs. (11), and also from the
analysis of recent observations of the anisotropy of the cosmic microwave
background radiation on angular scales & 10′ by the WMAP satellite [23]
— see Ref. [24] and references therein. Therefore, we have argued [12] that a
cut-off should be imposed upon the integral (28) on the grounds of causality,
which makes it possible to set V3 = 1 in the case K = 0, this being the
cosmological horizon hypothesis, discussed in further detail in Ref. [13].

Let us emphasize that the radius function a(t) is a priori a completely
free parameter, devoid of intrinsic geometrical significance. We can therefore
absorb the numerical factor of (4π/3)1/3 into the definition of a(t), so that
V3 = 1 and the volume of the Universe at time t is V (t) = V3a

3(t) = a3(t),
which leads to Eq. (23). To be more precise, we should include a numerical
form factor λ in the expression for the one-action,

S = λ

∫
dtL(t) , (29)

whilst the mass of the Universe and the pseudo-Hamiltonian density are
given by the unmodified formulae

MU = ρa3 , H̃ = 2MU = 2ρa3 . (30)

The parameter λ takes the cut-off into account more accurately, the value
unity deriving from the step-function approximation of Refs. [11–13].

From recent developments, λ can now be calculated as follows. Cai et al.
[25, 26] have shown that the Friedmann space-time exhibits thermal behav-
iour on the apparent horizon r̃a, defined by the equation (∇r̃)2 = 0, the
solution to which is

r̃a = 1/
√
ξ2 +K/a2 . (31)

Referred to the conserved-energy formalism of Kodama [27], the local tem-
perature as measured by an observer comoving with the apparent horizon is

T = 1/2πr̃a . (32)

The validity of formula (32) has been confirmed for fermionic particles by
Li et al. [28].

In the maximally symmetric de Sitter space, setting K = 0, ξ =√
Λ/3 = constant, we have

T = ξ/2π =
√
Λ/12π2 , (33)

which is the formula obtained by Gibbons and Hawking [29, 30].
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Returning to the Schrödinger equation (18) and the Ansatz (29), we note
that the Friedmann equation is the same for all three curvatures K = 0, ±1
in the limit a → ∞, since then the term K/a2 → 0. Therefore, we can use
expression (28) for the closed space K = 1 to deduce that

λ = V3(K = 1)/V3(K = 0, r = 1) = 3π/2 . (34)

After Euclideanization of the time coordinate t via the Wick rotation (20),
this results in the temperature

T = 1/(2λ|t|) = 1/(2πr̃a) , (35)

in exact agreement with Eq. (32), for the flat Universe, and thus vindicating
the quantization scheme used to derive Eq. (18) and the horizon hypothesis.

Note, in the denominator of the first of expressions (35), that the factor
of 2 is due to the coefficient 2 in the second of Eqs. (30), while the factor of λ
derives from the operator replacement for the pseudo-Hamiltonian density
resulting from the modified Eq. (29) for the one-action,

H(t)→ i

λ

∂

∂ t
. (36)

4. Particle creation in the Friedmann space-time

The calculation leading to Eq. (35) contains a topological element, which
is reminiscent of the analysis by Mamaev et al. [31] of boson-pair production
in the Friedmann Universe (7) with open, closed and flat spatial sections.
The method of the Bogolyubov [32] transformation relating creation and
annihilation operators was applied to obtain expressions for the energy den-
sity ρ and pressure p of created particles in the form of spectral integrals.
Massless bosons are created with the radiative equation of state p = ρ/3.
The most interesting case is that of the closed universe with K = 1, in which
such massless particles appear in a vacuum background as a thermal Planck
distribution characterized by the temperature

T = 1/(2πa) . (37)

This effect is attributed to the non-Euclidean topology S3 of the spatial
section, which changes the continuous spectrum of energies and momenta
occurring when K = 0 into a discrete spectrum when K = 1.

Now the background dynamics of the space-time (7) is determined by
the Friedmann and Raychaudhuri equations (13) and (14), respectively, for
a perfect fluid. In three spatial dimensions, the background gravitational
vacuum state is defined by
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ξ2 = ξ̇ = 0 , (38)

and we find from Eq. (31) that the apparent horizon is only real and finite
for K = 1, when r̃a = a and Eq. (32) reduces precisely to Eq. (37).

There has to be some background matter to curve the three-space, and we
immediately see that it has to satisfy the equation of state γ = 2/3 describ-
ing a universe dominated by stringy matter, for which the Nordström [33]
energy-density (see also Tolman [34]) vanishes,

ρN ≡ (3γ − 2)ρ = 0 . (39)

The fundamental nature of this vacuum solution was discussed in Ref. [35].
When K = 0,−1, on the other hand, it was found in Ref. [31] that

no radiation with a thermal spectrum is created. This result can now be
understood from the alternative perspective of the apparent horizon, which
from Eq. (31) becomes infinite if K = 0 or imaginary if K = −1, implying
from Eq. (32) a temperature which is zero or imaginary, respectively.

From the standpoint of the Schrödinger equation (18), we require a finite
pseudo-Hamiltonian in order to be able to define a finite temperature, which
again limits consideration to the case K = 1, in the vacuum background
defined by Eqs. (38).

5. Discussion

We have emphasised in Ref. [13] that the horizon hypothesis, according
to which the action integral does not extend beyond the causal horizon,
applies not only to quantum cosmology, but to all quantum field theoretical
phenomena, Schwinger [36] having shown that such an infra-red cut-off in
quantum electrodynamics does not appear in expressions for quantities that
are observable experimentally.

More recently, this idea has been put forward from a different point of
view by Cohen et al. [37], who argued that there is an infra-red cut-off in
quantum field theory which excludes all states that lie within their Schwarz-
schild radius. Applying this argument to the spatially flat Friedmann Uni-
verse (7), we first note that the mass contained within a spherical region of
physical radius r̃ is

M(r̃) = 4
3πρr̃

3 = 1
2ξ

2r̃ 3 . (40)

Therefore, a point at radius r̃ lying outside its Schwarzschild radius rS ≡
2M(r̃) must lie inside its apparent horizon, for from Eq. (40) we have the
inequalities

ξ−1 ≥ r̃ ≥ 2M(r̃) . (41)
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Thus, we see that the proposed infra-red cut-off occurs at the appar-
ent horizon, which, referred back to the metric (7) expressed in coordinates
(t, r̃, θ, φ), is the point where the metric signature changes from
(+−−−) to (−−−−).

The idea of imposing such an infra-red cut-off in fact originates with
the researches of ’t Hooft [38], who realized some time ago, even before the
formulation of the holographic analogy [39, 40], reviewed in Ref. [41], that in
the absence of a cut-off quantum fields would make a divergent contribution
to the energy and entropy of a black hole in the vicinity of the horizon. To
deal with this phenomenon, he suggested that the wave functions all vanish
within some fixed, but unspecified, distance h from the horizon,

φ(r̃) = 0 for r̃ ≤ 2M + h . (42)

This is in agreement with the hypotheses of both Refs. [13] and [37], if we
set h = 0.

It remains to understand why dust — which in classical thermodynam-
ics is characterized by vanishing temperature — displays a finite temper-
ature upon the application of quantum theory. As we have discussed pre-
viously [42], analogies with the fundamental aspects of superfluidity are
sometimes useful in quantum cosmology. Superfluidity in helium-4 was first
attributed to zero-point fluctuations by Bennewitz and Simon [43, 44] and
London [45], who emphasized that the helium atoms cannot be localized on
a spatial lattice, due to the large zero-point energy.

Subsequently, London [46] explained this phenomenon in terms of Bose–
Einstein condensation and the Heisenberg [47] indeterminacy principle, at
the macroscopic level. If the indeterminacies in the magnitude of the position
x and momentum p of a helium atom in the condensate are ∆x and ∆p,
respectively, we have the configurational statement that

∆x∆p ∼ ~ . (43)

In dynamical terms, the kinetic and potential energies of an atom of mass m
and interaction constant k are (∆p)2/2m and k(∆x)2/2, respectively, in the
ground state. For light particles and weak interactions, it therefore follows
that the total energy is minimized by making ∆x as large and ∆p as small
as possible. If the system is of infinite extent, we can set ∆x = ∞ and
∆p ≡ m∆v = 0, which can be interpreted to mean that the particles are all
indistinguishable, and hence all have the same velocity, as originally argued
by Einstein [48]. For this ideal case, long-range order becomes an exact
symmetry.
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In practice, of course, the container of helium is of finite, but macro-
scopic, dimension l. Therefore, by setting ∆x = l and ∆p ∼ ~/l, we still
ensure indistinguishability of the particles, which consequently persist in a
fluid state down to the absolute zero of temperature.

Turning now to cosmology, let us consider the Friedmann space-time (7)
generated by dust, which exhibits a number of interesting parallels to the
theory of superfluidity. On the one hand, below the critical point the viscos-
ity of liquid helium-4 at zero pressure tends to zero as the temperature tends
to zero. In the perfect-fluid idealization in cosmology, on the other hand,
the Universe is modelled by a fluid, which, in the dust approximation, has
zero pressure and temperature and is inviscid by definition — it is assumed
to consist for the most part of particles of dark matter, which interact with
one another only via the weak gravitational force.

Again, if we regard the phenomenon of superfluidity as the result of a
phase transition from the normal to the superfluid state, as the temperature
is lowered, we can ascribe an order parameter to the process, introduced
by Landau [49, 50], in terms of which the free energy is defined as a power
series, and which is assumed to be independent of the spatial coordinates.
Analogously, the free-energy density in Friedmann cosmology is defined by
the Hubble parameter ξ, which thus plays the rôle of order parameter, and
which vanishes in Minkowski space. In this case, it is important to note that
long-range order is imposed as a symmetry at the outset.

Further, the theory of superfluidity and the cosmologicalWheeler–DeWitt
equation are both examples of macroscopic quantum mechanics. It was Lan-
dau [51] who analysed the quantum superfluid as a collective phenomenon,
using a single wave function to describe the ensemble of helium atoms. While
the cosmological wave function of the Universe Ψ refers to the whole cos-
mos by initial construction, although this is not actually a Bose–Einstein
condensate.

Inspired by these analogies, we are led to apply the indeterminacy prin-
ciple to cosmology in the same fashion. In place of the container of liquid
helium of finite dimension, we are now dealing with the entire content of
the Universe within the apparent horizon. For the stationary background
analysed in Ref. [31], there is a spatial indeterminacy over the dimension of
the Universe, which is only finite in the closed case. The causal nature of
the boundary allows us to convert length into time, as a result of which the
indeterminacy in energy is ∆E ∼ ~/∆x ∼ ~/a. If we regard these energy
fluctuations as thermal in origin, we obtain the estimate for the correspond-
ing temperature

T ≈ ~/a , (44)



206 M.D. Pollock

in agreement with Eq. (37) up to a factor ∼ 2π. By contrast, the open
and flat cases yield ∆x = ∞, and consequently T = 0, exactly as found in
Ref. [31].

In the general time-dependent Universe, there is a finite apparent hori-
zon r̃a even for the open or flat spatial topology, given by Eq. (31), and
accordingly now a finite temperature

T ≈ ~/r̃a , (45)

in approximate agreement with Eq. (32), which can therefore also be under-
stood from this point of view.

This paper was written at the University of Cambridge, Cambridge, Eng-
land.
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