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A simple smooth chaotic system, which showed a 3-layer sphere chaotic
attractor, is investigated. It is found that this chaotic attractor is a limit
cycle instead of chaotic attractor. This situation was caused by the simu-
lation time which is too short to reach its real status. It also shows that it
is not reliable to construct chaotic system based only on the Šhilnikov cri-
terion without finding the exact homoclinic orbits. Then a chaotic system
with the real sphere shape is proposed. This proposed system is inves-
tigated through numerical simulations and analyses including time phase
portraits, Lyapunov exponents, bifurcation diagrams and Poincaré section.

DOI:10.5506/APhysPolB.42.235
PACS numbers: 05.45.–a

1. Introduction

Recently, it has been found that chaos is useful in many application
fields [1,2,3,4], and so on. Creating a chaotic system with a more complicated
topological structure such as a multi-scroll becomes, therefore, a desirable
task and sometimes a key issue for many engineering applications. Today
it has become easier to purposefully construct a new chaotic system, based
on many mature ideas and successful techniques [5]. For the discrete case,
for example, Chen et al. have developed an explicit analytical approach to
chaotify an originally non-chaotic system via feedback anti-control [6, 11].
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For the continuous case, however, intentionally constructing a new chaot-
ic system, in a simple form reincarnating the well-known Lorenz and Rössler
systems [12, 13] with only one or two simple quadratic terms in a three-
dimensional smooth polynomial system, is still a challenging task [5]. For a
generic three-dimensional smooth quadratic autonomous system, Sprott [14]
found, by exhaustive computer searching, about 20 simple chaotic systems
with no more than three equilibrium points [5]. For the continuous systems,
most of them reach chaos through the way of period-doubling bifurcation
such as those systems in [14] the Lorenz system, Rössler system, Chen sys-
tem [7], and so on. Zhou and Chen constructed several chaotic systems
which were based on the Šhilnikov criterion [5, 15, 8]. Among these chaotic
systems, Zhou and Chen constructed a lower-dimensional chaotic system [5],
which has a simple algebraic structure with a complex attractor structure.
The appearance of this chaotic attractor, which shows sphere form, is differ-
ent from the other existing chaotic systems which show one scroll [15], two
scrolls [7, 12, 10] or multiple scrolls [9, 16, 17]. However, the chaotic system
in [5] is a transient chaotic system and it is indeed a limit cycle.

In this paper, we firstly analyze the “chaotic system” with a 3-layer at-
tractor [5] and find it is in fact limit cycle. Secondly, a real chaotic system
with sphere shape is proposed and analyzed. It is analyzed through phase
portraits, Lyapunov exponents, bifurcation diagrams and Poincaré sections.

2. “Chaotic system” with 3-layer attractor

Zhou and Chen constructed a lower-dimensional chaotic system in [5]
which was based on the Šhilnikov criterion [5, 8]. This system has four
unstable equilibrium points and can display a 3-layer attractor [5]. The
system is described as

ẋ = a1x− a2y + a3z ,

ẏ = −dxz + b ,

ż = c1xy + c2yz + c3z + c , (1)

where ai 6= 0, ci 6= 0 (1 ≤ i ≤ 3), d 6= 0, b 6= 0, c 6= 0 are all real
parameters. When the parameters make the system meet the Šhilnikov
criterion, system (1) has four equilibrium points [5]. In references [5, 8]
it is shown that the system displays a typical 3 scrolls (or layers) chaotic
attractor when a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6,
c3 = 13.13, d = 1.6, b = 0.161 and c = 3.5031. If the simulation time
t = 130 s and the initial condition is (x0, y0, z0) = (−0.04,−15.8,−1.4), the
3-D phase portrait is shown in Fig. 1. There are three layers in this diagram.
The outermost sphere is the first layer which is red on the web version of this
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article (please refer to the web version of this article for the interpretation of
colors in this article), the middle sphere is the second layer which is black,
and the innermost sphere is the third layer which is blue. If we pay attention
to the inner part of Fig. 1, it can be found that the order of different colors
are reversed; that is, the first layer is red, the second layer is black and the
last one is blue if it is seen from the inner to the outside. Therefore, there
is a trend of shrinking for the system (1).
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Fig. 1. A typical 3-layer “chaotic attractor” of the system with a1 = −4.1, a2 = 1.2,
a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13 and d = 1.6.

What will happen if the simulation time is longer than 130 s? If the
simulation time is set t = 380 s, the phase diagram is shown in Fig. 2 where
the phase diagram is not drawn from 0 s to 130 s. As can be seen from Fig. 2,
there are six layers. The colors of them are red, black, blue, green, yellow
and magenta, respectively, from the outside to the inner one which means
there is a trend of shrinking. According to the analysis, the diagram maybe
shrink to a curve if the simulation time is long enough. This hypothesis
is easy to be proved using the portrait diagram without transient states if
the simulation time is set to be longer. If simulation time t = 1500 s, the
solutions of system (1) will reach a limit cycle as shown in Fig. 3.

These numerical evidences reveal that system (1) does not show chaotic
dynamics, which is different from the result in [5], when with a1 = −4.1,
a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13 and d = 1.6.

Lyapunov exponents are another important numerical method to prove
whether one nonlinear system is chaotic or not. If the Wolf algorithm [18]
is used to calculate the Lyapunov exponents, the simulation time is set as
15000 s and the sampling time-step is 0.0001 s, the Lyapunov exponents
of system (1) are λ1 = 0, λ2 = −0.0138 and λ3 = −0.0141, which mean
the final states are periodic orbit, when a1 = −4.1, a2 = 1.2, a3 = 13.45,
c1 = 2.76, c2 = 0.6, c3 = 13.13 and d = 1.6. For different parameter values,
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Fig. 2. Phase portrait of the system (1) with a1 = −4.1, a2 = 1.2, a3 = 13.45,
c1 = 2.76, c2 = 0.6, c3 = 13.13 and d = 1.6 if the simulation time is from 130 s to
380 s.
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Fig. 3. Final states of the system (1) with a1 = −4.1, a2 = 1.2, a3 = 13.45,
c1 = 2.76, c2 = 0.6, c3 = 13.13 and d = 1.6.

the similar results can be obtained which are different from the results in [5]
such as some phase portraits in Fig. 2 of Ref. [5]. The numerical evidences
show that it is not reliable to construct chaotic system only based on the
Šhilnikov criterion. Other numerical methods should also be used together
to prove the nonlinear systems show chaotic dynamics.

There is a logical question about how to construct a chaotic attractor
which can show sphere shape. According to the analysis of phase portrait of
system (1), breaking the trend of shrinking and keeping the chaotic dynamics
can make the system (1) show sphere shape. Using this idea, a new system
is proposed in the following section.
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3. A 3-D spherical chaotic attractor

A simple method to break the trend of shrinking is adding small pertur-
bance to the first or the third equation of system (1). Here, a sign function
is added to the first equation of system (1), that is

ẋ = a1x− a2y + a3z + 2sign(sin y) ,
ẏ = −dxz + b ,

ż = c1xy + c2yz + c3z + c . (2)

Here sign(·) is the sign function. The sign functions have been used in [19]
to produce sphere chaotic attractors. However, the spherical attractors were
proposed in the polar coordinate and then they were transferred to the space
(x, y, z). Moreover, two sign functions were used in [19] and one sign function
is used in the proposed system. The analytical methods of [19] cannot be
directly used in the proposed system as the spherical attractors of [19] were
proposed and analyzed using the polar coordinate.

When a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13,
b = 0.161, c = 3.5031, d = 1.6, we can get one equilibrium for system (2),
that is, (xe, ye, ze) = (0.7217,−2.5698, 0.1394). The Jacobian matrix corre-
sponding to (xe, ye, ze) is

X =

 a1 −a2 a3

−dze 0 −dxe

c1ye c1xe + c2ze c2ye + c3

 . (3)

It can be found that the Jacobian system evaluated at the only one equi-
librium point has three roots, one negative real root and a conjugate pair
of complex roots with positive real parts when a1 = −4.1, a2 = 1.2, a3 =
13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031 and d = 1.6,
which means it is possible that there is a homoclinic orbit. It would be
better to use other numerical methods to prove this nonlinear system shows
chaotic dynamics as it is difficult to find the sensitive homoclinic orbit.

When a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13,
b = 0.161, c = 3.5031, d = 1.6, the initial condition is (0.1, 0.1, 0.1), the
simulation time is 1500 s and only the data of the last 100 s is used, the 3-D
phase portrait is shown in Fig. 4. As can be seen from Fig. 4, this attractor
shows sphere shape. However, the sign function is not a smooth function.

If the sign function is replaced by a hyperbolic tangent function, this
system will be a smooth system and will show the similar dynamics. Fig. 5
shows the phase portrait of w = w(sin y) = 1−e−200 sin y/1+e−200 sin y when
−1 ≤ sin y ≤ y. As can be seen from Fig. 5, w function can closely approach
the sign function. In this paper, the 64-bit double-precision floating-point
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Fig. 4. Phase portrait of the system (2) with a1 = −4.1, a2 = 1.2, a3 = 13.45,
c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031 and d = 1.6.

number is used in Matlab and Visual C++ to do numerical computation.
It should be noted that 1− e−200 sin y/1 + e−200 sin y will be 1 (or −1) when
sin y approaches 1 (or −1). For example, the numerator is 1 − e−200 when
sin y is 1. However, e−200 is approximately equal to 10−85 and the whole
numerator is 1 − 10−85, that is 0.99999 . . . (85 times “9” followed by “0”).
The mantysa must contain 85 decimal digits to be distinguished from the
value one. The similar is true for the denominator. Hence, the effect of sin y
terms will not be visible and w function is equal to the sign function when
sin y approaches 1 (or −1), as the mantysa accuracy of the compiler is only
16 decimal digits (53 bits).
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Fig. 5. Phase portrait on sin y–w plane.
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To analyze the complicated dynamics of the new system, a linear term
ex is added to the second equation of the system (2). Then, the new system
is proposed as

ẋ = a1x− a2y + a3z + 2
(

1− e−200 sin y

1 + e−200 sin y

)
,

ẏ = −dxz + b+ ex,

ż = c1xy + c2yz + c3z + c . (4)

When a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13,
b = 0.161, c = 3.5031, d = 1.6; the initial condition is (0.1, 0.1, 0.1), the
simulation time is 600 s, the 3-D phase portrait is shown in Fig. 6. In
this paper, the initial conditions are (0.1, 0.1, 0.1) if they are not specifically
given. With these parameters, system (4) is chaotic and the corresponding
Lyapunov exponents are (0.041, 0,−0.117). As can be seen from Fig. 6, the
orbit starts from the initial conditions and then reaches the sphere chaotic
attractor.
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Fig. 6. Sphere chaotic attractor with the transient part, with a1 = −4.1, a2 = 1.2,
a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031, d = 1.6 and
e = 0.

When discarding the transient part of the phase diagram, it would be
clear to find the sphere shape of the chaotic attractor of the system (4).
The projections of phase portrait on x–y, x–z, and y–z plane are shown
in Fig. 7 (a), Fig. 7 (b) and Fig. 7 (c), respectively, and the 3-D chaotic
attractor is shown in Fig. 7 (d). If the simulation time is long enough, the
chaotic attractor will form a close sphere.
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Fig. 7. Sphere chaotic attractor without the transient part, with a1 = −4.1, a2 =
1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031, d = 1.6
and e = 0. (a) Projection on the x–y plane; (b) Projection on the x–z plane;
(c) Projection on the y–z plane; (d) 3-D view in the x–y–z space.

3.1. Bifurcation analysis with respect to parameter e

Fig. 8 shows the bifurcation diagram of the state variable x. In Fig. 8,
the variable parameter is e, varied from −6 to 5. Generally, there exist two
divisions in the parameter region of e, that is, sink and chaotic regions.

Fig. 9 shows the Lyapunov exponent spectra, which directly corresponds
to the bifurcation diagram shown in Fig. 8. The Lyapunov exponent spectra
also prove that there exist two divisions in the parameter region of e, that
is, sink and chaotic regions. It can be observed that the system is chaotic
in the region of −5.6 ≤ e ≤ 0.3.
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Fig. 8. The bifurcation diagram of the system (4) with respect to e, and with
a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161,
c = 3.5031, and d = 1.6.
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Fig. 9. The Lyapunov exponent spectra of the system (4) with respect to e, and
with a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161,
c = 3.5031 and d = 1.6.

As can be seen from Fig. 8 and Fig. 9, there is no region which shows
cycle when a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13,
b = 0.161, c = 3.5031 and d = 1.6. What will happen if other parameters
are changed?
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If the parameter e is fixed as 0 and the parameter a2 is varied, Fig. 10
shows the bifurcation diagram of the state variable x with respect to a2.
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Fig. 10. The bifurcation diagram of the system (4) with respect to a2, and with
a1 = −4.1, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031,
d = 1.6 and e = 0.

Fig. 11 shows the Lyapunov exponent spectra, which directly corresponds
to the bifurcation diagram shown in Fig. 10.
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Fig. 11. The Lyapunov exponent spectra of the system (4) with respect to a2, and
with a1 = −4.1, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031,
d = 1.6 and e = 0.
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From Fig. 10 and Fig. 11, it can be observed that there are periodic
orbits in the regions of −0.5 ≤ a2 ≤ 0.7 and 2 ≤ a2 ≤ 2.1. When a1 = −4.1,
a2 = 0, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031,
d = 1.6 and e = 0, the periodic orbit is shown in Fig. 12. Moreover, there is
a bifurcation point at neighborhood of a2 = −0.5.
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Fig. 12. Periodic orbit of system (4) when a1 = −4.1, a2 = 0, a3 = 13.45, c1 = 2.76,
c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031, d = 1.6 and e = 0.

3.2. Poincaré section of the spherical chaotic attractor

To show graphically what happens, the Poincaré section is used. When
a1 = −4.1, a2 = 1.2, a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161,
c = 3.5031, d = 1.6 and e = 0, one may take x = 0, y = −15 and z = 0 as
crossing planes, respectively. Fig. 13 shows the Poincaré mapping on several
sections with circle shape of the attractors visualized. Moreover, there is
finite thickness for these circles. Symbols “·” (red on-line) are determined
by positively crossing Poincaré sections and symbols “+” (blue) are deter-
mined by negatively crossing Poincaré sections. As can be seen from Fig. 13,
the shape of the attractor of system (4) is a spherical surface and there is
connection between two poles that is shown by a point (red) in the center
of Fig. 13 (b). If using different value of the system parameters, the point
of Fig. 13 (b) might be a circle and the chaotic attractor would be “fractal
torus”. The “fractal torus” attractor is very interesting because it exhibits a
structure entirely different from attractors such as the Rössler and Lorenz
attractors. Rather than consisting of separate, “flat” sheets, this kind of at-
tractor typically consists of a “slow” and a “fast” manifold, shaped like a fat
doughnut, with the slow dynamics being confined to a very skinny tube on
the inside of the doughnut and the fast, oscillatory dynamics taking place
on the outside of the doughnut. Numerical experiments with Poincare sec-
tion allow us to conclude that the system (7) shows a 3-D spherical chaotic
attractor, which is also a “fractal torus”.
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Fig. 13. Four-wing chaotic attractor Poincaré sections: with a1 = −4.1, a2 = 1.2,
a3 = 13.45, c1 = 2.76, c2 = 0.6, c3 = 13.13, b = 0.161, c = 3.5031, d = 1.6 and
e = 0. (a) Poincaré map on the crossing-section x = 0; (b) Poincaré map on the
crossing-section y = −15; (c) Poincaré map on the crossing-section z = 0.
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4. Conclusion

A 3-layer sphere chaotic attractor was analyzed. It was found that it
is limit a cycle instead of chaotic attractor and that is caused by the simu-
lation time. Moreover, it is shown that the exact homoclinic orbits should
also be found when we construct a chaotic system based on the Šhilnikov
criterion. Otherwise, other numerical methods should be used together to
prove a nonlinear system shows chaotic dynamics. With the analysis, a
chaotic system with the real sphere shape was proposed. This system was
investigated through numerical simulations and analyses, which showed the
proposed system is a real smooth sphere chaotic system.
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