
Vol. 42 (2011) ACTA PHYSICA POLONICA B No 2

LATE-TIME TAILS OF
SELF-GRAVITATING SKYRMIONS

Stanisław Zając

The H. Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences

Radzikowskiego 152, 31-342 Kraków, Poland

(Received December 17, 2010)

We consider the long-time behaviour of spherically symmetric solutions
in the Einstein–Skyrme model. Using nonlinear perturbation analysis we
obtain the leading order estimation of the tail in the topologically trivial
sector (B = 0) of the model. We show that solutions starting from small
compactly supported initial data decay as t−4 at future timelike infinity and
as u−2 at future null infinity. We also verified that long-time behaviour for
the tail in Einstein–Skyrme model is exactly the same as it was obtained
for wave maps.
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1. Introduction

This paper concerns the late-time asymptotic behaviour of a spherically
symmetric self-gravitating Einstein–Skyrme (ES) model. It is an extension
of the paper [2] where we studied quasinormal modes in intermediate asymp-
totics. It is also an extension of work done in [4] where the expression for
the tail in flat space was obtained. The results of this paper are closely
connected to the results of paper [5] where the evolution of wave maps was
studied. As we remarked in paper [2], in gravitating Skyrme model the lin-
ear perturbation method predicts power-law index γ = 5 for the tail. This
estimation is in clear conflict with early numerical results for the tails in
ES [1] which were later confirmed by the results of paper [2]. To explain
this disagreement we have studied the expression for the tail in a gravitat-
ing wave maps model, for details see paper [5], where we expected similar
long-time asymptotics as for the Skyrme model. In the current paper direct
calculations in gravitating Skyrme model are performed.
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In the self-gravitating Skyrme model the most interesting problem is
certainly the description of the relaxation to the static Skyrmion. Unfortu-
nately, due to the lack of analytic formulae describing static Skyrme soliton,
the description of this problem is very tedious. To avoid these difficulties
we follow in the same way as was done by Bizoń et al. [4] so that we study
the relaxation to the vacuum in the topologically trivial B = 0 sector. To
estimate the parameters of the tail we apply perturbation techniques elab-
orated in [6, 7, 8, 9]. Using these techniques we will demonstrate that the
third-order expression for the tail agrees perfectly with numerical results for
small initial data. The plan of this paper is as follows. In Section 2 we
remind the reader the field equations of the model and shortly demonstrate
the iterative scheme. We present the difference between Einstein–Skyrme
model and wave maps model which was analysed in paper [5] for ` = 1.
In the last section we demonstrate the numerical evidence confirming our
analytical estimations for the tails.

2. Theoretical background

We consider the Einstein–Skyrme model with dynamics given by the
Lagrangian [10]

L=
f2

4
Tr
(
∇aU∇aU−1

)
+

1
32e2

Tr
[
(∇aU)U−1, (∇bU)U−1

]2− 1
16πG

R , (1)

where∇a is the covariant derivative with respect to the space-time metric, G
is gravitational constant and R is a scalar of curvature. We assume spherical
symmetry and parametrize the metric as follows

ds2 = −e−2δ(r,t)N(r, t)dt2 +N−1(r, t)dr2 + r2dΩ2 , (2)

where dΩ2 is a metric on the unit 2-sphere. Applying the standard hedgehog
ansatz U = exp(i−→σ · r̂F (r, t)), where −→σ is the vector of Pauli matrices and
r̂ — unit radial vector, we obtain the following set of ES equations

ṁ = αe−δN2PF ′ , (3)

m′ =
α

2

(
2 sin2 F +

sin4 F

r2
+ uN

(
P 2

u2
+ F ′2

))
, (4)

δ′ = −αu
r

(
P 2

u2
+ F ′2

)
, (5)

Ṗ =
(
e−δNuF ′

)′
+ sin(2F )e−δ

(
N

(
P 2

u2
− F ′2

)
− sin2 F

r2
− 1
)
. (6)

Here P and u are auxiliary variables defined as: P = ueδN−1Ḟ and u =
r2 + 2 sin2 F , m(t, r) is the mass function defined as m(t, r) = r(1−N)

2 and
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α = 4πGf2 is dimensionless coupling constant. The expression for the
tail for α = 0 (flat space) was obtained in paper [4]; here we consider the
gravitating case of α > 0.

To obtain the estimation of the tail we study the evolution of the system
described by (3)–(6) starting with small, smooth and compactly supported
initial data

F (0, r) = εf(r) , Ḟ (0, r) = εg(r) . (7)
Following [6, 7, 8, 9] we postulate perturbation expansion

m(t, r) = m0(t, r) + εm1(t, r) + ε2m2(t, r) + . . . , (8)
δ(t, r) = δ0(t, r) + εδ1(t, r) + ε2δ2(t, r) + . . . , (9)
F (t, r) = F0(t, r) + εF1(t, r) + ε2F2(t, r) + ε3F3(t, r) + . . . . (10)

Collecting the terms with the same power of ε we obtain a set of equations
for the expansion functions which we solve recursively. We are studying the
relaxation process to the Minkowski space-time, so m0 = δ0 = F0 = 0.

In the first order in ε the requirement of regularity of the metric function
N at the origin and choice of gauge δ(t, r = 0) = 0 require thatm1 = δ1 = 0.
In this perturbation order we obtain free ` = 1 radial wave equation for the
F1 function

2F1 = 0 , 2 = ∂2
t − ∂2

r −
2
r
∂r +

2
r2
, (11)

with initial data F1(0, r) = f(r), Ḟ1(0, r) = g(r). The general regular solu-
tion of equation (11) has the form

F1(t, r) =
a′(t− r) + a′(t+ r)

r
+
a(t− r)− a(t+ r)

r2
, (12)

where the generating function a(r) is determined by initial data.
In the second perturbation order we obtain the free ` = 1 radial wave

equation 2F2 = 0; however, contrary to the previous F1(t, r) case, the initial
data for F2 are zero so F2 has to vanish. In this order of perturbation
expansion, the metric functions satisfy the following equations

m′2 =
α

2
r2
(
Ḟ 2

1 + F ′21 +
2
r2
F 2

1

)
, (13)

ṁ2 = α r2 Ḟ1 F
′
1 , (14)

δ′2 = −α r
(
Ḟ 2

1 + F ′21

)
. (15)

Finally, in the third-order in ε we get the following equation for F3

2F Skyrme
3 = −2δ2F̈1 − δ̇2Ḟ1 − δ′2F ′1 −

2
r

(
m′2F

′
1 + ṁ2Ḟ1

)
+
m2

r

(
4
r2
F1 −

6
r
F ′1 − 4F ′′1

)
+

4
3r2

F 3
1 + b , (16)



252 S. Zając

where
b =

2
r4

(
F 3

1 − 2rF 2
1 F
′
1 + r2 F1

(
F ′21 − Ḟ 2

1

))
. (17)

We may compare this equation for the third-order perturbation F Skyrme
3 (t, r)

with corresponding equations obtained for wave maps (equation (21) in pa-
per [5]) and Skyrmion in the flat space (equations (17)–(18) in paper [6]). To
make this comparison simpler we rewrite the expression for the wave maps
in metric parametrization which we used in this paper (see equation (2)).
For ` = 1 this expression reads

2Fwave map
3 = −2δ2F̈1 − δ̇2Ḟ1 − δ′2F ′1 −

2
r

(
m′2F

′
1 + ṁ2Ḟ1

)
+
m2

r

(
4
r2
F1 −

6
r
F ′1 − 4F ′′1

)
+

4
3r2

F 3
1 . (18)

We observe that the equation for F Skyrme
3 (t, r) in gravitating Skyrme

model is a generalization of formulae obtained for wave maps and flat Skyrme
model (see h-term in equation (18) in paper [6]). Both expressions (16) and
(18) are linear inhomogeneous wave equations and the only difference is in
the form of the source term. Comparing the Skyrme and wave maps case
we observe that the difference appears in the additional inhomogenity in
Skyrme case which we denoted as the b-term. We also immediately see that
if we drop b-term in the equation (16) we will get the same expression for the
tail as it was obtained for the ` = 1 wave maps model [5]. This expression
reads

F3(t, r) =
r

(t2 − r2)2

[
αC1 +O

(
1
t

)]
(19)

where

C1 =
8
3

+∞∫
−∞

(
a′′(s)

)2
a(s) ds . (20)

This form of the expression for F3(t, r) leads to the following formula for
late-time tail at future timelike infinity (i.e. r = const., t→∞) [5]

F3(t, r) ' αC1rt
−4 . (21)

We are interested in calculating this correction caused by the b-term. As
it was remarked by Bizoń et al. [6], this term is of lower order in comparison
with other terms which contribute to the formula (19). Therefore we may
expect, that the contribution from b-term will generate higher order correc-
tions which, in principle, are of the form of A/tγ , with γ > 4. To check this
and eventually estimate the power-law index γ of possible sub-leading con-
tribution we have solved numerically the equation 2F b3 = b and we assume
the analytical expression for F1 given by this equation (12). The results of
these calculations are plotted in Fig. 1.
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Fig. 1. The log–log plot of different contributions to the F (t, r0) for fixed r0 = 5 as
a function of time. We see that F b

3 solution decays faster than any power at future
timelike infinity; for a reference we have also plotted a power-law with power-law
index γ = 6.

In this figure we have plotted two components of full F solution —
the F1 part resulting from the generating function of the form: a(x) =
ε exp(−x2) and the third-order correction F b3 generated by b-term. In fact for
the F b3 we have plotted two curves corresponding to two different resolutions
used in numerical calculations. For both contributions we observe a rising
part, which depends on the initial data and falling part, which is more
universal. As the generating function a(x) is effectively the function with
compact support, we see that for long times the F1 part of the signal vanishes
with time ∼ exp(−t2). The main contribution to the tail comes from the
third-order perturbation of F (see formula (16)); to make the figure more
transparent we do not plot it here. The most interesting curve in this plot
shows the F b3 component. It is rising part is also initial data dependent. On
its falling part (t > 6) its goes like F1 component — decreases faster than
any power.

For some larger times (t ≥ 7), the shape of the curve F b3 seems to be a
power-law. However, in our opinion this is not a real effect, but rather an
artefact of our numerical procedure coming from a sort of “ghost potential”
(see [3] for details). There are two reasons supporting such hypothesis. First
— this part of the F b3 curve is very steep (for comparison see a power-law
with the power-law index γ = 6). It is doubtful if this curve may represent
a tail. In addition, the shape of the falling part of F b3 curve depends on the
numerical resolution — the better resolution the larger part of this curve
exhibits the universal behaviour (i.e. decreases faster than any power).
This is a typical situation in the case of the “ghost potential”.
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Summing this up — the numerical calculations suggest, that the contri-
bution of the b-term falls faster than any power — so probably it is equal
zero.

To verify this hypothesis we estimate the correction resulting from the
b-term analytically. To do that we solve the equation 2F b3 = b by applying
the standard Duhamel formula for solving an inhomogeneous wave equation
2F = N(t, r) with the zero initial data

F (t, r) =
1
2r

t∫
0

dτ

t+r−τ∫
|t−r−τ |

ρP`(µ)N(τ, ρ)dρ . (22)

Here P`(µ) are Legendre polynomials, in our model ` = 1. Using null coor-
dinates η = τ − ρ and ξ = τ + ρ and denoting the b kernel by K(F )

K(F ) =
2
r4

(
F 3 − 2rF 2 F ′ + r2 F

(
F ′2 − Ḟ 2

))
, (23)

we obtain

F b3 (t, r) =
1
8r

t+r∫
|t−r|

dξ

t−r∫
−ξ

(ξ − η)P`(µ)K(F1(ξ, η))dη , (24)

where µ = (r2 + (ξ − t)(t − η))/r(ξ − η). We will assume that the initial
data F1(t, r) are compactly supported, i.e. they vanish outside a ball of
some radius R. Therefore, for t > r + R we can drop the advanced part of
F1(t, r). We also change the order of integration in (24) thus we get

F b3 (t, r) =
1
8r

∞∫
−∞

dη

t+r∫
t−r

(ξ − η)P`(µ)K(F ret
1 (ξ, η)) dξ . (25)

To calculate (25) and obtain the estimate of a F b3 in timelike infinity, we
use the following identity (see paper [9])

t+r∫
t−r

dξ
P`(µ)

(ξ − η)n
= (−1)l

2(n− 2)`

(2`+ 1)!!
r`+1(t− η)n−`−2

[(t− η)2 − r2]n−1

×F

(
`+2−n

2 , `+3−n
2

`+ 3/2

∣∣∣∣ ( r

t− η

)2
)

= (−1)l
2(n− 2)`

(2`+ 1)!!
r`+1

tl+n

(
1 + (l + n)

η

t
+O

(
1
t2

))
.(26)
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From (12) we have

F1(t, r) =
1
r

(
a′(u) +

a(u)
r

)
, (27)

Ḟ1(t, r) =
1
r

(
a′′(u) +

a′(u)
r

)
, (28)

F ′1(t, r) = −1
r

(
a′′(u) +

2a′(u)
r

+
2a(u)
r2

)
. (29)

Substituting (27)–(29) into (25) and expanding the function K in inverse
powers of ρ = (ξ − η)/2 we get

F b3 (t, r) =
25

r

+∞∫
−∞

dη

t+r∫
t−r

dξ
P1(µ)
(ξ−η)5

[
2
3
d

dη

(
a′3(η)

)
+

1
ξ−η

(
3a′3(η)+5

d

dη
(a′2(η)a(η))

)
+O

(
1

(ξ−η)2

)]
. (30)

Performing the inner integral over ξ in (30) and using the identity (26) we
obtain

F b3 (t, r) = −27r

+∞∫
−∞

dη

[
1
t6

(
1
3
d

dη

(
a′3(η)

))

+
1
t7

(
2
d

dη

(
ηa′3(η)

)
+

10
3
d

dη

(
a′2(η)a(η)

))
+O

(
1
t8

)]
. (31)

We have obtained an expression which gives the expansion of the result
in inverse powers of t. The factors multiplying this inverse powers of t
are integrals of total derivatives of expressions which vanish at the integral
boundaries, therefore they are equal zero. As a result we get the following
estimation for F b3 at future timelike infinity

F b3 = O
(

1
t8

)
, (32)

i.e. we have demonstrated that F b3 does not contain terms of the form
A/tγ with γ < 7. We would like to stress here that in our analysis we
considered only two terms to show their cancellation. However, this method
may be extended to higher orders. To make it possible we have to expand
the identity (26) to higher orders in 1/t. If we do that and proceed in the
same way we will get the cancellations of higher order coefficients, what is
in agreement with the hypothesis that F b3 asymptotically tends to zero.
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In summary — analytical results support the hypothesis stated on the
basis of numerical results. Both analytical and numerical results are com-
patible with the fact that the b-term does not contribute to the asymptotic
expression for the tail. As a result, the Skyrme model and ` = 1 wave map
model are the examples of models which although different, have the same
long-time asymptotics.

3. Numerics

To verify analytical prediction for the tails obtained in the previous sec-
tion we have performed numerical studies of long-time asymptotics in the
Einstein–Skyrme model. To do that we have solved numerically the equa-
tions (3)–(6) with initial data described below. For solving evolutional equa-
tions we have used the method of lines with 5-point, fourth-order accurate
spatial discretization. We have solved the resulting ODE’s with the fourth-
order Runge–Kutta method. To solve the constraints, i.e. Hamiltonian
constrain (4) and slicing condition (5) we have also used the fourth order
Runge–Kutta method. Here we needed the values of some functions out
of the grid — we have obtained them using the spline interpolation. To
ensure regularity at the origin we have imposed the boundary conditions
F (t, r = 0) ∼ r and P (t, r = 0) ∼ r. To avoid the contamination of results
by parts of the solution reflected from the outer boundary we have used
the size of the grid big enough for the solution to stop before the reflected
signal reaches the observation point. Finally, to suppress the accumulation
of round-off errors in late times we have used the quadrupole precision. In
our calculations we have used the initial data generated by the function (see
(7)–(12)) so we get: a(x) = ε exp(−x2) for different values of ε. We have
started with comparing the behaviour of solutions in the Einstein–Skyrme
model and ` = 1 wave maps model. We have prepared the same initial
data and evolved them in both models. The results of these simulations are
shown in Fig. 2. In the left panel of this figure we plot solutions F (t, r0) for
a fixed observation point r0 as a function of time whereas in the right panel
we plot solutions F (u, v0)/r for fixed value of v0 as a function of u.

We observe from Fig. 2 differences at the beginning of the evolution and
in the intermediate asymptotics but for large-times they disappear. It means
that these two models are different but have the same long-time asymptotics.

In Fig. 3 we plot F (t, r) in the self-gravitating Skyrme model with α =
0.03 for three different values of ε. We see that on log–log plots the late-time
tails are clearly seen as straight lines.
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Fig. 2. Left panel: The log–log plot of F (t, r0) vs. t for fixed r0 = 5. Right panel:
The log–log plot of F (u, v0)/r for fixed large advanced time v0 = t + r = 1000 as
the function of retarded time u = t − r. In both models we use α = 0.03 and
ε = 1.0.
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Fig. 3. Left panel: The log–log plot of F (t, r) for fixed r = 5. Right panel: The
log–log plot of F (t, r)/r for fixed large advanced time v = t + r = 1000 as the
function of retarded time u = t − r. In both panels (dotted line) we see that
solutions starting from small initial data decay as t−4 at future timelike infinity
and as u−2 at future null infinity.

To obtain the parameters of the tails we should use the following formula

F (t, r) = At−γ exp
(
B

t
+
C

t2

)
. (33)

For the comparison with numerical data it is convenient to define the
local power index (hearafter LPI) defined as follows [11]

n(t, r) = −t Ḟ (t, r)
F (t, r)

. (34)
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For the assumed form parametrising the tail (33) we get the following
expression for the LPI

n(t, r) = γ +
B

t
+

2C
t2

. (35)

In Fig. 4 we plot LPI at r = 5 as a function of 1/t. All curves in this
figure correspond to small initial data. We see that all lines approach the
same power-law index γ = 4 at the future timelike infinity, so numerical
data confirm analytical prediction for the decay rate, see equation (21).
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Fig. 4. The local power index n(t,5) as a function of 1/t.

In Fig. 5 we plot ε−3F (t, r) as a function of initial amplitude. According
to the analytical prediction the late-time behaviour of this quantity does not
depend on the magnitude of initial data. We may observe that for not-too-
large initial data this is really the case.
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1000 as the function of retarded time u = t− r.
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4. Summary

Using a non-linear perturbation method, we have demonstrated that
leading order formulae for late-time tails in ES model are exactly the same
as those obtained for wave maps (if we drop this correction of b-term). In
other words, these two models albeit, in principle, different have the same
long-time asymptotics that is seen in Fig. 2. We have also checked hypothesis
that this correction b-term disappeared faster than any other power so that
F b3 (see equation (17)) is probably equal zero (see Fig. 1). We verified
numerically the power-law index for the tail t−4 at future timelike infinity
and u−2 at future null infinity. We also confirmed that for the Einstein–
Skyrme model we will get the same analytical results in the leading order
for the tails as was obtained by Bizoń et al. [5], because this b-term does
not contribute to the asymptotic expression for the tail.
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Scientific Research and Information Technology grants NN202 079235.
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