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Our primary task is to demonstrate that the logarithmic nonlinearity
in the quantum wave equation can cause the spontaneous symmetry break-
ing and mass generation phenomena on its own, at least in principle. To
achieve this goal, we view the physical vacuum as a kind of the funda-
mental Bose–Einstein condensate embedded into the fictitious Euclidean
space. The relation of such description to that of the physical (relativis-
tic) observer is established via the fluid/gravity correspondence map, the
related issues, such as the induced gravity and scalar field, relativistic pos-
tulates, Mach’s principle and cosmology, are discussed. For estimate the
values of the generated masses of the otherwise massless particles such as
the photon, we propose few simple models which take into account small
vacuum fluctuations. It turns out that the photon’s mass can be naturally
expressed in terms of the elementary electrical charge and the extensive
length parameter of the nonlinearity. Finally, we outline the topological
properties of the logarithmic theory and corresponding solitonic solutions.
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1. Introduction

Current observational data in astrophysics are probing a regime of de-
partures from classical relativity with sensitivities that are relevant for the
study of the quantum-gravity problem [1, 2]. On the other hand, the quan-
tum theory of gravity which would be both widely agreed upon and capable
of making unique testable predictions is still pending. In this connection,
the effective non-axiomatic theories and semi-phenomenological approaches
guided by the physical intuition can be very helpful as they may provide
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new ideas and insights [3]. We already proposed elsewhere [4] that the non-
trivial vacuum causes the deformation of the quantum wave equations of the
universal form: [

Ĥ − β−1 ln
(
Ω|Ψ |2

)]
Ψ = 0 , (1)

where Ψ refers in general to the complex-valued wave functional and Ĥ is
the operator which form is determined by a physical setup. The physical
motivation behind this equation as well as its unique properties are listed in
the Appendix. Here β and Ω are constant parameters. If we impose that
Ω has the dimensionality of a spatial volume then the logarithmic term (1)
introduces the primary (extensive) length scale,

`Ω = Ω1/(D−1) , (2)

which role and possible physical meaning will be discussed below; hereD − 1
refers to the number of spatial dimensions, throughout the paper it is as-
sumed D = 4.

It was shown that some phenomenological consequences of such the-
ory are actually model-independent and can be derived even at the kine-
matical level, i.e., prior to specifying the dynamical details of a quantum-
gravitational model. One of the primary phenomenological implications of
this theory is that for any two freely-moving particles the following relation
is valid

dτ2
dτ1

=
E2 − E0

E1 − E0
= 1− ∆E

E0
+OE

2

E2
0

, (3)

where τi and Ei are the proper time and energy of the ith particle, E0 is the
energy of the vacuum of a theory; for the vacuum not affected by external
fields that would be E0 = ±EQG, EQG . 1019 GeV. The value E0 defines
another length scale, the Compton-type one:

`0 =
hc

|E0|
, (4)

which value thus can be as small as the Planck one. We expect that the
properties of any dynamical systems immersed in such vacuum can change
drastically when their characteristic length scales approach either of the
critical values `0 and `Ω, or, in terms of energy, E0 and EΩ = hc/`Ω.

The effective refractive index can be directly computed from correspond-
ing dispersion relations (taking into account that both the Planck relation
and energy additivity of uncorrelated systems survive in the logarithmic the-
ory [5], in contrast to other nonlinear extensions of quantum mechanics, see
also the Appendix). In the Cauchy form the index can be written as

n2 = 1 + µγ

[
1 +M(ω)

( ω

2πc

)2
]
, (5)
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where µγ = χ2
γ − 1 and M(ω) = (2πc/ω0)2 (1± 2ω0/ω) are, respectively,

the constant of refraction and dispersion coefficient of the vacuum, ω is the
angular frequency of the electromagnetic wave, ω0 = |E0|/~ is the proper
frequency of the vacuum, ± = −sign(E0).

All this suggests that the vacuum is the medium with non-trivial prop-
erties which affects photons and other particles propagating through it, and
the effects grow along with particles’ energies. The predicted phenomena
which can be derived from Eq. (3) can be cast into three groups:

(i) subluminal phenomena: the estimates imply that the particles with
higher energy propagate slower than those with lower one, therefore,
for a high-energy particle the mean free path, lifetime in a high-energy
state and, therefore, travel distance from the source can be significantly
larger than one would expect from the conventional relativity theory.
There already exists tentative evidence of this effect, often referred as
the “high-energy tail” [6];

(ii) transluminal phenomena: according to the theory, particles can reach
the speed of light in vacuum at finite energy. This may cause the
“luminal boom” in vacuum and appearance of a conical front of the
Cherenkov-type shock wave. These effects can be detected at the
Earth’s particle accelerators — the special feature of the latter is the
particles get accelerated to ultrarelativistic speeds in a controlled way
whereas the cosmic-ray particles have been accelerated somewhere else,
usually very far from our detectors. Of course, the outcomes of the ac-
celerator studies will totally depend on the value of E0 which is not
that simple to compute because the vacuum inside the accelerator pipe
is distorted by external fields;

(iii) superluminal phenomena: unlike the tachyons in the classical relativity,
in the logarithmic theory the energies of the superluminal particles are
real-valued and stay finite when their propagation speed approaches c.
The electromagnetic component of their Cherenkov radiation may ex-
hibit the anomalous Doppler effect — similar to the one for the su-
perluminal (non-point) sources in vacuum which was predicted even
at the classical relativistic level by Bolotovskii and Ginzburg [7]. Also
there may exist the phenomenon of mimicking the double-lobed radio
sources in astrophysics. In general, the current understanding of phys-
ical phenomena happening in supernovae, active galactic nuclei and
gamma-ray bursts may need a serious revision.

As mentioned earlier, these phenomena are determined mainly by the
kinematics of the theory — in a sense, they are analogues of the kinematic
effects of special relativity. What about the dynamical ones, is it possible to
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find any without specifying an underlying microscopical model? In general
the answer is naturally “no” but there exists (at least) one exception: the
mechanism of the spontaneous symmetry breaking is actually hidden in the
logarithmic term itself. Of course, this does not exclude the existence of
other symmetry-breaking mechanisms caused by the dynamics of a concrete
model.

Spontaneous symmetry breaking occurs when the ground state of a sys-
tem does not possess the full symmetry of the theory. The most famous
its realization in physics is known as the (Englert–Brout–)Higgs(–Guralnik–
Hagen–Kibble–Nambu–Anderson) mechanism [8]. The closely related phe-
nomenon is the mass generation which has been employed in the Glashow–
Weinberg–Salam electroweak theory as to explain the nonzero masses of the
intermediate vector bosons by breaking the electroweak symmetry group
SU(2)× U(1) down to the electromagnetic U(1) [9]. This mechanism is me-
diated by the yet undiscovered particle, Higgs boson, which mass is currently
narrowed to be between 114 and 158 GeV — provided that the Standard
Model (SM) remains valid at that energy range.

Despite the overall success of the electroweak theory, few questions about
its Higgs mechanism remain open. The one of them is the following. In-
tuitively one would expect that anything related to the mass creation must
be governed by gravity, be it classical or quantum — as the Mach’s prin-
ciple suggests, for instance. But SM, in its current formulation, does not
have the gravitational sector. Instead, the role of the “mass generator” is
transferred to the Higgs particle from the electroweak sector. The gravity
seems to be totally excluded from this process. From the mathematical
point of view, no mass generation mechanism which would naturally appear
as a solely (quantum-)gravitational effect, i.e., without involving other mat-
ter fields, has been proposed so far, to our best knowledge. On the other
hand, in quantum field theory it has been already known that the radiation
corrections themselves can cause the spontaneous symmetry breaking [10].

This issue is closely related to the second question — what is the physi-
cal vacuum: what are its properties, how do they change at higher energies
and shorter scales of length, etc. Regrettably, up to now no reliable the-
ory of the physical vacuum actually exists. The two most popular nowadays
theories, SM and string theory, are practically useless in this regard. The for-
mer is the operational Lorentz-invariant renormalizable theory which means
that it does not take into account that the physical vacuum can break the
Lorentz invariance at high energies (of order TeV and above) and shorter
length scales, also the theory replaces important parameters, such as masses
and charges of elementary particles, by their experimentally measured val-
ues thus giving no theoretical explanations for why their values are the way
they are. In particular, the value of zero-point energy when computed in the
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electroweak or QCD sectors disagrees with the one restricted by astrophysi-
cal observations by more than a hundred orders of magnitude — one of the
most striking manifestations of the so-called “vacuum catastrophe” or “cos-
mological constant problem” noticed by Nernst almost a century ago [11].
The superstring theory, apart from being based on the Lorentz symmetry
too, suffers from the so-called “landscape problem”: it gives almost infinitely
many mutually exclusive predictions about the structure of the physical vac-
uum. It may turn out that this problem is not just a temporary difficulty
of the theory but the indication of the Lorentz symmetry’s breakdown in
Nature at some energy and length scale. As a result, certain mathematical
constructions heavily relying upon (or motivated by) this symmetry, such
as supersymmetry or tensor representations of the Poincaré group, should
be attributed to the real world with utmost care — as their characteristic
energy scales can lie outside the validity range of the Lorentz-symmetric
approach.

The third issue is the mass of the photon. In the current Standard Model
the photon is assumed to be strangely exceptional — its mass remains zero
even after the electroweak symmetry breaking. On the other hand, recent
observational data bring certain evidence that the photon propagates with
the subluminal speed and thus can be assigned a mass, at least effectively,
but of an extremely small value, as compared to that of the intermediate
vector bosons. This suggests that the mass generation mechanism for the
photon must be in something drastically different from the electroweak one.

The fourth, last for the moment, issue is almost obvious to guess: if the
electroweak Higgs boson does exist what is the mechanism which generates
its mass?

Thus, regardless of whether the electroweak Higgs particle exists or not,
there should be at least one mass generation mechanism which lies outside
the scope of the Glashow–Weinberg–Salam theory. What about the loga-
rithmic nonlinearity, can it help in understanding these problems? Also,
once we have established that the particles freely propagating in the loga-
rithmic theory can be effectively viewed as propagating in some non-trivial
background medium, what is the physical nature of this medium?

2. Spontaneous symmetry breaking

The first thing to notice is if in some representation the operator Ĥ can be
written as a second-order differential operator with respect to some variable
X, i.e., Ĥ ∼ f1

∂2

∂X2 + f2
∂
∂X (we assume f1 > 0 otherwise one must invert

the sign of β or perform the Wick rotation of X) then the wave equation (1)
can be viewed as the equation of motion of the fictitious particle moving on
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a plane {<(Ψ), =(Ψ)} in the rotationally-invariant external potential

V (Ψ) = β−1
{
Ω|Ψ |2

[
ln
(
Ω|Ψ |2

)
− 1
]

+ 1
}

+ V0 , (6)

where V0 ≡ V (|Ψ | = 1/
√
Ω), with the role of time coordinate being assigned

to X or to iX, as in the semi-classical approach. It is not difficult to check
that for positive β and Ω this potential has the Mexican-hat shape: its local
maximum is located at |Ψ | = 0 whereas the degenerate minima lie on the
circle |Ψ | = 1/

√
Ω where the energy of the “particle” reaches its minimum.

To present things in a more rigorous way we use the ideology of the
Bogoliubov–Ginzburg–Landau(–Gross–Pitaevskii) mean-field approach [12]
which is a special case of the Schrödinger field method and originates from
the following idea. Suppose Ψ is originally the functional on a space of field
operators ψ̂(i) which maps this space onto the field of c-numbers. As long as
those fields themselves depend on space and time variables x then in certain
cases, for instance, when they describe identical particles in the same state,
the functional Ψ [ψ̂(i)(x)] can be replaced by the function Ψ(x). The latter
is nothing but the probability amplitude which complex square is a measur-
able quantity but now the wave equation it satisfies is not necessarily linear.
This Ψ(x) is traditionally called the wave function of the Bose–Einstein con-
densate (BEC). The type of the nonlinearity is determined by the way the
condensate particles interact with each other. For most dilute Bose systems
it suffices to consider only the Gross–Pitaevskii (GP) quartic non-linearity
which leads to the cubic Schrödinger equation (although, even for such sys-
tems the beyond-GP approximations are unavoidable in some cases [13]). In
general case, however, higher-order terms (which can account, for instance,
for multi-body interactions, self-energy effects, etc.) can result in entirely
new physics as their infinite sum is an essentially non-perturbative object
with the features drastically different from what one might expect from a
perturbation theory [14], an example to be given shortly after Eq. (12).

Thus, here we are going to view our Ψ as a wave function of the effective
BEC described by the field operator Ψ̂ . Then Ψ can be considered as the
expectation value of the latter, 〈Ψ̂〉 = Ψ. We assume that the full classical
action can be decomposed into two parts (unless stated otherwise, in this
section we work in the high-energy units c = ~ = 1):

S = S̃(φi, Ψ)−
∫
V(Ψ) , (7)

where the action S̃(φi, Ψ) =
∫
L̃ and integration measure are defined on

some suitably chosen domain, by φi we denote all other fields, and the
potential energy density is defined as

V(Ψ) ≡ 1
Ω
V (Ψ) =

1
βΩ

{
Ω|Ψ |2

[
ln
(
Ω|Ψ |2

)
− 1
]

+ 1
}
, (8)
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up to an additive constant. Then at the “classical” level (replacing operators
by their expectation values) one of the Euler–Lagrange equations can be
always written as [

δS̃

δΨ∗
−
∫

dV(Ψ)
d(|Ψ |2)

Ψ

]
δΨ∗ = 0 , (9)

which is equivalent to

δL̃
δΨ∗
− β−1 ln

(
Ω|Ψ |2

)
Ψ = 0 , (10)

where by δL̃/δΨ∗ we loosely mean the functional derivative of S̃ with the
integration dropped. Thus, we readily recover the wave equation (1) upon
a formal identification ĤΨ ⇔ δL̃/δΨ∗.

Another way to see the fluidic features encoded in the logarithmic nonlin-
earity is to look for solutions of the quantum wave equation in the Madelung
form

Ψ =
√
% eiS , % = |Ψ |2 , ~v =

~
m
~∇S =

~
im

~∇ ln
Ψ

|Ψ |
, (11)

where m is the inertial mass of the condensate particle. Then the wave
equation splits into two hydrodynamic ones — the equation of continuity
for the condensate particle density %(x) and the equation of potential flow
of superfluid for the velocity field ~v [15, 16]. From the latter, one immedi-
ately obtains that the zero-temperature (collisionless) equation of state of
the logarithmic BEC in the first-order approximation is described by the
Clapeyron–Mendeleev law,

p− p0 = (mβ)−1%+O
(
~2
)
∝ TΨ% , (12)

where TΨ is in general a quantum (collisionless) kind of the temperature con-
jugated to the information entropy, SΨ ≡ −kB

∫
|Ψ |2 ln (Ω|Ψ |2)d3x, measur-

ing the degree of spreading of a quantum object [4], see also Appendix. For
comparison, the corresponding equation of state for the GP (quartic) con-
densate would be p ∝ %2, thus, the logarithmic Bose liquid is more “ideal”
than the Gross–Pitaevskii one yet non-trivial. Therefore, the logarithmic
condensate can be added to any microscopical many-body system to serve
as a calibrating background [17]. This confirms the usefulness of the log-
arithmic nonlinearity for describing the physical vacuum. It is interesting
also that since the Gross–Pitaevskii potential can be perturbatively derived
from the logarithmic one by expanding near minima and cutting the infi-
nite series at the quartic term we have found another example of how the
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essentially non-perturbative treatment, i.e., taking into account the infinite
number of powers of %, can drastically change the physical picture.

In this connection one can also mention that the logarithmic terms (usu-
ally of the form %m lnn%) commence to appear in higher orders of pertur-
bation theory, e.g., when taking into account certain combinations of loop
diagrams, both in the relativistic scalar field theories [10] and condensed-
matter Bose systems [13], where % (modulo a dimensional scale factor) is
the complex square of scalar field in the former case and the one of the
condensate wave function in the latter. This duality-type interplay between
the relativistic scalar field and non-relativistic Bose liquids has a profound
origin and will be discussed in more details later, in the section devoted to
the BEC/spacetime correspondence.

To conclude this section, we have shown that one can mimic vacuum ef-
fects by including the logarithmic nonlinearity into the quantum wave equa-
tion or, alternatively, by including into the full action the field with the
potential (8). If we view the nonlinearity as a quantum gravity phenomenon
then we prefer to deliberately call the Bose–Einstein condensate virtual be-
cause it cannot be physically separated from background and removed, in
contrast to its condensed-matter counterparts. As a matter of fact, it is a
background.

3. Mass generation

The exact form of the effective action S̃ is unknown to us but we can
already guess the most obvious of its features. First, following the popular
approach of taking into account vacuum effects by virtue of introducing
an auxiliary scalar field, see for example Ref. [18], we can assume the psi-
particle to be described by scalar field. At that, as long as here we are
introducing this field as to account for the small fluctuations of the BEC
vacuum and also we are going to describe objects with the quantum wave
amplitude being much smaller than the background value of the condensate
wave function amplitude, the field-theoretical models can be constructed in
a covariant manner, for reasons which become clear below, in the section
devoted to the BEC/spacetime correspondence. At the same time, we have
to keep this field non-linearized as to account for the effects mentioned in the
previous section. In principle, since we are dealing with low-energy effective
models we are free to use any form of the covariant action for the psi-field
— as long as it is physically transparent, self-consistent, mathematically
manageable and the corresponding field equation contains the logarithmic
nonlinearity. For instance, as to make the psi-particle field dynamical the
minimal action must contain also the kinetic term which must be quadratic
otherwise no proper wave equation can appear. Also, it is likely that S̃ will
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contain couplings of the psi-particle to other fields. Thus, to get at least
some idea about how the conventional dynamical systems might be affected
by the logarithmic BEC vacuum, in this section we are going to construct
few toy models complying with the above-mentioned requirements. The
issue of renormalizability of such models is not a problem here because we
do not require the Lorentz symmetry to be exact at the length scales shorter
than `0, i.e., above the corresponding energy and momentum thresholds.
Then these critical values serve as the natural UV cutoff making the upper
limits of momentum-space integrals finite and no UV divergences arises. The
infrared divergences are not a problem either because in the low-energy limit
E/E0 → 0 the nontrivial structure of physical vacuum can be neglected and
one arrives at the relativistic models which are well-studied in this regard.

3.1. Model with global symmetry breaking

The simplest toy model is just the self-interacting one — involving only
the complex psi-field and no others. While not having much of physical
relevance on its own, it will serve us as a good test-bed. In D-dimensional
spacetime its Lagrangian can be written in the covariant form

L = `Ω ∂µψ ∂
µψ∗ − V(ψ) , (13)

where the potential is given by Eq. (8); here and below the factors like
`Ω are introduced for dimensionality reasons, keeping in mind the original
dimensionality of Ψ .

This model is invariant under a global change of phase of ψ but in the
vacuum state the value of ψ must be non-zero, with a magnitude close to
1/
√
Ω and arbitrary phase. In other words, there is a degenerate family

of vacuum states. The latter circumstance together with the Goldstone
theorem would suggest the presence of the Nambu–Goldstone bosons in the
theory. To check this, we introduce the shifted real-valued fields ϕ1 and ϕ2:

ψ = Ω−
1
2 +

1√
2`Ω

(ϕ1 + iϕ2) , (14)

and expand the potential near the minimum. We obtain

L =
1
2
[
(∂ϕ1)2 + (∂ϕ2)2

]
− 1

2
m2
ψϕ

2
1 −
√

2
β
`
(D−4)/2
Ω ϕ1

(
ϕ2

1 + ϕ2
2

)
− 1

4β
`D−3
Ω

(
ϕ2

1 + ϕ2
2

)2 +O
(
ϕ5
)
, (15)

where the quantity
mψ = 2/

√
`Ωβ (16)
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can be viewed as the effective mass of the fluctuation of the logarithmic con-
densate (not to be confused with the mass m of a bare condensate particle).
If the running behavior of β turns out to be as derived in Ref. [4],

β ∼ (E0 − E)−1 , (17)

then we expect
mψ

√
`Ω ∼

√
E0 − E , (18)

i.e., its mass is not determined solely by the Planck scale: for energy very
small compared to E0 it tends to the constant value,

m
(0)
ψ ≡ mψ(E = 0) ∼

√
|E0|
`Ω

, (19)

but at higher energies it alters thus reflecting the dynamical nature of the
physical vacuum.

Thus, in the broken symmetry regime this model describes two kinds
of particles, one massive and one massless. The latter are the Nambu–
Goldstone bosons which describe the spatial variations of the vacuum’s
phase.

3.2. Model with gauge symmetry

Physically more useful toy model can be constructed by coupling the
condensate to the Abelian gauge field. In D-dimensional spacetime its La-
grangian is

L = `ΩDµψ
∗Dµψ − 1

4FµνF
µν − V(ψ) , (20)

with Dµ = ∂µ + ie`
D−4

2
Ω Aµ and Fµν = ∂µAν − ∂νAµ, as per usual, e is the

elementary electrical charge.
In general, this Lagrangian is invariant under the U(1) local gauge trans-

formation and describes psi-particles and antiparticles interacting with mass-
less photons. To see what happens in the regime of spontaneously broken
symmetry, we make again the shift (14) to eventually obtain

L = 1
2(∂ϕ1)2 − 1

2m
2
ψϕ

2
1 − 1

4FµνF
µν + 1

2m
2
γBµB

µ + . . . , (21)

where Bµ = Aµ + 1√
2
`Ωe

−1∂µϕ2 refers to the new gauge field of the mass

mγ =
√

2e
`Ω

, (22)
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which does not run with energy. We can see also that the masses of the
photon and psi-particle and the elementary charge are related by the formula

em2
ψ

mγ
=

23/2

β
∝ E − E0 (23)

which does not depend on D or `Ω. We remind that the Goldstone theorem
is evaded here because one of its prerequisites, the Lorentz invariance, is
violated in the logarithmic theory as was shown also in Ref. [4] in a different
way.

Thus, we have established that the photon acquires mass mγ and no
massless Goldstone bosons appear. The models support the Coleman–
Weinberg idea of the vacuum-induced spontaneous symmetry breaking [10]
and show that the possible effect of the physical vacuum is that the pho-
ton becomes massive. Why its mass is so tiny small? The clue is that the
correlation length scale `Ω can be very large — in fact, as long as the param-
eter Ω = `D−1

Ω has the dimensionality of the spatial volume and appears in
the normalization condition of the dimensionless wave function

√
ΩΨ , it is

tempting to conjecture the cosmological-scale value for it, say, the volume of
the (observable part of the) Universe. At least, that would explain why the
time-delay effects [1] are exactly as that small as to become visible precisely
at the cosmological-scale distances. Then, for the current value of `Ω of
about ten billion light years the above-mentioned characteristic masses can
be estimated as

m
(0)
ψ ∼ 10−3 ÷ 10−2 eV , mγ ∼ 10−35eV , (24)

where for the former mass we imposed E0 to be the Planck one (which is
valid if the external fields are weak enough as not to change the vacuum
energy significantly). These small, yet non-vanishing masses indicate that
their gravitational effect and contributions to the density of matter in the
Universe can be quite substantial, and can be phenomenologically estimated
in the spirit of the works [19]. Another thing that comes to mind when
looking at the formula (22) is that the appearance of e therein explains
why it is the photon which mediates the long-range interactions between
the electrically charged elementary particles. Recalling the analogy with
superconductivity, the photons in this model can be interpreted as the pairs
of virtual particles and antiparticles, see also Ref. [20] and references therein.

3.3. Other models

In our case, due to the interpretation of Ψ , it suffices to represent the
complex-valued psi-field by two real scalars, ϕ1 and ϕ2. In general (for in-
stance, when the vacuum is required to be described by the multi-component
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Bose liquid), one may wish to consider the multiplet of the scalar fields ϕa
which belongs to a representation of the symmetry group G, non-Abelian
in general. If the latter is spontaneously broken down to a subgroup H the
fields acquire the non-zero expectation values ϕ0. Then the mass matrix
for the gauge fields is given by (M2

A)ab = g2ϕT0 TaTbϕ0, where Ta are the
group G’s generators, g is the gauge coupling constant. The elements ofM2

A
which correspond to the generators of H vanish, therefore, there appear dim
(H) massless gauge bosons and dim (G/H) massive ones. The “survived”
components of ϕ acquire the mass (M2

ϕ)ab =
(

∂2 V
∂ϕa∂ϕb

)
ϕ=ϕ0

, with V being

the potential of the form (8).
The fermions, such as neutrinos, can be also included into this picture

as nothing prevents them from interacting with the condensate. Thus, they
could also acquire mass, although the question whether it would happen due
to the condensate or due to the SM Higgs boson remains open.

4. Topology and solitons

The solitonic-type solutions of the logarithmic wave equations have been
known for a long time [21]. However, at that time people were motivated by
other things so they considered the potentials like (8) “upside down”, in which
case no spontaneous symmetry breaking could arise. It came as a surprise to
us that nobody actually considered other sector of the logarithmic theory —
the one where multiple topological sectors can in principle appear. From the
viewpoint of our theory, they were working with the “Wick-dual” theory —
in a sense that the two theories can be transformed into one another either
by inverting the sign of β or by the Wick-rotation of an appropriate variable,
as in the Euclidean field-theoretical approach [22]. The well-known example
of theories related by the Wick rotation is the quantum field theory at finite
temperature β−1 and the statistical mechanics on the R3×S1 manifold with
the β-periodic imaginary time. In this connection, the relation between our
β and certain kind of non-classical temperature was outlined in Ref. [4], see
also the Appendix. Moreover, as long as β−1 itself is shown there to be
proportional to E − E0, the natural energy of vacuum E0 plays the role of
the critical parameter at which a phase transition happens (this can be seen
from Eq. (18) as well), and the physical degrees of freedom in each of the
phases E < E0 and E > E0 can be very distinct.

As an example, let us consider one-dimensional logarithmic Schrödinger
equation. In the dimensionless form it can be written as

i∂tψ +
(
∂2
xx ± ln |ψ|2

)
ψ = 0 , (25)

where the plus (minus) sign corresponds to the theory with the potential (6)
open downwards (upwards); in practice this sign is associated with the sign
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of β. For simplicity we impose the ansatz ψ = exp (−iεt)φ(x), with φ(x)
being real-valued, then the equation turns into the static one (the moving
solutions can be always generated by performing the Galilean boost):

φ′′(x)− dU±
φ

dφ
= 0 , (26)

where the potential is given by

U±(φ) ≡ ±1
2φ

2
(
1− lnφ2

)
− 1

2εφ
2 . (27)

Let us consider first the “plus” case — where the symmetry φ → −φ
stays unbroken because φ = 0 is a stable local minimum of the potential
U+(φ). The corresponding normalized solutions are called gaussons (on the
BEC language they would be called the bright solitons):

φg(x) = π−1/4e−(x−x0)2/2 , (28)

with the eigenvalue ε = E0 = 1 + ln
√
π. Their stability is ensured by the

integrability conditions because E0 is the lowest bound for the energies of
all possible normalizable solutions (generally referred as the BPS bound).

Now we turn to the “minus” case — when the potential U−(φ) has two
degenerate minima, at φ = ± exp (ε/2). Therefore, one should expect that
all the non-singular and finite-energy static solutions can be cast into four
topological sectors, according to the boundary conditions

e−ε/2[φ(−∞), φ(∞)] = {[−1, 1], [1, −1], [−1, −1], [1, 1]} ,

and φ′(±∞) = 0. The last two sectors contain the trivial solutions φ =
− exp (ε/2) and φ = exp (ε/2), respectively, whereas the former two contain
the kink and anti-kink solutions (dark solitons, in BEC terminology), with
the non-vanishing topological charge. The latter is defined simply as the
difference of the topological indexes

Q = exp (−ε/2) [φ(∞)− φ(−∞)] . (29)

To find the analytic form of the kink solution, we solve the wave equation
with the above-mentioned boundary conditions. We obtain the expression∫

dφ√
φ2 (lnφ2 − ε− 1) + exp ε

= x− x0 (30)

from which φ(x) can be found after taking the indefinite integral. Unfortu-
nately, the latter cannot be expressed in known functions but simple numer-
ical analysis confirms that Eq. (30) indeed represents the kink and anti-kink
solutions.
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Further generalizations are obvious, both in terms of considering more
dimensions and other symmetries. If we relax the condition of real-valued
φ(x) then the potential U−(φ) takes the Mexican-hat shape on the plane
of the real and imaginary components of φ. The topological classification
is usually based on the homotopy groups πn(Sm) [23]. For instance, the
homotopy group for the Abelian model (20) at D = 3 + 1 is π2(S1) = 0, i.e.,
no nontrivial homotopy sectors of solutions can exist whereas at D = 2 + 1
its homotopy group is π1(S1) which is a winding number group. The latter
implies that in principle in effectively (2 + 1)-dimensional Abelian gauge
models with the condensate the magnetic flow becomes quantized and the
vortex solutions can appear [24].

5. BEC vacuum vs. curved spacetime

Now, as long as the (quantum) gravity is concerned, how can one recon-
cile the BEC description of the physical vacuum with the concept of curved
spacetime which is traditionally being used for describing the gravitational
interaction?

5.1. Emergent spacetime

Let us first recall that in majority of physically meaningful cases one
can establish a formal correspondence between the inviscid Bose liquids and
manifolds of non-vanishing Riemann curvature. For instance, the following
fluid/gravity correspondence is well-known [25]: the propagation of small
perturbations inside an inviscid irrotational barotropic fluid, characterized
by the background values of the density %, pressure p and velocity ~v, is
analogous to propagation of test particles along the geodesics of the pseudo-
Riemannian manifold with the metric

gµν ∝
%

cs

 −
(
c2s − ~v2

) ... −~v
· · · · · · · · · ·

−~v
... I

 , (31)

where cs =
√
∂p/∂% is the speed of “sound” — the propagation speed of

wave-like fluid fluctuations. This metric tensor is defined up to a constant
factor which value is determined by measurement units and boundary con-
ditions. Notice that while inside the background fluid the notions of space
and time are clearly separated (such that one can assume the fluid being
non-relativistic), the small perturbations themselves couple to the metric
which treats space and time in a unified way. If we treat such fluid as a non-
removable background then this metric describes the induced spacetime ge-
ometry. The latter should not be confused with the relativistic gravitational
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effect of the ideal fluid as a source introduced via stress-energy tensor in the
Einstein field equations (EFE). Instead, as long as the physical vacuum is
concerned, for a given metric (31) one can always define the induced matter
stress-energy tensor

T ind
µν ≡ κ−1

[
Rµν(g)− 1

2
gµνR(g)

]
, (32)

thus, EFE are interpreted here not as the differential equations for the un-
known metric but rather as an expression for the stress-energy tensor of the
effective matter to which the small fluctuations and test particles couple. If
an observer operates only with such fluctuations then this is the only matter
s/he is going to “see” directly. Macroscopic (composite, finite-size) bodies
also couple to the induced metric if they consist of the elementary particles
which do not violate the small-fluctuation condition — such that the overall
density is much less than the critical one.

Using Eq. (11) one can show that for the generic bulk Bose condensate
described by the non-relativistic quantum wave equation[

−i~ ∂t −
~2

2m
~∇2 + Vext(~x, t) + F

(
|Ψ |2

)]
Ψ = 0 , (33)

the zero-temperature equation of state and hence velocity cs can be deter-
mined from the differential equation

m~∇p− |Ψ |2~∇F = O
(
~2
)
, (34)

the square of the BEC wave function yields the condensate density, as usual.
By solving this equation we obtain

p− p0 = m−1

|Ψ |2∫
0

%F ′(%)d%+O
(
~2
)
, (35)

c2s ≡
∂p

∂ (|Ψ |2)
= m−1|Ψ |2F ′

(
|Ψ |2

)
, (36)

and the induced metric tensor takes the form:

gµν ∝
|Ψ |√
F ′(|Ψ |2)

−
1
m |Ψ |

2F ′(|Ψ |2)− ~2

m2

[
~∇ ln Ψ

|Ψ |

]2... i~m ~∇ ln Ψ
|Ψ |

· · · · · · · · · ·
i~
m
~∇ ln Ψ

|Ψ |
... I

 . (37)

The value cs thus becomes the maximum attainable propagation velocity
of any object whose quantum wave amplitude is much smaller than the
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magnitude of the background condensate wave function. For instance, when
assuming the logarithmic condensate, F (%) ≡ β−1 ln (Ω%), then in absence
of any additional matter Eq. (35) yields Eq. (12) from which we obtain

cs =
1√
mβ
≡ cβ , (38)

provided mβ > 0. One can immediately see that the maximal propagation
velocity of small excitations in the long-wavelength approximation does not
depend on density which makes the logarithmic BEC distinguished among
other kinds of condensates. From the last formula one can derive also the sec-
ond Einstein’s postulate: if we recall Eq. (17) and assume an absence of extra
fields so we can choose the proper BEC energy |E0| = mc2, with c playing
the role of the units conversion factor, in the leading approximation. Then
we indeed arrive at the fundamental velocity constant: cβ 6

√
|E0|/m 6 c.

Thus, in the BEC-vacuum approach the relativity is an emergent rather
than a fundamental phenomenon1, EFE and dependent concepts do not have
any fundamental meaning on their own but rather represent an approximate
long-wavelength description valid only within certain energy and length scale
(after all, the Lorentzian geometry is what it is — a way of measuring dis-
tances, and the gravitational “field” in general relativity is known for not
possessing a proper stress-energy tensor). In fact, some predicted quantum
gravitational phenomena, such as the Hawking radiation, can be derived
without the use of EFE [28] whereas others, such as gravitons and gravita-
tional waves (at least, in current formulation), strongly rely upon EFE, and
therefore, a careful treatment is needed there. The BEC-vacuum description
of the black holes is also slightly different from general relativistic: while the
analogue spacetimes may possess event horizons it is only long-wavelength
excitations which follow geodesics and thus it is only them which might
experience the irreversible properties of horizons. If a measuring apparatus
operates with the objects which somehow do not satisfy the small-amplitude
and long-wavelength conditions then no “canonical” event horizons can be
detected. The space-time singularities, i.e., the points where the Riemann
tensor computed from the induced metric diverges, cannot be attributed to
reality as the small-amplitude and long-wavelength conditions, main pre-
requisites of the induced relativity, are strongly violated there. It should
be remembered also that due to the original relativistic time coordinate

1 The question whether the general relativity is an effective theory has been raised long
time ago [26]. Also, the early attempts to describe the physical vacuum as superfluid
were dated as far back as 70s [27] (however, neither there nor in later works [29] any
specific wave equations for the physical vacuum’s wavefunction were proposed, to our
best knowledge, and the debates about a specific expression for the vacuum energy
density still continue).
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being synchronized with the Newtonian time the BEC-induced geometries
automatically fulfill the requirement of stable causality which prevents the
appearance of the causal pathologies the general relativity suffers from.

Numerous examples of the fluid-gravity isomorphisms and further dis-
cussions can be found in the books [29]. In particular, the BEC-gravity ana-
logue models have been already studied in Refs. [30], although they dealt
with condensed-matter systems without referring to the physical vacuum
and mass generation mechanism, an extensive bibliography can be found
in Refs. [29, 31]. Moreover, the nonlinear wave equations in those models
are not of the logarithmic type, therefore, they do not possess the above-
mentioned Planck relation, energy additivity and constancy of cs properties
jointly which makes them less suitable for describing the fundamental back-
ground.

On a practical side, the BEC-gravity analogy2 means that the (physi-
cal) observer operating at the length scale larger than the size of elementary
fluid elements of quantum Bose liquid (which is of order `0) is not able
to distinguish the propagation of small fluctuations in the fluid from the
geodesic motion of test particles on an appropriately chosen manifold. To
resolve the underlying microscopic structure of the liquid s/he has to input
therein energy sufficient to reach the critical value |E0| which corresponds
to the length resolution `0. Then, as mentioned in previous section, the
system “jumps” into other phase, with different physical degrees of free-
dom, the process which resembles the transition between the phonon and
free-particle phases in Bose gases. But otherwise these two descriptions,
Bose-liquid and geometrical one, are dual-equivalent and equally “effective”
(and may be not the only possible), and the choice between them is purely a
matter of taste and/or practicality. For example, while the simple superflu-
ids (irrotational, barotropic, one-component) can be associated with simple
pseudo-Riemannian manifolds (real, four-dimensional, torsion-free, metric-
compatible, etc.) — such that one can employ the whole machinery of the
Riemann geometry, the geometrical description of the liquids with any of
the above-mentioned restrictions relaxed can easily go beyond the Riemann
geometry and become complicated and/or physically non-transparent [32].
Besides, the applicability of either description depends on a concrete physi-
cal problem it is applied to. It seems that the propagation of test point-like
objects inside the physical vacuum is more conveniently described within the
framework of the relativistic approach (although, some corrections apply [4])
but the strong quantum processes such as the phase transitions related to

2 In our case the term BEC/spacetime correspondence or duality would be more ap-
propriate provided we assume the broader meaning of the condensate as the coherent
ground state of superfluid described by a single wavefunction. In general, however,
the notion of superfluid is more broad and complex than that of BEC.
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the formation or depletion of the Bose liquids (“spacetimes”) themselves can
be mathematically formulated only at the underlying BEC level (in fact,
within the framework of the Lorentzian geometry such phenomena cannot
be even well-defined).

Thus, the BEC/spacetime correspondence allows to look at some old
problems at a different angle of view.

5.2. Mach’s principle and locality

In its most popular formulation the Mach’s principle states that the
local inertial properties such as mass are determined by the total mass dis-
tribution in the Universe. While Einstein himself had this in mind when
constructing general relativity the latter does not comply with the Mach’s
principle favoring instead the strong equivalence one. The attempt of fixing
that without breaking general covariance has been made in the theories of
scalar-tensor gravity [33]. In those approaches the Mach’s principle is par-
tially taken into account by making the gravitational constant a dynamical
variable, at the cost of postulating the additional field — the scalar one.
The origin of this hypothetical scalar remains unclear so far, moreover, be-
ing Lorentz-covariant the scalar-tensor gravitational models do not address
the following two locality issues.

If the physical vacuum is trivial then an observer in the otherwise empty
space would not be able to determine whether s/he has any inertia — due to
the absence of any reference frame. The latter can be immediately created
once a probe object appears somewhere else. Therefore, the observer is
supposed to instantaneously find out own inertial properties with respect to
that frame, no matter how far the probe is located or how “massive” it is.
Another locality issue which arises in a theory with the trivial vacuum is
the following: if we talk about interacting systems in general then what do
we mean by energy of interaction, how can we differentiate “interacting” and
“non-interacting” systems, how does a system “know” about the form of the
potential it is supposed to obey when interacting with other system(s)?

To address all these questions in our approach, let us recall that the BEC
vacuum is an essentially quantum object yet its correlation length `Ω can
have the cosmological-scale value, as mentioned above, and the properties of
its fluctuations are obviously determined by the whole matter distribution in
the Universe. As a matter of fact, the condensate gives rise to masses of par-
ticles in a way similar to the gap generation mechanism in superconductors,
as we have shown earlier. Therefore, the nontrivial vacuum can naturally
serve as the physical realization of the Mach’s principle: it introduces the
universal frame of reference and gives meaning to the “action-at-a-distance”
processes in general and to the inertia in particular. In this framework the
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Lorentz-covariant models involving the global scalar field is just a way to
account for the BEC vacuum’s effects in the (approximate) relativistic man-
ner only for length scales larger than `0 and for transfer energies below |E0|
— similarly to what we have done in Sec. 3. At that, one does not need
to introduce any kind of “gravity” in the Euclidean space because the only
mass parameter there, m, is the inertial mass of the condensate particle.

The issue of how to unambiguously define the concept of interaction
under the conditions of the strong long-range correlations is resolved in
the logarithmic BEC vacuum due to the above-mentioned energy additivity
property which is preserved in the logarithmic quantum mechanics: an in-
teracting energy of any two systems described by wave functions Ψ1 and Ψ2

(when taken separately from each other) still can be defined as the difference
E(Ψ) − E(Ψ1) − E(Ψ2) where Ψ is the wave function of the whole compos-
ite system. This definition naturally incorporates the quantum-mechanical
nature of interactions: it preserves the notion of non-interacting systems
whereas the interaction energy defined in such way is a measure of how much
does the overall state vector |Ψ〉 differ from the plain product |Ψ1〉 ⊗ |Ψ2〉.

5.3. Cosmology

According to current cosmological paradigm, the early Universe’s large-
scale structure had a phase of the exponential expansion (inflation) fol-
lowed by the reheating and, subsequently, radiation- and matter-dominated
phases [34]. It is believed that without introducing the inflationary phase it
would be difficult to explain the horizon, flatness and monopole problems.
For the role of the agent driving the inflation one usually appoints the global
scalar field called the inflaton and considers some kind of the scalar-tensor
gravity rather than the original Einstein’s theory.

Despite the overall success and popularity of the scalar-driven cosmo-
logical models, few questions remain unanswered. The main one is what is
the physical nature of the inflaton, in particular, why did it appear in the
early Universe before any other fields and particles we know so far, why its
current vacuum expectation value is the way it is, why the current expecta-
tion value of its potential energy, known also as the (effective) cosmological
constant, is so extremely small yet nonzero in present epoch. On top of that,
if one associates this effective cosmological constant with the vacuum energy
then one immediately arrives at the above-mentioned cosmological constant
problem [35]. How would all these problems look from the viewpoint of the
cosmology incorporating the BEC-vacuum idea?

First thing to notice, the notion of the cosmological constant makes sense
in a relativistic theory only, therefore, within the framework of the BEC
approach this constant can refer at most to the energy of small fluctuations
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of the vacuum above a background value but not to the energy of vacuum
itself [36]. Thus, in the BEC-vacuum cosmology this constant does not have
any fundamental physical meaning and the related problems simply do not
occur in first place.

Second, if typical energies of density fluctuations and masses of elemen-
tary particles are less than E0 then the vacuum stays in the BEC phase
and the Lorentz-symmetric cosmological models based on the spacetime
metric tensor and scalar fields are obviously a good approximation, there-
fore, the physical conclusions based on the standard Friedmann–Lemaître–
Robertson–Walker (FLRW) models remain unaltered. Moreover, in the BEC
phase many of the conclusions based on scalar-driven models remain unal-
tered as well, as long as one adopts a suitable form of the scalar-tensor
field-theoretical action. However, in the close vicinity of the threshold the
relativistic description begins to fail: of course, as one approaches more and
more early stages of the Universe’s evolution, one can still employ the rel-
ativistic fields but the price will be that this description will become more
and more “effective” and less and less natural. In practice this means that
one will need to adjust the form of the covariant field-theoretical action at
each range of energy scale by hand.

Finally, let us discuss the problems which led to the inflation proposal
and give them explanations based on the BEC-vacuum idea:

• The monopole problem is eliminated in the BEC-vacuum cosmology
for the above-mentioned reasons: the stable GUT monopoles pre-
dicted so far are the solutions of relativistic field equations possessing
a large mass. The latter circumstance violates the requirements for
the BEC/spacetime correspondence’s validity and thus the relativistic
monopole production in the early Universe is hardly justified even on
theoretical grounds.

• The flatness or cosmological fine-tuning problem was motivated by
the analysis of the Friedmann equations which are again intrinsically
relativistic, therefore, they cannot be extrapolated to arbitrary short
length scales and the genuine evolution of the density of matter and
energy in the Universe did not have to obey them all the time. The
reason why the density is so close to the critical one is that just an in-
stant before the vacuum BEC was formed and its fluctuations became
small enough there was no concept of curved Lorentzian spacetime
available yet. Therefore, at that moment the total density had a crit-
ical value (corresponding to the flat space) and its large-scale average
value could not change much since then — provided the BEC does not
rarefy much. The latter can be achieved by self-sustainability due to
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nonlinear effects [17], some sort of trapping potential, and/or bound-
ary conditions for the wave equation the background BEC obeys. At
that, one should not confuse, for instance, the spacetime (Hubble)
expansion as viewed by the internal observer operating in the small-
perturbation regime with the dynamics of the BEC background itself:
below we demonstrate certain physical setup in which the BEC back-
ground flows with constant velocity (if viewed as an embedding in the
fictitious Euclidean space) while the observer sees herself inside the
FLRW-type universe.

• The problem of reconciling the early-Universe cosmology with the sec-
ond law of thermodynamics which is closely related to the horizon
problem (homogeneity and isotropy) and leads either to the inflation
proposal or to the Weyl curvature hypothesis [37] can be reformu-
lated in the BEC-vacuum cosmology as follows. During some epoch
of the very early Universe when any conventional matter was absent
the large-scale evolution was determined mainly by the vacuum, loga-
rithmic condensate. The Weyl curvature hypothesis requires then that
the induced metric (37) must be conformally flat during that epoch.
Below we show that it is indeed the case. The horizon problem can
be thus explained by the macroscopic size of the essentially quantum
vacuum — as long as the latter is viewed as the BEC embedded into
the Euclidean space with absolute time such that its particles tend to
occupy the lowest state and any quantum exchanges happen instantly.
In the case of the BEC-vacuum cosmology the correlation length `Ω
can be interpreted as the size of the observable part of the Universe.
Indeed, as long as an observer usually operates with the probe ob-
jects, such as photons and other elementary particles with energies
less than E0, s/he is bound to the relativistic regime and thus un-
able to probe not only the distances smaller than `0 but also larger
than `Ω. This also means that the regions relativistically disconnected
from us can nevertheless affect our Universe — e.g., by virtue of the
large-amplitude density fluctuations for which δ(|Ψ |2) 6� |Ψ |2. This fits
the long-discussed idea of our Universe being a patch inside the much
“larger” region, called the Multiverse, which may explain the dipole
anisotropy of the cosmic microwave background and coherent large-
scale flow of galaxy clusters [38]. Besides, since the Multiverse can
contain many patches with different BEC vacua (or currents, if viewed
as the Euclidean embeddings) which separately nucleated during the
Bose condensation epoch, the chaotic inflationary scenarios [39] are
compatible with the BEC-vacuum cosmology as well.
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• The long-standing problem of how to formulate the early-Universe cos-
mology on quantum-mechanical grounds, commonly referred as the
quantum cosmology, is treated in the following way: as long as the
Lorentzian geometry is the induced effective phenomenon valid only for
certain scales of length and energy, the metric tensor does not need to
be quantized per se otherwise it leads to the double-counting similar to
the one which appears when one attempts to (re)quantize phonons [36].
What happens actually to be quantum is the underlying background
BEC vacuum, its ground-state wave function induces nontrivial geom-
etry by virtue of the map (37). The effective metric thus emerges as
one of the low-energy collective modes of the vacuum. Further, the
metric defines the stress-energy tensor (32) which in turn determines
the large-scale evolution of the Universe as well as the distribution of
matter therein. The other SM-type interactions, chiral fermions and
gauge fields, emerge as well as the different quasi-particle excitations
of the quantum vacuum liquid (not to be confused with the bare parti-
cles of the latter), similarly to the mechanisms proposed in a theory of
condensed matter [27,29], although it might require adding the Fermi
component to the Bose liquid describing the physical vacuum.

To give an analytical illustration of these statements, we consider the
following physical setup which is the simplest one can imagine of yet can be
realized in the “early” Universe at some stage: the just-formed BEC vacuum
described by the logarithmic condensate is the predominating form of mat-
ter, any other kinds have not appeared yet. Then the induced metric (37) is
completely determined by a solution of Eq. (33) with F (x) ≡ β−1 ln (Ωx),
namely [

−i~ ∂t −
~2

2m
~∇2 + Vext(~x, t) + β−1 ln

(
Ω|Ψ |2

)]
Ψ = 0 , (39)

under certain boundary conditions. While both those conditions and the
trapping potential are still unknown to us, one can already deduce a very
important general feature: due to the separability property of the logarith-
mic Schrödinger equation its simplest ground-state solutions have the phase
which is linear with respect to the radius-vector [5],

i ln
Ψ0(~x, t)
|Ψ0(~x, t)|

∝ ~v(0) · ~x+ f(t) , (40)

which indicates, upon recalling Eq. (11), that the background condensate
flows with a constant velocity ~v(0) if viewed as an embedding into the Eu-
clidean space. Together with Eq. (38) it means that the geometry induced
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by such panta rhei solutions is conformally flat,

ds2(β) ∝ Ω|Ψ0(~x, t)|2
[
−c2βdt2 +

(
d~x− ~v(0)dt

)2
]
. (41)

At the level of metric, the value of ~v(0) becomes irrelevant and can be set
to zero by an appropriate coordinate transformation; at the level of the Eu-
clidean observer this corresponds to selecting the Galilean frame of reference
comoving with the background. Obviously, for manifolds with such metrics
the Weyl tensor vanishes so they are of type O in the Petrov classifica-
tion [40]. This is the class where all the FLRW spacetimes, including those
expanding with an acceleration, belong to (in general relativity the manifolds
corresponding to isolated gravitating objects belong to type D, spacetimes
of other types involve gravitational waves of different kinds). Therefore, for
our physical setup we will necessarily obtain one or another family of the
FLRW spacetimes — just written in the conformally-flat coordinates, like
in the kinematic cosmology [41].

Further, to derive the induced stress-energy tensor corresponding to our
setup we use the definition (32) where assume that the metric is given by the
last equation, gµνdxµdxν = ds2(β). With the help of the conformal rescaling
technique we immediately obtain

κT (β)
µν = D̃

[
∇µ∇νΦ−∇µΦ∇νΦ− gµν

(
∇λ∇λΦ+ 1

2

(
D̃ − 1

)
∇λΦ∇λΦ

)]
,

(42)
where D̃ ≡ D − 2 = 2, ∇ is the covariant derivative with respect to the
metric g, and we have designated

Φ ≡ ln
(
Ω|Ψ0(~x, t)|2

)
, (43)

up to an additive constant. This stress-energy tensor strongly resembles the
one of some theory with scalar field, and indeed, one can check that it can
be formally derived, by varying the metric, from the following scalar-tensor
gravity action functional

S(β)[g, 6Φ] ∝
∫
dDx
√
−g eD̃Φ

[
R+ D̃

(
D̃ + 1

)
(∇Φ)2

]
, (44)

where the notation “ 6Φ” reminds that the “dilaton field” Φ has been already
fixed by the solution of the BEC quantum wave equation, in this case it
would be Eq. (39). Being entirely formal and analogous (because in reality
both the metric and “dilaton” are determined by the BEC vacuum which is in
the state described by Ψ0(~x, t)), this action nevertheless confirms what was
written before about fundamental scalar field: it explains why the relativistic



284 K.G. Zloshchastiev

models involving scalars, such as the scalar-tensor gravity or (bosonic sector
of) supergravity, yield the expressions for metric tensors which seem to pro-
vide the good qualitative description of the large-scale evolution of the early
Universe and agreement with current observational data yet no scalar part-
ner has been detected. Moreover, this duality between the non-relativistic
quantum BEC equation and relativistic classical scalar-tensor gravity also
shows the already discussed limitations of the relativistic description alone:
once the BEC vacuum goes into the different quantum state represented by
other solution of Eq. (39) one gets a different expression for the induced met-
ric and, therefore, for the induced stress-energy tensor and covariant action.
In fact, for more complicated physical setups even the condition (40) lead-
ing to conformal flatness can be relaxed to the asymptotic one. Therefore,
depending on a physical background (determined by external potential and
boundary conditions) and the quantum state the vacuum stays in, the small
fluctuations and test particles obey several covariant actions. The unified
picture can be seen only at the level of the quantum wave equation for the
background BEC.

To conclude, in this section we have shown that relativistic gravity can
be viewed as the phenomenon which emerges due to the long-wavelength
fluctuations of the quantum yet macroscopical object, the non-trivial BEC
vacuum. In fact, it can be useful to think in terms of the duality rooted
in some kind of uncertainty principle: one can view the physical vacuum
either as the Lorentzian spacetime (which, as we know, can have the non-
vanishing Riemann curvature but no well-defined microscopical structure) or
as the flat Euclidean space, along with the Newtonian time parameter, filled
with some kind of background quantum liquid (such that the microscopical
structure is well-defined but no curved-spacetime description is possible).

6. Conclusions

It is shown that on the language of field theory the logarithmic nonlinear
quantum wave equation can be interpreted in terms of the background Bose–
Einstein condensate by analogy with the Bogoliubov–Ginzburg–Landau the-
ory [12]. Recall that the latter is known as the effective mean-field theory of
superconductivity which not only helped to figure out most of phenomeno-
logical implications long before the underlying microscopical model was for-
mally written down [42] but also served as a guiding light on a crooked path
of the theoretical constructing of the BCS theory. In our case the micro-
scopical theory of the background BEC can be regarded as the quantum
gravity itself so there is a hope that the non-axiomatic approach based on
logarithmic wave equation will do its job here as well. As for the under-
lying microscopical theory then the presence of two length scales, `0 and
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`Ω, points out at the possibility that the noncommutative-space extension
of quantum mechanics (NCQM) is a strong candidate — and, indeed, the
objects which resemble the Cooper pairs (and can be viewed as the dipole-
order approximation of a fluid element) do arise there naturally [43, 44].
Another approach would be to leave the spatial commutators intact but
instead treat the (bare) condensate particles and Euclidean space as the un-
derlying entities, and construct the microscopical theory in the spirit of the
conventional non-relativistic theories of superfluidity and superconductivity,
and then use the maps like (37) and (43) to translate the results into the
language of a physical (relativistic) observer. In any case, once the vacuum
liquid is formed it can be regarded as the most fundamental object (due to
its ground state being described by a single wave function only) whereas the
particles and interactions observed by a physical observer are represented
by its different modes — collective ones and excitations.

It is also worth mentioning that since the quantum gravity is concerned
there exists the conceptual difference between the interpretation of our Bose–
Einstein condensate and its condensed-matter counterparts: unlike the latter
it represents the fundamental (non-removable) background. This essentially
implies that not only the objects which are being observed are being im-
mersed into the condensate but also are the observers themselves with their
measuring apparatus. Thus, such condensate affects not only the “objective”
motion of particles but also the process of measurement itself which results
in the nonlinear corrections to the quantum wave equation, see some discus-
sions in the Appendix and references therein. That is why the theory with
the logarithmic nonlinearity [4] can be also viewed as (the nonlinear exten-
sion of) quantum mechanics [5,45]. The latter is believed by many to be the
consistent way of handling the difficult places of the conventional quantum
mechanics — such as the measurement problem (wave-function collapse vs.
many-worlds interpretation) [46].

Further, we demonstrated that this kind of nonlinearity can cause, in
principle, the spontaneous symmetry breaking and mass generation phe-
nomena. The mass generation mechanism based on vacuum fluctuations is
universal in a sense that it may supplement the electroweak one (by gen-
erating the masses of the photon and Higgs boson, for instance) but also
it is capable of enhancing or even replacing the latter, under certain phys-
ical circumstances. The role of BEC seems to be natural here because the
mass generation by such a highly non-classical object naturally serves as a
physical realization of the Mach’s principle. We proposed few toy models to
estimate the values of the generated masses of the otherwise massless parti-
cles such as the photon. We wrote those models in a covariant form and also
the above-mentioned effect of the vacuum upon the measurement procedure
is neglected as well. These assumptions seem to be a good approximation
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when one works in the energy range below the vacuum energy threshold E0

and, therefore, deals with small perturbations of the vacuum and elementary
particles being also small fluctuations.

The straightforward computation shows that the photon mass, gained
due to its interaction with the quantum-gravitational vacuum represented
by the logarithmic condensate, can be expressed as a ratio of the elementary
electrical charge and the length related to one of the parameters of nonlin-
earity. We gave some phenomenological arguments for why this (coherent)
length’s scale can be related to the size of the (causally connected part of)
Universe as well as why the electric charge appeared in the formula. It once
again confirms the choice of the wave equation’s nonlinearity to be of the
logarithmic type.

The relation of the BEC description of the physical vacuum to the
curved-spacetime one is established via the well-known fluid-gravity corre-
spondence. The latter presumes the introduction of two types of observers —
physical or relativistic, operating in the long-wavelength excitations regime,
and mathematical or absolute one, acting in the fictitious Euclidean space.
The latter is essentially unobservable yet allows to formulate certain phe-
nomena in a more consistent way. The dictionary between the languages
“spoken” by these two observers is still mostly unknown but it is already
started: we formulate the map which relates the long-wavelength solutions
of the non-relativistic nonlinear quantum wave equation to the metric man-
ifolds arising in the relativistic classical scalar-tensor gravity.

To reconcile this description also with the current cosmological paradigm
we advocated the idea that the curved-spacetime description of the Uni-
verse’s large-scale evolution is valid only in the long-wavelength approxima-
tion, and it is not the only possible or most convenient: one can also describe
it (hydro-)dynamically as the Bose liquid which flows in certain way when
viewed as an embedding into the Euclidean space. Such description allows
to take a different look at some long-standing problems of both the standard
and inflationary cosmologies, and also hints at the possible ways of formula-
tion the theory of quantum gravity. In particular, the generation of FLRW
models and scalar field is shown explicitly for the physical setup involving
the logarithmic BEC in the long-wavelength approximation.

Finally, the generic topological properties and corresponding solitonic
solutions of the theories with “logarithmic” condensates related by the Wick
rotation (or, alternatively, by inversion of the sign of the parameter β) were
compared and discussed. The role of the natural energy of vacuum as a
critical parameter for certain phase transition is outlined.
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Appendix

Logarithmic Schrödinger equation

There exist at least two ways of how the logarithmic Schrödinger equa-
tion (LogSE) can be introduced. The chronologically first one is based on the
separability argument — the LogSE is the only local Schrödinger equation
(apart from the conventional linear one) which preserves the separability of
the product states: the solution of the LogSE for a composite system is a
product of the solutions for uncorrelated subsystems [5]. The second way is
based on the arguments closely related to open quantum systems and quan-
tum information theory [47] which is relatively less known and thus deserves
to be reminded here.

Consider a multi-particle (sub)system whose dynamics is described by
the Hamiltonian-type operator Ĥ. Besides, this subsystem is in a contact
with its environment such that there is an exchange of energy and informa-
tion. The state of the system is described by the vector |Ψ〉. If the Hamilto-
nian does not depend on wave function then in the Schrödinger coordinate
representation we recover the linear differential equation for Ψ .

However, in general the interactions between the particles comprising
the subsystem depend on the distribution |Ψ |2 of the particles in the config-
uration space. To determine this distribution, i.e., to extract, transfer and
store the information in a particular configuration of matter, one requires
certain amount of energy per bit, call it ε. The information acquired upon
measurement of the state is proportional to the logarithm of the probability
of an outcome Ψ , i.e.,

IΨ = − log2

(
Ω|Ψ |2

)
= − lnΩ|Ψ |2

ln 2
, (45)

and the associated entropy of the subsystem is given by

SΨ = −kB〈Ψ | ln
(
Ω|Ψ |2

)
|Ψ〉 ,
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where kB is the Boltzmann constant. This entropy minimizes on delta-like
distributions and maximizes on uniform ones. Here the normalization factor
Ω defines a measurement reference for the entropy because for continuous
systems the latter is not absolute. For instance, one could establish the
reference entropy as that for a uniform distribution hence if the subsystem
has fixed volume and the states are box-normalized then Ω equals to this
volume.

The above-mentioned energy thus brings the contribution to the Hamil-
tonian of the form

Ĥ → Ĥ
′
= Ĥ − ε log2

(
Ω|Ψ |2

)
, (46)

and the effective temperature which can be formally associated with this
kind of entropy is given by TΨ ≡ (kBβ)−1 = (∂E′/∂SΨ )Ω = ε/(kB ln 2) ,
where E′ = 〈Ψ |Ĥ ′|Ψ〉 is the total energy of the system. Rewriting ε in
terms of β, we recover LogSE in our notations (1). For stationary states one
can write it in the form[

Ĥ − β−1 ln
(
Ω|Ψ |2

)]
Ψ = E′Ψ , (47)

whereas the free energy is given by E = 〈Ψ |Ĥ|Ψ〉 = E′ − TΨSΨ . Unlike the
free energy, the energy TΨSΨ is engaged in handling the information IΨ and
thus unavailable to do dynamical work.

The Schrödinger equations of such type are suitable for describing sub-
systems in which the information is not conserved but being exchanged with
environment. Therefore, they cannot be naively applied to systems without
any kind of irreversibility hence the negative results of the experiments [48]
are not surprising. On the other hand, in a theory of quantum gravity
this question is still far from being settled [49]. Besides, one can notice
that the logarithmic term describing the information exchange between a
system and its environment plays the role similar to that of the chemical
potential in condensed matter systems. This fulfills the condition for the
condensed-matter-type approach being eligible for description of the physi-
cal vacuum [36].

To conclude, we write down the most important properties of LogSE:

• Separability of noninteracting subsystems (as in the linear theory):
the solution of the LogSE for the composite system is a product of the
solutions for the uncorrelated subsystems;

• Energy is additive for noninteracting subsystems (as in the linear the-
ory);

• Planck relation holds as in the linear theory;
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• All symmetry properties of the many-body wave-functions with respect
to permutations of the coordinates of identical particles are preserved
in time, as in the linear theory;

• Superposition principle is relaxed to the weak one: the sum of solutions
with negligible overlap is also a solution;

• Free-particle solutions, called gaussons, have the coherent-states form,
and upon the Galilean boost they become the uniformly moving Gaus-
sian wave packets modulated by the de Broglie plane waves;

• Expressions for the probability density and current are the same as in
the linear theory.

All these properties except the last one and, perhaps, second last and third
last ones, are unique to LogSE among all other local nonlinear
Schrödinger equations. Besides, many of these features are pertinent to the
linear Schrödinger equation which makes the logarithmic one a “minimal”
nonlinear modification in a sense.
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