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The ALICE and CMS data on the multiplicity distributions are com-
pared with the lower energy data and with the results from the 8.142 version
of the PYTHIA MC event generator with two tunings. The ALICE data for
moments are used to calculate the factorial cumulants. It is suggested that
the data on moments or cumulants are well suited to specify the optimal
tuning of the model parameters.
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1. Introduction

With the advent of LHC data it became possible to investigate the mul-
tiplicity distributions at the CM energies beyond 2 TeV. It is very interesting
to check how well the default versions of MC generators describe the mini-
mum bias events in this energy range. In particular, it is tempting to look
for a best tuning of the model parameters using only the data from the
multiplicity distributions.

In a recent note [1] we have discussed the energy dependence of the
central density (defined by the average charged multiplicity in a central bin
in pseudorapidity). We have shown that, contrary to some claims, the fast
increase with energy observed in the ALICE data [2] is not unexpected. In
fact, we found that the default version of PYTHIA 8.135 generator [3, 4]
predicts a too fast increase, but with some tuning the data may be well
described. The moments for three selected pseudorapidity bins were also
compared with data [5]. The qualitative agreement was observed and the
spread of results for two different tunings was surprisingly small.
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In this paper we discuss the data on the multiplicity distributions listed
above as well as the data from the CMS experiment [6] compared with
some lower energy data [7, 8, 9]. We use here the new version of PYTHIA
8.142 [10] with the default tuning and with the tuning used by default in the
older version 8.135. Let us note that the PYTHIA 8.142 version is signifi-
cantly changed compared to its earlier versions (PYTHIA 8.107 and 8.135)
which we have used in a previous publication [1]. The changes, concerning
mainly the final state radiation, are motivated by the discrepancy between
the Tevatron data for “underlying event” and the model results. The quali-
tative conclusions of our note [1] are, however, unchanged.

In the next section, we compile for convenience the formulae defining the
moments. factorial moments and factorial cumulants of the multiplicity dis-
tributions. Then, we recall the results from Ref. [1] and compare them with
the factorial cumulants calculated from the data and MC generators. We
will see that the scaled factorial cumulantsKq, calculated from the published
values of the standard scaled moments cq and the average multiplicities n,
exhibit much smaller spread than suggested by the published values of the
uncertainties of cq and n. Thus it would be more reasonable to use the scaled
factorial cumulants of the multiplicity distributions to test the specific mod-
els of the high energy collisions. Finally, we discuss the energy dependence
of the average multiplicity and second moment in a wider energy range, as
presented in the CMS paper [6]. The last section contains some conclusions
and the outlook.

2. Moments and cumulants

The multiplicity distributions are often parametrized in terms of mo-
ments. This facilitates the comparison with models and allows for a simple
description of the energy dependence. The crucial problem is the proper
choice of the set of moments to be used. A standard first choice is to use
simple power moments defined by

n q = ΣnqP (n)

or their scaled version

cq =
nq

n q .

These moments are easy to calculate and (for moderate q) depend quite
uniformly on the probabilities, although obviously the lowest multiplicities
are suppressed, and the high multiplicity tail is enhanced. The use of n and
a few lowest cq moments allows to parametrize the multiplicity distribution
quite satisfactorily. In the high energy (high n) limit these moments allow
to describe the “KNO scaling function” Ψ(x) [11] defined by
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Ψ(x) = lim
n→∞

P (n)
n

,

where x = n/n. Obviously, in this limit

cq =
∫
zqΨ(z) dz .

However, for the distributions in small phase space bins the power in the
denominator of the formula for the scaled moments results in the develop-
ment of trivial singularities. Thus, since some time, the factorial moment
have been more often used. If we define the factorial quotient

nq =
n!

(n− q)!

the corresponding standard and scaled factorial moments are, respectively

nq = ΣnqP (n)

and
Fq =

nq

n q .

The factorial moments of the order of q are the integrals of the q-particle
densities for identical particles. Obviously, n1 = n is the integral of the
single particle density. For the smooth phase space distributions the scaled
factorial moments behave smoothly for the bin size decreasing to zero, and
the possible power increase is a signal for intermittency [12]. However, the
drawback of the definition of the higher factorial moments is their indepen-
dence on the lower end of the multiplicity distribution. Moreover, the scaled
factorial moments of different order are strongly correlated.

Therefore, it is preferable to parametrize the multiplicity distributions
by the factorial cumulants. They are defined in a compact way by the
generating function

G(z) = ΣznP (n) .

The factorial cumulants fq (called also “Mueller coefficients” [13]) are defined
by

fq =
dq(lnG(z))

dzq

∣∣∣
z=1

to be compared with an analogous definition of the factorial moments

nq =
dqG(z)
dzq

∣∣∣
z=1

.
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The scaled factorial moments are defined in a usual way

Kq =
fq

nq .

By definition, for q = 1 all the scaled moments cq, Fq and Kq are equal
to one. Another name for the factorial cumulants fq is “the correlation
integrals”, as they are the integrals of the correlation functions of the order
of q. Therefore, they measure the genuine multiparticle correlations. For
the uncorrelated emission all the factorial cumulants for q > 1 vanish. If
there are only two-particle correlations, fq = 0 for q > 2. The values of the
factorial cumulants of different orders are uncorrelated.

One may add that another set of moments was advocated [14]

Hq =
Kq

Fq
=
fq

nq
.

These moments were shown to have strongly reduced statistical uncertainties
even for the order up to q = 10. However, for q < 5 they are not very
practical to use, as their values quickly decrease with increasing q.

A practical difficulty in using the factorial cumulants is the complexity
of the formulae for their errors, or, more precisely, for their statistical un-
certainties. For the average multiplicity one uses a simple estimate of the
uncertainty

∆n =
D√
N
,

where D is the dispersion, and N is the total number of measured events.
Analogous simple formulae exist for the higher standard moments nq. How-
ever, for the scaled moments, and especially for cumulants, the correspond-
ing formulae are more complicated. Moreover, usually they overestimate
significantly the observed spread of experimental results.

There is a simple explanation of this fact. The formula for ∆n was
obtained from a simple prescription for the statistical uncertainty of a pa-
rameter

∆A =

√
Σ

(
∂A

∂Nn

)2

(∆Nn)2

with ∆Nn =
√
Nn. This prescription results from the assumption that the

measured numbers of events with different multiplicitiesNn are uncorrelated,
and their errors are purely statistical. These assumptions were reasonable
e.g. for the hydrogen bubble chamber experiments, where the full solid
angle was available for the measurements of tracks, and the multiplicity
of charged particles (always even for charged beam) was unambiguously
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measured. This is certainly not the case for a colliding beam experiment
with electronic detectors, where the multiplicity distribution is measured in
the restricted bin of phase space. The uncertainty of a measurement of the
variables defining this bin, as well as the effects of the track splitting and
joining due to the imperfection of the detector, result in non-statistical errors
and in the strong correlations between the numbers of events with different
multiplicities. Neither a simple formula for ∆n presented above, nor the
complicated formulae for the uncertainties of the scaled factorial cumulants
(derived from the same prescription for the statistical uncertainties of the
numbers of events) are reliable.

Therefore, the realistic estimate of the uncertainties of the parameters
of the multiplicity distribution requires the full knowledge of the detector
and, in particular, the measurement of the correlation matrix for the multi-
plicities. This can be done only by the authors of the experiment. Readers
cannot translate them reliably into a different set of parameters, since their
uncertainties will be unknown.

3. Moments and factorial cumulants

In a recent paper [5] the ALICE Collaboration has presented the values
of average multiplicities and scaled moments cq for q = 2, 3, 4 at two CM
energies 0.9 and 2.36 TeV for three choices of the central pseudorapidity bin
widths: ∆η < 1, ∆η < 2 and ∆η < 2.6.

In Table I and in Fig. 1 we show the experimental values of the n from
the “non-single-diffractive” (NSD) ALICE data at 900 GeV and 2.36 TeV and
the corresponding values calculated from the PYTHIA 8.142 default version.
For each point we have generated 105 events. In all tables the numbers in
parentheses denote the statistical and systematic errors.

TABLE I

Average multiplicities for three choices of rapidity bins from ALICE and two ver-
sions of PYTHIA 8.142 at 0.9 and 2.36 TeV.

η range ALICE 0.9 P8.142 P8.142/135 ALICE 2.36 P8.142 P8.142/135

|η |< 0.5 3.60(2)(11) 3.57 3.87 4.47(3)(10) 4.45 4.75
|η |< 1.0 7.38(3)(17) 7.27 7.88 9.08(6)(29) 9.04 9.66
|η |< 1.3 9.73(12)(19) 9.57 10.35 11.86(22)(45) 11.89 12.68

The data for the average multiplicities agree well with the model (re-
member that we are using the default version of PYTHIA 8.142 without
any tuning). The agreement is significantly better than that for the central
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Fig. 1. The average multiplicity from the ALICE data at 0.9 and 2.36 TeV (asterisks
with error bars), from PYTHIA 8.142 (open squares and circles) and from PYTHIA
8.142/135 (full squares and circles) as a function of the pseudorapidity bin width.

densities of charged particles for inelastic events with at least one particle in
the central bin, measured by ALICE at 0.9, 2.36 and 7 TeV [2], although in
this case the increase with energy is also reasonably well described, as seen
in Table II and in Fig. 2.

TABLE II

Central density: data and the results for two versions of PYTHIA 8.142.

Energy (TeV) ALICE PYTHIA 8.142d PYTHIA 8.142/135d

0.90 3.81(1)(7) 3.58 3.86
2.36 4.70(1)(11) 4.41 4.69
7.00 6.01(1)(20) 5.80 6.14

We have repeated the same calculations for the PYTHIA 8.142 with a
different set of the model parameter values: the default values from the
PYTHIA 8.135 version are taken. Let us remind here that the tuned pa-
rameters refer to the formulae used in the description of multiple scattering.
The regularization of the (divergent) QCD cross-section is done by the in-
troduction of a factor

F (pT) =
p4
T(

p2
T0 + p2

T

)2 ,
where

pT0 = pT0Ref
(ecmNow
ecmRef

)ecmPow
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Fig. 2. Central density: data (asterisks with error bars), PYTHIA 8.142 default
(squares) and PYTHIA 8.142 with 8.135 tuning (circles) as a function of the CM
energy.

and ecmNow is the CM energy in GeV. The default values in PYTHIA 8.135
are 2.0 for the pT0Ref, 1960.0 for ecmRef and 0.16 for ecmPow. In PYTHIA
8.142 the corresponding values are 2.15, 1800.0 and 0.24. Moreover, the de-
fault version of PYTHIA 8.142 uses a simplified profile of the parton density
in the impact parameter given by a Gaussian curve, whereas the standard
earlier versions were using two Gaussians (with two extra parameters for
the ratios of their slopes and weights). We have found that in this case the
results for the average multiplicities are reversed: there is a perfect agree-
ment for central densities in the “INEL>0” sample (see Table II) and a slight
overestimation for the NSD sample.

The difference between Tables I and II shows that the ALICE procedures
give for the PYTHIA events practically the same average multiplicity in the
“NSD” and “INEL>0” samples, whereas experimentally the second sample
has higher average multiplicity, which suggests lower contribution from the
diffractive events. Remember that for PYTHIA we use the same definition of
“NSD” and “INEL>0” events as in the data. This means that we generate all
the classes of events (non-diffractive, single diffractive and double diffractive)
and then remove the events which do not satisfy the conditions defined in
the ALICE procedures.

The formulae listed in the previous section allow to express the scaled
factorial cumulants in terms of the scaled moments and average multiplicity.
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For the lowest values of q we have:

K2 = F2 − 1 , F2 = c2 −
1
n
,

K3 = F3 − 3F2 + 2 , F3 = c3 −
c2
n

+
2
n2

and

K4 = F4 − 4F3 − 3F 2
2 + 12F2 − 6 , F4 = c4 −

6c3
n

+
11c2
n2 −

6
n3 .

For the higher values of q it is more practical to use a recurrence formula
expressing Kq by Fq and the K moments of the lower order

Kq = Fq −
∑

i

(q − 1)!
(i− 1)!(q − i)!

Kq−iFi .

In Table III we show the values of the cq and Kq moments at 900GeV,
and in Table IV the same results at 2.36TeV.

TABLE III

Scaled moments and factorial cumulants for three choices of rapidity bin from
ALICE and two versions of PYTHIA 8.142 at 0.9 TeV.

η range cq ALICE P8.142 P8.142/135 Kq ALICE P8.142 P8.142/135

|η |< 0.5 c2 1.96(1)(6) 1.73 1.85 K2 0.68 0.45 0.59
|η |< 1.0 c2 1.77(1)(4) 1.56 1.70 K2 0.63 0.42 0.57
|η |< 1.3 c2 1.70(3)(7) 1.51 1.65 K2 0.60 0.40 0.55
|η |< 0.5 c3 5.35(6)(31) 4.16 4.93 K3 0.82 0.50 0.85
|η |< 1.0 c3 4.25(3)(20) 3.29 4.11 K3 0.66 0.42 0.78
|η |< 1.3 c3 3.91(10)(15) 3.04 3.84 K3 0.62 0.38 0.73
|η |< 0.5 c4 18.3(4)(1.6) 12.7 16.8 K4 1.13 0.70 1.39
|η |< 1.0 c4 12.6(1)(9) 8.65 12.6 K4 0.82 0.50 1.24
|η |< 1.3 c4 10.9(4)(6) 7.60 11.3 K4 0.57 0.43 1.10

These data show a few simple regularities:

1. The values of the cq moments increase with the value of q and with
energy, but decrease with the increasing pseudorapidity bin width.
The average multiplicity, as expected, increases with the bin width
and energy.
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TABLE IV
Scaled moments and factorial cumulants for three choices of rapidity bin from
ALICE and two versions of PYTHIA 8.142 at 2.36 TeV.

η range cq ALICE P8.142 P8.142/135 Kq ALICE P8.142 P8.142/135

|η |< 0.5 c2 2.02(1)(4) 1.75 1.90 K2 0.80 0.53 0.69
|η |< 1.0 c2 1.84(1)(6) 1.61 1.76 K2 0.73 0.50 0.65
|η |< 1.3 c2 1.79(3)(7) 1.56 1.71 K2 0.71 0.48 0.64
|η |< 0.5 c3 5.76(9)(26) 4.31 5.25 K3 1.12 0.64 1.08
|η |< 1.0 c3 4.65(6)(30) 3.56 4.46 K3 0.88 0.55 0.98
|η |< 1.3 c3 4.35(16)(33) 3.32 4.23 K3 0.79 0.51 0.93
|η |< 0.5 c4 20.6(6)(1.4) 13.4 18.6 K4 1.77 0.94 2.00
|η |< 1.0 c4 14.3(3)(1.4) 9.80 14.4 K4 0.98 0.71 1.68
|η |< 1.3 c4 12.8(7)(1.5) 8.75 13.1 K4 0.83 0.61 1.51

2. The regularities listed above hold for q = 4 even in the cases, when
the experimental errors given by the authors exceed the differences
between the data for different energies or different bin widths. This is
not so surprising for the bin width dependence, as the data are here
clearly quite strongly correlated. The presence of a similar effect in
the energy dependence seems to suggest that the systematic errors at
two energies are also correlated.

3. The values of cq in the two tunings differ by 0.15, 0.9 and 5 for q = 2, 3
and 4, respectively. In contrast, the values of Kq differ much less for
q > 2. The model with the “wrong” tuning is compatible with data
for q > 2. This suggests that by a more refined tuning one may get
a reasonable agreement with data not only for average multiplicities,
but also for higher moments. Using the factorial cumulants we find a
smaller spread of the values both in the model and in the data.

4. The moments of the multiplicity distributions are systematically un-
derestimated in the default tuning of PYTHIA 8.142. For the cq mo-
ments the difference between the data and the model values is around
0.2, 1 and 5 for q = 2, 3 and 4, respectively, and increases weakly
with the energy. For the Kq moments the trend is the same, but the
differences for q > 2 are much smaller: only in one case the difference
is bigger than 0.5. For the 8.135 tuning the situation is much more
involved. All the values of the moments are now significantly higher.
Whereas for cq they are still lower than in the data, the difference is
really significant only for q = 2. For the Kq the values are below the
data for q = 2, and above the data for q = 4.
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It would be highly desirable to calculate reliably the experimental er-
rors of the scaled factorial cumulants to see how significant is the difference
between the model and data seen in Tables III and IV. We have checked
that the statistical uncertainties of the model results for a given set of pa-
rameters are negligible: by increasing the statistics by a factor of ten we
do not change the values from the tables by more than a few percent. In
all cases the observed fluctuations for cq are negligible compared with the
experimental errors. However, as noted above, tuning the model parameters
allows to change the results sufficiently to hope for the agreement with data.

4. Energy dependence from SPS to LHC

The CMS Collaboration has also measured the multiplicity distributions
for non-single-diffractive (NSD) events at the CM energies of 0.9, 2.36 and
7 TeV [6]. Contrary to the most of published results, where the “NSD”
events are defined just by giving the trigger conditions, the CMS data are
extrapolated and corrected to remove single diffraction. Since we are unable
to repeat this procedure in detail, the precise comparison with MC results
is beyond our ability. We have to rely on the effectiveness of the CMS
procedure and to compare their data with the events generated in PYTHIA
as non-single-diffractive.

The CMS paper refers also to the published data from the lower energies:
the CERN collider data from UA5 [7] and UA1 [8] collaborations and the
SPS data from the EHS/NA22 Collaboration [9]. Thus it is possible to
check if the energy evolution in the wider range is reasonably described by
the PYTHIA 8 generator, and what are the differences between the different
tunings in this range. For the sake of transparency, the UA1 data are shown
only in the figure containing the average multiplicities.

In Fig. 3 we show the data for the average multiplicity in the range | η |<
2.4 (2.5 for lower energies) and the PYTHIA 8.142 results with two tunings
described above. At the CERN collider energies the PYTHIA predictions
are shown only with the UA5 trigger conditions. We see that the MC results
agree quite well with the observed trend of the data and the values from the
two tunings bracket the experimental results.

The situation is much more involved for the moments. In Fig. 4 we show
the second scaled moment c2 for two choices of the rapidity range: | η |< 0.5
and | η |< 2.4 (2.5 for lower energies). Apart from the data and MC results
for two tunings (which coincide practically for lower energies) we show here
the MC predictions for “true NSD” events. As shown in Fig. 4, the MC
predictions for the NA22 data (defined by their trigger) are quite far from
the MC results for “true NSD” events. This casts some doubts on the claims
of selecting the “true NSD” events from the data by triggers and corrections.
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Fig. 3. The average multiplicity in the |η| < 2.4 range from the NA22 data (tri-
angle), UA5 data (open stars), UA1 data (open crosses) and CMS data (black
dots). PYTHIA 8.142 predictions for NA22, UA5 and CMS with default and 8.135
tunings are shown as xs and bars.

Fig. 4. The c2 moment in the | η |< 0.5 and | η |< 2.4 range from the NA22, UA5
and CMS data (vertical bars). PYTHIA 8.142 predictions with default and 8.135
tunings are shown as xs and bars, respectively. The points for UA5 and CMS data
are connected by dotted lines to guide the eye. The open points show the PYTHIA
predictions for the pure NSD sample at the UA5 and NA22 energies.
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For UA5 data the difference is smaller. Note that the difference between
the PYTHIA predictions for UA5 and CMS at the same energy of 0.9 TeV
results from the different definition of NSD events.

The agreement of the model with data is unsatisfactory: the moments
are underestimated at NA22 and UA5 energies for both η ranges. However,
the differences are not too big and the energy dependence is qualitatively
correct. The most important feature of the results is the sudden increase of
differences between the results from two tunings at highest energies. This
suggests that the reliable measurement of the multiplicity distribution at
7TeV should fix the tuning well enough to allow for a significant test of the
model from other data.

In Fig. 5 we show the third scaled moment for the rapidity ranges
| η |< 0.5 and | η |< 2.4 (2.5 for lower energies). We see that the pattern is
similar to that of the second moment. For the NA22 data the value of c3 is
again much higher than from the smooth extrapolation of the higher energy
data, suggesting that the trigger does not select well the NSD events. The
agreement of PYTHIA with low energy data is not quite satisfactory, but
the energy dependence is qualitatively correct. The LHC data are bracketed
by two versions of PYTHIA 8.142 tunings, which differ strongly at highest
energies.
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Fig. 5. The c3 moment in the | η |< 0.5 and the | η |< 2.4 range from the NA22,
UA5 and CMS data (full circles with error bars). PYTHIA 8.142 predictions with
default and 8.135 tunings are shown as open squares and triangles, respectively.
For transparency, the data points for UA5 and CMS and the PYTHIA predictions
at 0.9 TeV are slightly shifted to lower and higher energy, respectively.
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Fig. 6. The c4 moment in the | η |< 0.5 and the | η |< 2.4 range from the NA22,
UA5 and CMS data (full circles with error bars). PYTHIA 8.142 predictions with
default and 8.135 tunings are shown as open squares and triangles, respectively.
For transparency, the data points for UA5 and CMS and the PYTHIA predictions
at 0.9 TeV are slightly shifted to lower and higher energy, respectively.

In Fig. 6 the fourth scaled moment is shown for the rapidity ranges
| η |< 0.5 and | η |< 2.4 (2.5 for lower energies), respectively. Again,
the pattern is similar. Note that the relative experimental uncertainties
are almost the same. This makes the discrepancies at lower energies less
significant.

In general, the qualitative agreement of PYTHIA with the energy de-
pendence of the mutiplicity distributions should be regarded as acceptable.

5. Conclusions and outlook

We have extended our former analysis of the multiplicity distributions at
the LHC energies [1] using the new version of MC generator (PYTHIA 8.142
with two tunings) and calculated the scaled factorial cumulants from the
scaled moments and average multiplicities for the model and ALICE data.
We have also investigated the energy dependence of the average multiplicity
and the three lowest scaled moments in the wide energy range, comparing
the PYTHIA results with the NA22, UA5 and CMS data.

We have found that the fast increase of the central density of charged
hadrons at LHC energies agrees quite well with the model predictions. The
use of factorial cumulants should facilitate the fixing of the tuning param-
eters. The energy dependence of the scaled moments is qualitatively well
described in the wide range covering the SPS, CERN collider and LHC en-
ergies.
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There is a large difference between the PYTHIA results with two tunings
at the highest energies. This suggests that the multiplicity distributions from
LHC are well suited to fix the tuning of MC generators. Other data could
be then compared with the model predictions.
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