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Classical and relativistic multiphase and multicomponent flows repre-
sent an interesting field of research due to their various applications. In
order to simulate multiphase and multicomponent flows, the effect due to
interfaces between constituents has to be analyzed. In the approach follow-
ing in this paper, the constituents are averaged to lead to a homogeneous
mixture, thus only one set of equations for the total mass, momentum,
and energy of the mixture, supplemented by equations for the mass or vol-
ume fraction of the constituents has to be solved. The main purpose of
this paper is to develop the relativistic generalization of a recent classical
approach to the study of multiphase and multicomponent homogeneous
mixture. An hyperbolic system of equations is founded, made by particle
number and energy-tensor conservations equations, supplemented by mass
or volume fraction equations for the constituents. Thus, a non linear wave
propagation compatible with this system is considered.
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1. Introduction
Due to their various applications, classical and relativistic multiphase

and multicomponent flows represent an interesting field of research. In clas-
sical framework, multiphase and multicomponent mixture are common in
a lot of engineering applications, as for example fuel sprays in combus-
tion processes, liquid-jet machining of materials, and stream generation
and condensation in nuclear reactors [1, 2, 3, 4, 5, 6, 7]. Also in General
Relativity there are many topics where matter can be represented as a
multiphase/multicomponent mixture, see bibliography in [8, 9, 10]. They
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concerned, for example, null fluid with string fluid [11], radiation fluid in
addiction to a string fluid [12, 13, 14] and, for most of the history of the
Universe, the dominant matter content is a mixture of matter and radia-
tion [15,16,17,18,19].

The physical mechanisms underlying classical and relativistic multiphase
and multicomponent flows as well as the interplay of these mechanisms are
very complex. In those flows the phases and/or components can assume a
large number of complicated configurations; small-scale interactions between
the phases can have a deep impact on macroscopic flow properties [20].

In order to simulate multiphase and multicomponent flows, the effect
due to interfaces between constituents has to be analyzed, as for exam-
ple the large or discontinuous property variations across them. Two ap-
proaches are commonly used to simulate these flows. In the first one the
interfaces between the phases and/or components are tracked explicitly
[21, 22, 23, 24, 25, 26]. The prediction of the motion of large bubbles in a
liquid, the motion of liquid after a dam break, the prediction of jet breakup,
and the tracking of any liquid-gas interface are typical application of this
approach. In the second one, the constituents are averaged to lead to a
homogeneous mixture. Many dispersed flows including bubbly flow of air in
water or mist flow can be considered as homogeneous mixture. Moreover,
the homogeneous mixture is said to be in equilibrium if it is in both me-
chanical and thermal equilibrium while, on the contrary, it is said to be in
non-equilibrium. The advantage of the homogenized-mixture approach with
respect to the interface-tracking approach is that it solves, in classical frame-
work, only one set of equations for the total mass, momentum, and energy
of the mixture, supplemented by equations for the mass or volume fraction
of the constituents [27]. In relativistic framework, the set of equations is
made by particle number and energy-tensor conservations equations, sup-
plemented by mass or volume fraction equations for the constituents. How-
ever, there are challenges associated with the use of homogenized-mixture
approach, like the mathematical closure of the system, that is acoustically
and thermodynamically consistent.

The main purpose of this paper is to build up a relativistic formulation
of some recent results on classical dynamics of multiphase/multicomponent
flows with an arbitrary number of constituents (which can be either phases,
either components) starting from the idea of Lagumbay et al. [28,29], based
on an equilibrium-homogenized-mixture approach.

Since the phases and/or components of the mixture are sufficiently well
mixed and the particle size are sufficiently small so that any significant
relative motion can be ignored, the four-velocity, uα can be supposed to be
the same for each constituent of the mixture. Here, uα is the mixture unit
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four-vector defined to be future-pointing

gαβu
αuβ = 1 , (1)

where gαβ are the covariant components of Lorentz metric tensor with sig-
nature +,−,−,−. In what follows, the units are such that the velocity of
light is unitary. According to the homogeneous equilibrium mixture model,
the temperature T and the pressure p are the same for each phase and/or
component in the mixture. Conversely, each constituent has its own parti-
cle number density, rk, its specific internal energy, εk, and its energy den-
sity ρk [30, 31]

ρk = rk (1 + εk) , (2)

where the subscript k denote a specific phase or component, 1 ≤ k ≤ N ,
and N is the total number of constituents in the flow.

In what follows, the mixture is assumed to consist of two phases, namely
liquid and gas, and the gas phase is assumed to consist of two components,
namely, a generic gas and a vapor. These are denoted by the subscripts
1, 2 and 3 for gas, vapor and liquid, respectively. It should be noted, how-
ever, that the homogeneous equilibrium mixture model can be extended in a
straightforward fashion to an arbitrary number of phases and components.
Variables without subscripts are related to the mixture as a whole. The
subscript k is used to denote the variables of a specific constituent.

In the next sections, the relativistic multiphase and multicomponent flow
are described and the complete system of governing differential equations are
derived. Then, in Sec. 3, the propagation of weak discontinuities admitted
by the model are examined and the expression for their speeds of propaga-
tion are obtained. In the last section, the relativistic generalization of the
idealized fluid mixture model, obtained in a classical framework by Lagum-
bay et al. [28], is presented. The expression of the speeds of propagation of
weak discontinuity in this special case is also obtained.

2. Relativistic homogeneous equilibrium mixture model

The homogeneous equilibrium mixture model is based on the notion that
the four-velocity, the temperature, T , and the pressure, p, of all the phases
and/or components are equal, and then an unique four-velocity, temperature
and pressure are defined for the whole mixture. The quantities associated
with a given constituent are averaged to give the corresponding mixture
quantity. Accordingly, quantities per unit volume are averaged by their
respective volume fraction Xk. For example, the mixture particle number
density r is given by

r =
∑

k=1,2,3

rkXk , (3)
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where rk is the particle number density of the kth phase and/or components,
and the volume fractions satisfy the constraint∑

k=1,2,3

Xk = 1 . (4)

Conversely, quantities per unit mass are averaged by their respective mass
fractions Yk. For example, the specific internal energy ε of the mixture is
given by

ε =
∑

k=1,2,3

εkYk , (5)

where εk is the specific internal energy of the kth mixture element and the
mass fractions satisfy the constraint∑

k=1,2,3

Yk = 1 . (6)

The volume and mass fractions are related through the following relations

rkXk = rYk (k = 1, 2, 3) , (7)

and allow to define any bulk quantity. The expressions for the energy density
of the mixture, ρ, the relativistic specific enthalpy of the mixture, f , and
the specific heat at constant volume of the mixture, CV, are

ρ =
∑

k=1,2,3

ρkXk , (8)

f =
∑

k=1,2,3

fkYk , (9)

rf =
∑

k=1,2,3

rkfkXk , (10)

CV =
∑

k=1,2,3

CVkYk , (11)

where fk = 1 + εk + p/rk is the relativistic specific enthalpy and CVk is
the specific heat at constant volume of the kth constituent. Moreover, the
specific internal energy of the kth phase and/or components, εk, is supposed
to be given by εk = CVkT .

The equations governing the evolution of the relativistic homogeneous
equilibrium mixture are the particle number density conservation

∇α (ruα) = 0 , (12)
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the total energy-momentum conservation

∇αTαβ = 0 , (13)

where the stress energy tensor is given by

Tαβ = rfuαuβ − pgαβ , (14)

being f the relativistic total specific enthalpy

f = 1 + h = 1 + ε+
p

r
, (15)

with h = ε+p/r the “classical” specific enthalpy of the mixture. The balance
laws for particle number density for each phase and/or component is

∇α(rkXku
α) = 0 (k = 1, 2, 3) . (16)

Moreover, the spatial projection of the equation (13) is

γλβ∇αTαβ ≡ rfuα∇αuλ − γαλ∂αp = 0 , (17)

where γαβ = gαβ − uαuβ is the projection tensor onto the three-space or-
thogonal to uα (the rest space of an observer moving with four-velocity uα),
whereas the projection of (13) along uα is

uβ∇αTαβ ≡ uα∂αρ+ (ρ+ p)∇αuα = 0 , (18)

being ρ = r(1 + ε).
Together with (3), equations (16) implies the balance laws for the bulk

particle number density (12). By relations (7), equations (16) can be also
rewritten as

∇α (rYkuα) = 0 (k = 1, 2, 3) , (19)

which by virtue of (12), give the following evolution laws for the mass frac-
tions Yk

uα∂αYk = 0 (k = 1, 2, 3) . (20)

The constitutive equations of particle number density of the gas, vapor
and liquid are assumed to take the form

rk = rk(p, T ) (k = 1, 2, 3) . (21)

The mathematical model here derived is general and can be used for arbi-
trary forms of the equation of state of each phase. The following relations
can be obtained by differentiating (21)

drk =
1
λ2
k

dp−
(
βk
λk

)2

dT (k = 1, 2, 3) , (22)
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where λk = (∂p/∂rk)
1/2
T and βk = (∂p/∂T )1/2rk

are the isothermal speed
of sound and compressibility of the kth component, respectively. Using
equations (3) and (22), and the constraint (4), the differentiation of the
mixture particle number density yields

dr =
∑

k=1,2,3

rkdXk +
∑

k=1,2,3

Xkdrk , (23)

that can be also written as

dr = (r1 − r3)dX1 + (r2 − r3)dX2 +
1
λ2
X

dp− 1
λ2
Xβ

dT , (24)

where 1/λ2
X =

∑
kXk/λ

2
k and 1/λ2

Xβ =
∑

kXkβ
2
k/λ

2
k.

By rewriting equations (12), (17), (18), (20) in term of the seven inde-
pendent field variables uα, p, T,X1, X2, the mathematical study of the rel-
ativistic multiphase and multicomponent flow can be performed using the
following set of equations

uα∂αp = −ξ∇αuα , (25a)
rfuα∇αuβ = γαβ∂αp , (25b)

uα∂αT = − p

rCV
∇αuα , (25c)

uα∂αX1 = −ω1X1∇αuα , (25d)
uα∂αX2 = −ω2X2∇αuα , (25e)

where

ξ =
rCV + p

∑
k=1,2,3

Xk
rk

(
βk
λk

)2

rCV
∑

k=1,2,3
Xk

rkλ
2
k

,

ω1 = 1 +
p

r1rCV

(
β1

λ1

)2

− 1

r1λ
2
1

∑
k=1,2,3

Xk

rkλ
2
k

− p

r1rCVλ2
1

∑
k=1,2,3

Xk

rk

(
βk
λk

)2

,

ω2 = 1 +
p

r2rCV

(
β2

λ2

)2

− 1

r2λ
2
2

∑
k=1,2,3

Xk

rkλ
2
k

− p

r2rCVλ2
2

∑
k=1,2,3

Xk

rk

(
βk
λk

)2

.
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3. Weak discontinuities

In a domain Ω of space-time V4, let Σ be a regular hyper-surface, not
generated by the flow lines, being ϕ (xα) = 0 its local equation. It is set
Lα = ∂αϕ. As it will be clear below, the hypersurface Σ is a space-like one,
i.e. LαLα < 0. In the following, Nα will denote the normalized vector

Nα =
Lα√
−LβLβ

, NαN
α = −1 .

A particular class of solutions of system (25) is considered, namely, weak
discontinuity waves Σ, on which the field variables uα, p, T , X1, X2 are
continuous, but jump discontinuities may occur in their normal derivatives.
In this case, if Q denotes any of these fields, then there exists [30, 32] the
distribution δQ, with support Σ, such that

δ [∇αQ] = NαδQ ,

where δ is the Dirac measure defined by ϕ with Σ as support, square brackets
denote the discontinuity, δ being an operator of infinitesimal discontinuity;
δ behaves like a derivative insofar as algebraic manipulations are concerned.

Then, from system (25), the following linear homogeneous system in the
distributions Nαδu

α, δp, δT , δX1 and δX2 is obtained

Lδp+ ξNαδu
α = 0 , (26a)

rfLδuα − γαβNβδp = 0 , (26b)

LδT +
p

rCV
Nαδu

α = 0 , (26c)

LδX1 + ω1X1Nαδu
α = 0 , (26d)

LδX2 + ω2X2Nαδu
α = 0 , (26e)

where L = uαNα. Moreover, from the unitary character of uα it follows that

uαδu
α = 0 . (27)

Now, the normal speeds of propagation of the various waves with respect
to an observer moving with the mixture velocity uα can be investigated. The
normal speed λΣ of propagation of the wave front Σ, described by a time-
like word line having tangent vector field uα, that is with respect to the time
direction uα, is given by [30,31,32]

λ2
Σ =

L2

1 + L2
. (28)
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The local causality condition, i.e. the requirement that the characteristic
hyper-surface Σ has to be time-like or null (or equivalently that the normal
Nα be space-like or null, that is gαβNαNβ ≤ 0), is equivalent to the condition
0 ≤ λ2

Σ ≤ 1.
System (26) admits the solution L = 0, which represents a wave mov-

ing with the mixture. For the corresponding discontinuities the following
equations holds

Nαδu
α = 0 , δp = 0 . (29)

Since the coefficients characterizing the discontinuities exhibit five degrees of
freedom, then system (26) admits five independent eigenvectors correspond-
ing to L = 0 in the space of the field variables.

Under the assumption L 6= 0, equation (26b), multiplied by Nα, gives

rfLNαδu
α + l2δp = 0 , (30)

where l2 = 1 + L2. As a consequence, (26a) and (30) represent a linear
homogeneous system in the two scalar distributions Nαδu

α and δp, which
may have non trivial solutions only if the determinant of the coefficients
vanishes. Therefore, we find the equation

H ≡ rfL2 − ξl2 = 0 , (31)

which corresponds to the hydrodynamical waves propagating in such a rela-
tivistic homogeneous equilibrium mixture. Their speeds of propagation are
given by

λ2
Σ =

ξ

rf
=

rCV + p
∑

k=1,2,3

Xk

rk

(
βk
λk

)2

r2fCV

∑
k=1,2,3

Xk

rk

1
λ2
k

(32)

and the condition 0 < (ξ/rf) ≤ 1 ensures their spatial orientation.
The associated discontinuities can be written in terms of ψ = −nαδuα

as follows

δuα = ψnα , (33a)

δT =
p

rCV

l

L
ψ , (33b)

δp = ξ
l

L
ψ , (33c)

δX = ω1X1
l

L
ψ , (33d)

δY = ω2X2
l

L
ψ , (33e)
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where nα is the unitary space-like four-vector defined by

nα =
1
l

(Nα − Luα) . (34)

Observe that if the above condition characterizing the space-like orienta-
tions of the surface is verified, then the governing equations represent a (not
strictly) hyperbolic system. In fact, all velocities (eigenvalues) are real, and
there is a complete set of eigenvectors in the space of field variables, i.e.
seven independent eigenvectors (5 from L = 0 and 2 from H = 0), for the
seven independent field variables uα, p, T , X1 and X2.

4. Application: relativistic idealized fluid mixture

In order to obtain a closed-form solution of the governing equation, the
mixture entropy density is assumed to be a function of pressure p, temper-
ature T and mass fractions Yk

S = S(p, T, Yk) , (35)

so that, using the Gibbs equation, the following differential relation holds

TdS = dε+ pd

(
1
r

)
+

∑
k=1,2,3

LkdYk , (36)

where Lk is the latent heat phase change and is assumed to be a function of
pressure and temperature, Lk = Lk(p, T ).

Equations (7) lead to the relation

1
r

=
∑

k=1,2,3

Yk
rk
, (37)

and its differentiation gives

d

(
1
r

)
=

∑
k=1,2,3

(
dYk
rk
− Yk

drk
r2k

)
. (38)

Using the constitutive equations (21), (38) can be written as

d

(
1
r

)
=

∑
k=1,2,3

(
dYk
rk

+ Yk
∂

∂p

(
1
rk

)
dp+ Yk

∂

∂T

(
1
rk

)
dT

)
. (39)

The differentiation of the specific internal energy of the mixture, ε = CVT ,
yields

dε = CVdT + T
∑

k=1,2,3

(CVkdYk) , (40)
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and the introduction of equations (39) and (40) into (36) leads to

dS =
∑

k=1,2,3

{[
CVkYk
T

+
p

T
Yk

∂

∂T

(
1
rk

)]
dT

+
[
p

T
Yk

∂

∂p

(
1
rk

)]
dp+

[
CVk +

p

Trk
+
Lk
T

]
dYk

}
. (41)

Since dS is a total derivative, equation (41) implies the following constraints∑
k=1,2,3

Yk
r2k

(
∂rk
∂T

+
p

T

∂rk
∂p

)
= 0 , (42)

∂

∂T

(
Lk
T

)
=

CVk

T
+

p

T 2rk
, (43)

∂

∂p

(
Lk
T

)
= − 1

Trk
. (44)

In order equation (42) to be satisfied for arbitrary mass fractions, the
expression inside the brackets must be equal to zero for each constituent.
Consequently, the constitutive equation for each constituent must be a func-
tion of the ratio of pressure and temperature, i.e.

rk = rk

( p
T

)
. (45)

Assuming that gas and vapor follow the ideal-gas laws, respectively

r1 =
p

R1T
, (46)

r2 =
p

R2T
, (47)

and the specific heat at constant volume of gas and vapor is given by, re-
spectively

CV1 =
R1

γ1 − 1
, (48)

CV2 =
R2

γ2 − 1
, (49)

where γ1 and γ2 are the specific ratio of the gas and vapor respectively.
For the liquid, it is proposed the relativistic version of the idealized liquid

proposed by Lagumbay in classical framework [29]

r3 = ro + α
p

T
, (50)
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where α = To/λ
2
3o, To is the reference temperature, λ3o is the reference speed

of sound, and ro is the reference particle number density of the liquid. A
liquid obeying to (50) is called relativistic idealized liquid.

Combining (46), (47) and (50) with (37), the mixture particle number
density can be written as

r =
p/T

R1Y1 +R2Y2 +
p

T
Y3

(
ro + α

p

T

)−1 . (51)

The mixture defined by the previous relation is called relativistic idealized
fluid mixture because it is derived from the relativistic idealized liquid de-
fined above and an ideal gas and vapor. This equation can be interpreted
as the equation of state of the mixture.

The normal speeds of propagation (32) of the hydrodynamical waves for
this particular mixture is

λ2
Σ =

1
rf

rCV + pβ2
∑

k=1,2,3

Xk

rkλ
2
k

rCV

∑
k=1,2,3

Xk

rkλ
2
k

, (52)

where λ1 = (R1T )1/2, λ2 = (R2T )1/2 and λ3 = (T/α)1/2 are the isothermal
speeds of sound in the gas, vapor and liquid, respectively, and β = β1 =
β2 = β3 = (p/T )1/2 is the compressibility. Some simplifications yield

λ2
Σ =

1
rf

rCVλ
2
X/r + pβ2

rCV
, (53)

where
1

λ2
X/r

=
∑

k=1,2,3

Xk

rkλ
2
k

. (54)
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