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Relativistic energy density functionals (EDF) provide a complete and
accurate description of nuclear ground states and collective excitations.
Employing semi-empirical functionals adjusted to the nuclear matter equa-
tion of state and to bulk properties of finite nuclei, this framework has
been applied to studies of arbitrarily heavy nuclei, exotic nuclei far from
stability, and even systems at the nucleon drip-lines. EDF-based structure
models have also been developed that go beyond the static mean-field ap-
proximation, and include correlations related to the restoration of broken
symmetries and to fluctuations of collective variables.
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1. Introduction

Nuclear energy density functionals (NEDF) provide a microscopic, glob-
ally accurate, and yet economic description of ground-state properties and
collective excitations over the whole nuclide chart. The basic implementation
is in terms of self-consistent mean-field (SCMF) models, in which an EDF is
constructed as a functional of one-body nucleon density matrices that cor-
respond to a single product state — Slater determinant of single-particle or
single-quasiparticle states. Nuclear SCMF models effectively map the many-
body problem onto a one-body problem, and the exact EDF is approximated
by a functional of powers and gradients of ground-state nucleon densities and
currents, representing distributions of matter, spins, momentum and kinetic
energy. In principle, the nuclear EDF can incorporate short-range corre-
lations related to the repulsive core of the inter-nucleon interaction, and
long-range correlations mediated by nuclear resonance modes. When con-
sidering applications, however, an important challenge for the framework of
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EDF is the systematic treatment of collective correlations related to restora-
tion of broken symmetries and fluctuations of collective coordinates. A static
nuclear EDF is characterized by symmetry breaking — translational, rota-
tional, particle number, and can only provide an approximate description of
bulk ground-state properties. To calculate excitation spectra and electro-
magnetic transition rates in individual nuclei, it is necessary to extend the
SCMF scheme to include correlations that arise from symmetry restoration
and fluctuations around the mean-field minimum. Collective correlations are
sensitive to shell effects, display pronounced variations with particle number
and, therefore, cannot be incorporated in a universal density functional.

An important class of nuclear structure models belongs to the frame-
work of relativistic energy density functionals (REDF). In particular, mod-
els based on the relativistic mean-field (RMF) approximation have been
employed very successfully in analyses of ground-state properties, not only
in nuclei along the valley of β-stability, but also in exotic nuclei with ex-
treme isospin values and close to the particle drip lines. Applications have
reached a level of accuracy comparable to the non-relativistic Hartree–Fock–
Bogoliubov approach based on Skyrme functionals or Gogny effective inter-
actions [1,2,3,4,5]. The nucleon spin degree of freedom is included in a nat-
ural way in the framework of REDFs, and the resulting nuclear spin–orbit
potential emerges automatically with the empirical strength. The consistent
treatment of large isoscalar, Lorentz scalar and vector self-energies, provides
a unique parametrization of time-odd components of the nuclear mean-field,
i.e. nucleon currents, that is absent in the non-relativistic representation of
the energy density functional. The empirical pseudospin symmetry in nu-
clear spectroscopy finds a natural explanation in terms of relativistic mean
fields, and a covariant framework provides a consistent treatment of symmet-
ric and asymmetric nuclear matter. In this work, we review recent advances
in the framework of relativistic EDFs and, in particular, the latest extensions
that include the treatment of collective correlations.

2. The relativistic energy density functional DD-PC1

The basic building blocks of a relativistic nuclear energy density func-
tional are the densities and currents bilinear in the Dirac spinor field ψ of
the nucleon

ψ̄OτΓψ , Oτ ∈ {1, τi} , Γ ∈ {1, γµ, γ5, γ5γµ, σµν} . (1)

τi are the isospin Pauli matrices and Γ generically denotes the Dirac ma-
trices. The nuclear ground-state density and energy are determined by the
self-consistent solution of relativistic linear single-nucleon equations. To
derive those equations it is useful to construct an interaction Lagrangian



Relativistic Energy Density Functionals: Beyond the Mean-field . . . 407

with four-fermion (contact) interaction terms in the various isospace–space
channels: isoscalar–scalar (ψ̄ψ)2, isoscalar–vector (ψ̄γµψ)(ψ̄γµψ), isovector–
scalar (ψ̄~τψ) · (ψ̄~τψ), isovector–vector (ψ̄~τγµψ) · (ψ̄~τγµψ). A general La-
grangian can be written as a power series in the currents ψ̄OτΓψ and their
derivatives, with higher-order terms representing in-medium many-body cor-
relations. In Ref. [6] a Lagrangian was considered that includes second-
order interaction terms, with many-body correlations encoded in density-
dependent strength functions

L = ψ̄ (iγ · ∂ −m)ψ
−1

2αS (ρ̂)
(
ψ̄ψ
) (
ψ̄ψ
)
− 1

2αV (ρ̂)
(
ψ̄γµψ

) (
ψ̄γµψ

)
−1

2αTV (ρ̂)
(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
−1

2δS
(
∂νψ̄ψ

) (
∂νψ̄ψ

)
− eψ̄γ ·A(1− τ3)

2
ψ . (2)

In addition to the free-nucleon Lagrangian and the interaction terms, when
applied to nuclei, the model must include the coupling of protons to the elec-
tromagnetic field. The derivative term in Eq. (2) accounts for leading effects
of finite-range interactions that are crucial for a quantitative description of
nuclear density distributions, e.g. nuclear radii. Similar interactions can
be included in each space–isospace channel. In practice, however, data on
charge radii can only constrain a single derivative term. The Lagrangian (2)
includes an isovector–vector but not an isovector–scalar term. Although the
total isovector strength is relatively well-defined, the distribution between
the scalar and vector channels is not determined by ground-state data.

The single-nucleon Dirac equation is obtained from the variation of the
Lagrangian with respect to ψ̄[

γµ
(
i∂µ −Σµ −Σµ

R

)
− (m+ΣS)

]
ψ = 0 (3)

with the nucleon self-energies defined by the following relations:

Σµ = αV(ρv)jµ + e
(1− τ3)

2
Aµ , (4)

Σµ
R =

1
2
jµ

ρv

{
∂αS

∂ρ
ρ2
s +

∂αV

∂ρ
jµj

µ +
∂αTV

∂ρ
~jµ~j

µ

}
, (5)

ΣS = αS(ρv)ρs − δS2ρs , (6)
Σµ

TV = αTV(ρv)~jµ . (7)

In addition to the contributions of the isoscalar–vector four-fermion inter-
action and the electromagnetic interaction, the isoscalar–vector self-energy
Σµ includes the “rearrangement” terms Σµ

R. The latter arise from the vari-
ation of the vertex functionals αS, αV, and αTV with respect to the nucleon



408 D. Vretenar, T. Nikšić

fields in the vector density operator ρ̂v. The inclusion of the rearrangement
self-energy is essential for energy-momentum conservation and the thermo-
dynamical consistency of the model. ΣS and Σµ

TV denote the isoscalar–scalar
and isovector–vector self-energies, respectively.

In the relativistic density functional framework the nuclear ground state
|φ0〉 is represented by the self-consistent mean-field solution of the system
of equations (3)–(7). The isoscalar and isovector four-currents and scalar
density read

jµ =
〈
ψ̄γµψ

〉
=

N∑
k=1

v2
k ψ̄kγµψk , (8)

~jµ =
〈
ψ̄γµ~τψ

〉
=

N∑
k=1

v2
k ψ̄kγµ~τψk , (9)

ρS =
〈
ψ̄ψ
〉

=
N∑
k=1

v2
k ψ̄kψk . (10)

ψk are Dirac spinors, and the sum runs over occupied positive-energy single-
nucleon orbitals, including the corresponding occupation factors v2

k. The
single-nucleon Dirac equations are solved self-consistently in the “no-sea”
approximation that omits the explicit contribution of negative-energy solu-
tions of the relativistic equations to the densities and currents.

Most NEDFs have been determined by empirical parameters adjusted
to ground-state data (masses, charge radii) of a relatively small number of
spherical closed-shell nuclei. In Ref. [6] a set of 10 constants that control the
strength and density dependence of the interaction terms of the Lagrangian
Eq. (2), was fine-tuned in a multistep parameter fit exclusively to the exper-
imental masses of 64 axially deformed nuclei in the regions A ≈ 150–180 and
A ≈ 230–250. The resulting functional DD-PC1 has been further tested in
calculations of binding energies, charge radii, deformation parameters, neu-
tron skin thickness, and excitation energies of giant monopole and dipole
resonances. The corresponding nuclear matter equation of state is charac-
terized by the following properties at the saturation point: nucleon den-
sity ρsat = 0.152 fm−3, volume energy av = −16.06 MeV, surface energy
as = 17.498 MeV, symmetry energy a4 = 33 MeV, and the nuclear matter
compression modulus Knm = 230 MeV.

For a quantitative description of open-shell nuclei it is necessary to con-
sider also pairing correlations. The relativistic Hartee–Bogoliubov (RHB)
framework [3] provides a unified description of particle–hole (ph) and particle–
particle (pp) correlations on a mean-field level by combining two average
potentials: the self-consistent mean field that encloses all the long range ph
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correlations, and a pairing field ∆̂ which sums up the pp-correlations. In
this work we present results that are based on RHB calculations with the
ph effective interaction derived from the DD-PC1 functional, and a pairing
force separable in momentum space: 〈k|V 1S0 |k′〉 = −Gp(k)p(k′) is used
in the pp channel. By assuming a simple Gaussian ansatz p(k) = e−a

2k2 ,
the two parameters G and a have been adjusted to reproduce the density
dependence of the gap at the Fermi surface in nuclear matter, calculated
with a Gogny force. For the D1S parameterization [8] of the Gogny force:
G = −728 MeV fm3 and a = 0.644 fm. When transformed from momentum
to coordinate space, the force takes the form

V
(
r1, r2, r

′
1, r
′
2

)
= Gδ

(
R−R′

)
P (r)P

(
r′
)

1
2 (1− P σ) , (11)

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center-of-mass and the

relative coordinates, and P (r) is the Fourier transform of p(k)

P (r) =
1

(4πa2)3/2
e−r

2/4a2
. (12)

The pairing force is of finite range and, because of the presence of the factor
δ (R−R′), it preserves translational invariance. Even though δ (R−R′)
implies that this force is not completely separable in coordinate space, the
corresponding pp matrix elements can be represented as a sum of a finite
number of separable terms in the basis of a 3D harmonic oscillator. The
force Eq. (11) reproduces pairing properties of spherical and deformed nuclei
calculated with the original Gogny force, but with the important advantage
that the computational cost is greatly reduced.

3. Beyond the mean-field approximation: shape evolution
in neutron-deficient Kr isotopes

A quantitative description of structure phenomena related to shell evolu-
tion necessitates the inclusion of many-body correlations beyond the mean-
field approximation. In a series of recent papers the framework of relativistic
energy density functionals has been expanded to include correlations related
to the restoration of broken symmetries and to fluctuations of collective
variables. A model has been developed that uses the generator coordinate
method (GCM) to perform configuration mixing of angular-momentum [9],
and also particle-number projected [10] relativistic wave functions. The
geometry is restricted to axially symmetric shapes, and the intrinsic wave
functions are generated from the solutions of the relativistic mean-field +
Lipkin–Nogami BCS equations, with a constraint on the mass quadrupole



410 D. Vretenar, T. Nikšić

moment. This approach has been further developed in Refs. [11] by im-
plementing a model that includes triaxial angular-momentum projection,
although without projection on nucleon number.

In an alternative approach to five-dimensional quadrupole dynamics that
restores rotational symmetry and takes into account fluctuations around
the triaxial mean-field minimum, a collective Bohr Hamiltonian can be
formulated. The corresponding deformation-dependent parameters are de-
termined from self-consistent relativistic mean-field calculations for triaxial
shapes [12]. Here, we illustrate this approach with a configuration mixing
calculation of Kr isotopes, based on triaxial RHB shapes computed with the
DD-PC1 functional.

Neutron-deficient nuclei in the mass region A ≈ 70–80 are predicted
to display coexisting prolate and oblate shapes, as a result of competing
large shell gaps for both prolate and oblate deformations at proton/neutron
number 34, 36, and 38. In Fig. 1 we display the 3D RHB binding energy
maps of the even-A Kr isotopes: 72Kr, 74Kr, 76Kr and 78Kr, calculated using
the DD-PC1 energy density functional plus the pairing interaction Eq. (11).
The map of the energy surface as a function of the quadrupole deformation
is obtained by imposing constraints on the axial and triaxial quadrupole
moments. All four isotopes appear to be rather soft with respect to both
β and γ degrees of freedom. The occurrence of nearly degenerate minima
raises the question of their stability against dynamical effects of collective
correlations.

The entire dynamics of the collective Hamiltonian is governed by the
seven functions of the intrinsic deformations β and γ: the collective poten-
tial, the three mass parameters: Bββ , Bβγ , Bγγ , and the three moments
of inertia Ik. These functions are determined by the choice of a particular
microscopic nuclear energy density functional or effective interaction. The
quasiparticle wave functions and energies, that correspond to constrained
self-consistent solutions of the RHB model, provide the microscopic input
for the parameters of the collective Hamiltonian

Ĥ = T̂vib + T̂rot + Vcoll , (13)

with the vibrational kinetic energy

T̂vib =− ~2

2
√
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Fig. 1. Self-consistent RHB triaxial quadrupole binding-energy maps of the even–
even isotopes 72−78Kr in the β−γ plane (0 ≤ γ ≤ 60◦). All energies are normalized
with respect to the binding energy of the absolute minimum.

and rotational kinetic energy

T̂rot =
1
2

3∑
k=1

Ĵ2
k

Ik
. (15)

Vcoll is the collective potential. Ĵk denotes the components of the angular
momentum in the body-fixed frame of a nucleus, and the mass parame-
ters Bββ , Bβγ , Bγγ , as well as the moments of inertia Ik, depend on the
quadrupole deformation variables β and γ: Ik = 4Bkβ2 sin2(γ − 2kπ/3).
Two additional quantities that appear in the expression for the vibrational
energy: r = B1B2B3, and w = BββBγγ − B2

βγ , determine the volume ele-
ment in the collective space. The moments of inertia are computed using the
Inglis–Belyaev formula, and the mass parameters associated with the two
quadrupole collective coordinates q0 = 〈Q̂20〉 and q2 = 〈Q̂22〉 are calculated
in the cranking approximation. The potential Vcoll in the collective Hamil-
tonian Eq. (13) is obtained by subtracting the zero-point energy corrections
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from the total energy that corresponds to the solution of constrained RHB
equations, at each point on the triaxial deformation plane. The Hamilto-
nian Eq. (13) describes quadrupole vibrations, rotations, and the coupling
of these collective modes. The corresponding eigenvalue problem is solved
using an expansion of eigenfunctions in terms of a complete set of basis
functions that depend on the deformation variables β and γ, and the Euler
angles φ, θ and ψ [12].

In Fig. 2 we display the resulting spectrum of collective states of 74Kr,
with the parameters of the collective Hamiltonian determined by the con-
strained self-consistent solutions of the RHB equations (cf. Fig. 1). The
calculated excitation energies and intraband and interband B(E2) values
are shown in comparison with available data [13]. The theoretical spectrum
shows a very good agreement with experiment, not only for the ground-state
band but also for the structures observed above the yrast. It should be em-
phasized that the calculation does not contain additional parameters, that
is, the solutions are completely determined by the DD-PC1 energy density
functional plus the pairing interaction Eq. (11). Physical observables, such
as transition probabilities and spectroscopic quadrupole moments, are cal-
culated in the full configuration space using the bare value of the proton
charge.
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Fig. 2. The low energy spectrum of 74Kr calculated with the DD-PC1 relativistic
density functional (left) compared with data (right) for the excitation energies and
intraband and interband B(E2) values (in e2 fm4).

A detailed comparison of spectroscopic data with the results of config-
uration mixing calculations based on the triaxial Hartree–Fock–Bogoliubov
model (Gogny D1S effective interaction), and with axial GCM calculations
(Skyrme SLy6 force), was reported in Ref. [13]. It was concluded that the
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structure of low-lying states in the light krypton isotopes is dominated by the
coexistence of prolate and oblate configurations. The ground-state bands of
74Kr and 76Kr, in particular, appear to be based on prolate-deformed min-
ima. For the DD-PC1 theoretical spectrum of 74Kr shown in Fig. 2, the
probability densities in the β–γ plane for the yrast states 0+

1 , 2+
1 , and 4+

1 ,
and the state 0+

2 , are plotted in Fig. 3. It is interesting to note that the two
lowest 0+ states exhibit a pronounced mixing of oblate and prolate configu-
rations. This mixing can be attributed to the softness of the potential with
respect to γ deformation. Even though the ground state is not prolate, the
collective functions of the other yrast states are concentrated close to the
prolate axis, and the prolate character of these states is also reflected in the
calculated spectroscopic moments, which are in agreement with the empir-
ical values [13]. Another distinct feature of the experimental spectrum are
the large B(E2) values for the transitions: 0+

2 → 2+
1 and 0+

3 → 2+
1 , which

confirm the strong mixing of prolate and oblate structures. In the present
calculation the corresponding theoretical B(E2) values are not that large,
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for instance B(E2; 0+
2 → 2+

1 ) = 2344 e2 fm4 but, nevertheless, the model re-
produces the complex structure observed above the yrast in the transitional
and γ-soft nucleus 74Kr.

In conclusion, the framework of relativistic energy density functionals
provides a global microscopic description of stable nuclei and isotopes far
from stability. When extended to take into account collective correlations,
this approach can be employed in studies of structure phenomena related
to shell evolution, including detailed predictions of excitation spectra and
electromagnetic transition rates.
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