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Theoretical approaches that use one-body densities as dynamical vari-
ables, such as Hartree–Fock or the density functional theory (DFT), break
isospin symmetry both explicitly, by virtue of charge-dependent interac-
tions, and spontaneously. To restore the spontaneously broken isospin
symmetry, we implemented the isospin-projection scheme on top of the
Skyrme-DFT approach. This development allows for consistent treatment
of isospin mixing in both ground and exited nuclear states. In this study,
we apply this method to evaluate the isospin impurities in ground states of
even–even and odd–odd N ' Z nuclei. By including simultaneous isospin
and angular-momentum projection, we compute the isospin-breaking cor-
rections to the 0+ → 0+ superallowed β-decay.

DOI:10.5506/APhysPolB.42.415
PACS numbers: 21.10.Hw, 21.60.Jz, 21.30.Fe, 23.40.Hc

1. Introduction

The atomic nucleus is a quantum system composed of the two types of
strongly interacting fermions, neutrons and protons. The charge indepen-
dence of the nuclear interaction is at the roots of the isospin symmetry [1,2].
This concept remains valid even in the presence of Coulomb interaction,
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which is the major source of the isospin breaking. This is so because of
the smallness of the isospin-breaking isovector and isotensor components of
the Coulomb field as compared to the isospin-conserving components of the
nuclear and Coulomb forces.

The isotopic spin quantum number, T , provides strong selection rules
for nuclear reactions, decays, and transitions [3]. In particular, the selection
rules for β-decay Fermi and Gamow–Teller transitions are ∆T = 0 and
∆T = 0, ±1, respectively, with the exception of T = 0→ T = 0 transitions
that are forbidden [4,5]. The superallowed 0+ → 0+ Fermi transitions bridge
nuclear structure with the electroweak standard model of particle physics,
providing the most accurate estimate for the Vud matrix element of the CKM
matrix [6, 7]; hence, testing the CKM unitarity. From a nuclear structure
perspective, the unitarity test depends critically on a set of theoretically
calculated isospin-breaking corrections whose precise determination poses a
challenging problem [8,9, 10].

In this work, we calculate the isospin impurities and isospin-breaking cor-
rections to the superallowed Fermi decay by using a newly developed isospin-
and angular-momentum-projected DFT approach without pairing [11,12,13].
This technique takes advantage of the ability of the mean field (MF) to prop-
erly describe long-range polarization effects. The MF treatment is followed
by the isospin projection to remove the unwanted spontaneous isospin mix-
ing within MF [12,14,15,16].

This paper is organized as follows. We begin in Section 2 with a short
summary of our isospin- and angular-momentum-projected DFT approach.
In Section 3, we present applications of the isospin-projected DFT variant
of the model to the isospin mixing in the ground states (g.s.) of even–
even N = Z nuclei. Section 4 discusses preliminary results for the isospin-
breaking corrections to the superallowed beta decays calculated by consid-
ering simultaneous isospin and angular-momentum restoration. Finally, the
conclusions are contained in Section 5.

2. Theory

The isospin-projected DFT technique [11, 12, 13] utilizes the ability of
the self-consistent MF method to properly describe the balance between the
long-range Coulomb force and the short-range nuclear interaction, repre-
sented in this work by the Skyrme-type energy density functional (EDF).
To remove the spurious isospin-symmetry-breaking effects, we use the stan-
dard one-dimensional isospin projection after variation, which allows us to
decompose the Slater determinant |Φ〉 into good isospin states |T, Tz〉

|Φ〉 =
∑
T≥|Tz |

bT,Tz |T, Tz〉 ,
∑
T≥|Tz |

|bT,Tz |2 = 1 . (1)
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Here, P̂ TTzTz
stands for the conventional one-dimensional isospin-projection

operator

|TTz〉 =
1√
NTTz

P̂ TTzTz
|Φ〉

=
2T + 1

2
√
NTTz

π∫
0

dβT sinβT dTTzTz
(βT ) R̂(βT )|Φ〉 , (2)

where βT denotes the Euler angle associated with the rotation operator
R̂(βT ) = e−iβT T̂y about the y-axis in the isospace, dTTzTz

(βT ) is the Wigner
function [17], and Tz = (N − Z)/2 is the third component of the total
isospin T . The normalization factorsNTTz , or interchangeably the expansion
coefficients bT,Tz that encode the isospin content of |Φ〉, read

NTTz ≡ |bT,Tz |2 = 〈Φ|P̂ TTzTz
|Φ〉

=
2T + 1

2

π∫
0

dβT sinβT dTTzTz
(βT ) N (βT ) , (3)

where N (βT ) = 〈Φ|R̂(βT )|Φ〉 is the so-called overlap kernel. For technical
aspects concerning the calculation of the overlap and Hamiltonian kernels,
we refer the reader to Ref. [13]. The isospin-projected DFT technique uti-
lizes the ability of the HF solver HFODD [18] to produce fully symmetry-
unrestricted Slater determinants |Φ〉.

The isospin projection determines the set of good isospin states (called
the basis in the following), which in the next step is used to rediagonalize the
entire nuclear Hamiltonian, consisting of the kinetic energy, Skyrme EDF,
and the isospin-breaking Coulomb force. The rediagonalization leads to the
eigenstates

|n, Tz〉 =
∑
T≥|Tz |

anT,Tz
|T, Tz〉 , (4)

numbered by index n. The amplitudes anT,Tz
define the degree of isospin mix-

ing through the so-called isospin-mixing coefficients (or isospin impurities)
for the nth eigenstate

αnC = 1− |anT,Tz
|2max , (5)

where |anT,Tz
|2max stands for the squared norm of the dominant amplitude in

the wave function |n, Tz〉. It is worth stressing that the isospin projection,
unlike particle-number or angular-momentum projections, is essentially non-
singular; hence, it can be safely used with the local EDFs. The rigorous
analytical proof of this useful property can be found in Ref. [13].



418 W. Satuła et al.

The combined isospin and angular-momentum projection leads to the
set of states

|I,M,K;T, Tz〉 =
1√

NTTz ;IMK

P̂ TTzTz
P̂ IMK |Φ〉 (6)

which form another normalized basis built on |Φ〉. Here, P̂ TTzTz
and P̂ IMK

stand for the isospin and angular-momentum projection operators, respec-
tively, and M and K denote the angular-momentum components along the
laboratory and intrinsic z-axes, respectively [19]. Now, the problem becomes
more complicated because of the overcompleteness of the basis (6) related
to the K-mixing. This is overcome by performing the rediagonalization of
the Hamiltonian in the so-called collective space, spanned for each I and T
by the natural states, |IM ;TTz〉(i), as described in Refs. [18, 20]. Such a
rediagonalization gives the solutions

|n; IM ;Tz〉 =
∑

i,T≥|Tz |

a
(n)
iIT |IM ;TTz〉(i) (7)

which are labeled by the index n and by the conserved quantum numbers
I, M , and Tz = (N − Z)/2 (cf. Eq. (4)).

3. Isospin mixing

By using the perturbation theory [22] and the analytically solvable hydro-
dynamical model [23], the isospin mixing in atomic nuclei has been studied
since the 1960s (see Ref. [24] for a review). These simple approaches ac-
counted for such qualitative features of the isospin impurities like the steady
increase in N = Z nuclei with increasing proton number and strong quench-
ing with increasing |N − Z|. Quantitatively, however, their predictions for
the values of the isospin impurities αC were not very reliable.

Increased demand for accurate values of isospin mixing has been stim-
ulated by the recent high-precision measurements of superallowed β-decay
rates [6, 7]. Large-scale shell-model approaches [25], although very accurate
in the description of configuration mixing, can hardly account for the long-
range polarization exerted on the neutron and proton states by the Coulomb
force whose accurate treatment requires using large configuration spaces. In
contrast, in self-consistent DFT, such polarization effects are naturally ac-
counted for by finding the proper balance between the Coulomb force, which
tends to make the proton and neutron states different, and the isoscalar part
of the strong force, which has an opposite tendency.
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In general, isospin impurities determined without removing spurious
isospin mixing are underestimated by about 30% compared to the values
obtained after rediagonalization [12]. In the particular case of 80Zr, the
removal of spurious admixtures increases αC from ∼ 2.9% to ∼ 4.4%, as
illustrated in Fig. 1. It is encouraging to see that the latter value agrees well
with the central value of empirical impurity deduced from the giant dipole
resonance γ-decay studies, as communicated during this meeting by Camera
et al. [26]. Unfortunately, experimental error bars are too large to discrim-
inate between various Skyrme parametrizations, which differ in predicted
values of αC by as much as ∼ 10%.
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Fig. 1. Isospin impurities in the ground state of 80Zr, predicted by DFT, using
various Skyrme parametrizations [21] plotted versus the corresponding excitation
energies of the T = 1 doorway states. Open dots mark results obtained before
the Coulomb rediagonalization (BR), α(BR)

C = 1 − |bT=|Tz|,Tz
|2, which were calcu-

lated by using expansion coefficients of Eq. (1). Full dots mark the impurities (5)
obtained after the Coulomb rediagonalization (AR).

Figure 2 illustrates our attempts to correlate the values of αC with the
surface and volume symmetry energies, which are primary quantities char-
acterizing the isovector parts of nuclear EDFs. The linear regression coeffi-
cients shown in the figure hardly indicate any correlation of αC with these
quantities. In fact, no clear correlation was found between the calculated
values of αC and other bulk characteristics of the Skyrme EDFs, including
the isovector and isoscalar effective masses, and incompressibility.
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Fig. 2. Isospin impurities predicted by several Skyrme EDFs for the ground states
of 40Ca (left) and 100Sn (right) plotted versus the surface (top) and volume (bot-
tom) symmetry energy.

4. Isospin-breaking corrections to the Fermi matrix elements
of the superallowed β-decay

An accurate evaluation of αC is a prerequisite for determining the iso-
spin-breaking correction δC to the 0+ → 0+ Fermi matrix element of the
isospin raising/lowering operator T̂± between nuclear states connected by
the superallowed β-decay∣∣∣〈Iπ = 0+, T ≈ 1, Tz = ±1|T̂±|Iπ = 0+, T ≈ 1, Tz = 0

〉∣∣∣2 ≡ 2(1− δC) .
(8)

Here, the state |Iπ = 0+, T ≈ 1, Tz = ±1〉 corresponds to the g.s. of the
even–even nucleus whereas |Iπ = 0+, T ≈ 1, Tz = 0〉 denotes its isospin-
analogue in the neighboring N = Z odd–odd nucleus. Unlike the former
one, the odd–odd configuration cannot be expressed in a form of a MF
product wave function [13]. Therefore, to compute the states in odd–odd
N = Z nuclei, we use the following strategy (see Fig. 1 of Ref. [13] for a
schematic illustration):

• Firstly, we compute the so-called antialigned g.s. configuration, |ν̄⊗π〉
or |ν⊗π̄〉, by placing the odd neutron and the odd proton in the lowest
available time-reversed (or signature-reversed) single-particle Nilsson
orbits.
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• Secondly, to correct for the fact that the antialigned configurations
manifestly break the isospin symmetry, that is, |ν̄⊗π〉 ≈ 1√

2
(|T = 0〉+

|T = 1〉), we apply the simultaneous isospin and angular-momentum
projection to create the good isospin and good angular momentum
basis |I,M,K, T, Tz = 0〉 of Eq. (6).

• Finally, to obtain the state |I = 0, T ≈ 1, Tz = 0〉, we rediagonalize
the total Hamiltonian, including the Coulomb term, in the new basis
cf. Eq. (7).

The projected |Iπ = 0+, T ≈ 1, Tz = ±1〉 states in even–even nuclei are
computed in the same way.

Restoration of angular momentum turns out to be the key ingredient
in evaluation of the isospin impurity in odd–odd nuclei. This is illustrated
in Fig. 3, which shows αC calculated for the T ≈ 1 states in 42Sc. Four
solutions shown in Fig. 3 correspond to the four possible antialigned MF
configurations built on the Nilsson orbits originating from the spherical νf7/2

and πf7/2 subshells. These configurations can be labeled in terms of the
K quantum numbers, K = 1/2, 3/2, 5/2, and 7/2, as |νK̄ ⊗ πK〉. In a
simple shell-model picture, each of those MF states contains all I = 0, 2, 4,
and 6 components. From the results shown in Fig. 3, it is evident that the
isospin projection alone (upper panel) leads to unphysically large impurities,
whereas the impurities obtained after the isospin and angular-momentum
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Fig. 3. Isospin impurities in 42Sc, calculated for four antialigned configurations
that are obtained by putting the valence neutron and proton in opposite-K Nilsson
orbitals originating from the f7/2 shell, that is, |νK̄⊗πK〉 with K = 1/2, 3/2, 5/2,
and 7/2. Open and full dots show the results obtained by employing only the isospin
projection and simultaneous isospin and angular-momentum (I = 0) projection,
respectively.
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(I = 0) projection (lower panel with the scale expanded by the factor of 500)
are essentially independent of the initial MF configuration, as expected.
The average value and standard deviation of 0.586(2)% shown in the figure
were obtained for the configuration space of N = 10 spherical harmonic
oscillator (HO) shells, whereas for N = 12 the analogous result is 0.620(2)%
(see below).

Although indispensable, the angular-momentum projection creates nu-
merous practical difficulties when applied in the context of DFT, that is,
with energy functional rather than Hamiltonian. The major problem is the
presence of singularities in energy kernels [28]. Although appropriate regu-
larization schemes have already been proposed [29], they have neither been
tested nor implemented. This fact narrows the applicability of the model
only to those EDF parametrizations which strictly correspond to an interac-
tion, wherefore the singularities do not appear. For Skyrme-type function-
als, this leaves only one EDF parametrization, namely SV [30]. This specific
EDF contains no density dependence and, after including all tensor terms in
both time-even and time-odd channels, it can be related to a two-body inter-
action. Despite the fact that for basic observables and characteristics such as
binding energies, level densities, and symmetry energy, SV performs poorly,
we have decided to use it in our systematic calculations of δC. Indeed, while
SV would not be our first choice for nuclear structure predictions, it is still
expected to capture essential polarization effects due to the self-consistent
balance between the long-range Coulomb and short-range nuclear forces.

In order to test the performance of our model, we have selected the su-
perallowed β-decay transition 14O−→14N. This case is particularly simple,
because (i) the participating nuclei are spherical and almost doubly magic,
which implies suppressed pairing correlations, and (ii) the antialigned config-
uration in 14N involves a single |νp̄1/2⊗πp1/2〉 configuration that is uniquely
defined. The predicted values of δC are shown in Fig. 4 as a function of the
assumed configuration space (that is, the number of spherical HO shells N
used). While the full convergence has not yet been achieved, this result,
taken together with other tests performed for heavier nuclei, suggests that
at least N = 10 shells are needed for light nuclei (A < 40), whereas at least
N = 12 shells are required for heavier nuclei. The resulting systematic error
due to basis cut-off is estimated at the level of ∼ 10%.

Even though calculations for all heavy (A > 40) nuclei of interest are
yet to be completed, and due to the shape-coexistence effects there are still
some ambiguities concerning the choice of global minima, our very prelim-
inary results are encouraging. Namely, the mean value of the structure-
independent statistical-rate function F̄t, obtained for 12 out of 13 tran-
sitions known empirically with high precision (excluding 38K→38Ar case),
equals F̄t = 3069.4(10), which gives the Vud = 0.97463(24) amplitude of
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Fig. 4. Isospin-breaking correction to the Fermi matrix element for the superal-
lowed transition 14O→14N. Full dots represent our results plotted as a function of
the basis size (number of HO shells taken in HF calculations). A conservative 10%
error was assigned to the last two points. The values quoted in Refs. [7] (including
errors) and [27] are shown for comparison.

the CKM matrix. These values match very well those obtained by Towner
and Hardy in their latest compilation [7]. That said, owing to the poor
quality of the SV parameterization, the confidence level [10] of our results
is low. On a positive note, our method is quantum mechanically consistent
(see discussion in Ref. [8]) and contains no free parameters.

5. Summary

In summary, the isospin- and angular-momentum-projected DFT theory
has been employed to calculate isospin mixing and isospin-breaking correc-
tions to the 0+ → 0+ Fermi superallowed β-decay. Our parameter-free model
capitalizes on the ability of the MF approach to describe long-range polar-
ization effects. The self-consistent HF wave functions containing essential
correlations due to the symmetry-breaking mechanism are then used as trial
states during the projection procedure. The results for αC in 80Zr are con-
sistent with current experimental estimates from the giant dipole resonance
studies. The preliminary results on the δC-corrections are also very encour-
aging. The calculated values of the nucleus-independent F̄t = 3069.4(10)
and the Vud = 0.97463(24) are consistent with the recent evaluations of
Ref. [7].
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