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A new method, which is called filter diagonalization, is presented for
large-scale shell-model calculations. This method is alternative to the
widely used Lanczos method to evaluate shell-model energy and electromag-
netic properties. In this contribution, we especially focus on its application
to the mirror energy differences (MED) due to small isospin breaking.
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1. Introduction

The Lanczos method [1] has been widely used for exact solutions of shell-
model calculations. By combining it with the M -scheme representation, the
Lanczos method is quite useful for large-scale shell-model calculations. It
needs, however, a dedicated treatment for conservation of angular momen-
tum and it is difficult to evaluate highly excited states.

Recently a completely different algorithm for diagonalization has been
proposed by Sakurai and Sugiura [2, 3]. This method is called Sakurai–
Sugiura (SS) method and it uses the Cauchy’s integral formula to obtain
eigenvalues and eigenvectors. For large-scale shell-model calculations, we
use “shift” algorithms [4] in addition to the SS method. The application of
this method in the shell-model calculation has been shown in Ref. [5]. In
this contribution, we especially focus on its application in the mirror energy
differences (MED).
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2. Method

Central quantities of the SS method in the shell-model calculations are
the following moments µp(p = 0, 1, 2, . . .) defined by Cauchy’s integral as

µp =
1

2πi

∫
Γ

〈
ψ

∣∣∣∣(z − ε)pz −H

∣∣∣∣φ〉 dz , (1)

where |ψ〉 and |φ〉 are arbitrary wave functions, and H is a shell-model
Hamiltonian. The ε denotes a target energy and the Γ is an integral contour.

By the theorem of residue, Cauchy’s integral is formally performed as

µp =
∑
k∈Γ

(ek − ε)pckdk , (2)

where cs and ds are expansion coefficients with
∑
|ci|2 = 1 and

∑
|di|2 = 1,

that is, |ψ〉 =
∑
ci|ϕi〉 and |φ〉 =

∑
di|ϕi〉. The eis and |ϕi〉s are eigen-

energies and eigen-functions of the H. The summation over k in Eq. (2) is
carried out if energy eigenvalues are inside the Γ .

To extract the energy eigenvalues ek located inside the Γ from these
moments, we solve the following generalized eigenvalue problem as

Mx = λNx , (3)

whereM and N are the n×n Hankel matrices defined byMij ≡ µi+j−1 and
Nij ≡ µi+j−2. The eigenvalues λk in the Eq. (3) can be shown to be equal
to ek − ε. Its proof needs a fact that the Hankel matrices can be always
factorized with the Vandermonde matrix [2]. The associated eigenvectors
can be also obtained in the same way as [2].

To evaluate the moments numerically, 1
z−H is an obstacle. To remove it,

we define a new wave function |χ〉 ≡ 1
z−H |φ〉 and can numerically solve a

linear equation as
(z −H)|χ〉 = |φ〉 , (4)

by the complex orthogonal conjugate gradient (COCG) method [6].
The Cauchy’s integration in the moments can be also carried out by

numerical integration by taking circle as the integration contour Γ , that is

z = ε+ reiθ (ε, r : real, θ = [0, 2π]) . (5)

For this numerical integration, we need a lot of integral points. For each
point, the above linear equation should be solved. However, thanks to the
“shift” algorithms [4], the computation becomes remarkably faster. Its de-
tails in the case of the shell-model calculations are presented in Ref. [5].
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The merits of this method are following:

1. Highly excited state can be directly solved without obtaining yrast and
lower excited states.

2. The conservation of angular momentum and other quantum numbers
are stably realized during the computations.

In Fig. 1, we show an example of the filter diagonalization by taking 6th
and 7th, J = 0 and T = 0 states of 48Cr with full pf shell.
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Fig. 1. (Color online) Demonstration of the filter diagonalization for the 6th and
7th, J = 0 and T = 0 states of 48Cr on the complex z-plane. The crosses and
small circles show energies obtained by the filter diagonalization and the Lanczos
method, respectively. The solid circles show the integral points.

3. MED calculations

In the usual shell-model calculation, we assume isospin symmetry, while
there exists, in principle, isospin symmetry breaking due to the Coulomb
force and the strong nucleon–nucleon (NN) interaction. Such an effect can
be seen in N ∼ Z nuclei.

For such an investigation, mirror pair nuclei, that is a pair of nuclei with
exchanged proton and neutron numbers, plays a principal role. The MED
are a measure of isospin symmetry breaking and are defined by

MEDJ = Ex(J, T, Tz = −T )− Ex(J, T, Tz = T ) , (6)

where Ex(J, T, Tz) are the excitation energies of analogue states with spin J
and isospin T , Tz. For instance, the mirror nuclei 67Se and 67As have recently
been measured and have been discussed [7, 8]. The shell model calculations
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in this mirror pair can be performed well with the Lanczos method, while
for a mirror pair with N = Z = odd and N = Z + 2, M -scheme Lanczos
shell model calculations may become difficult for some Js. For instance, to
solve state (|ψT∼1

J=4 〉) with T ∼ 1 and J = 4 for 66As and 66Ge, this state
becomes highly excited states in M = 4, N = Z space due to the existence
of T ∼ 0 states. By the Lanczos method, it is quite difficult to solve, while,
if we ignore the isospin breaking, we can solve state (|ψT=1

J=4 〉) with T = 1
and J = 4 in N = Z + 2 space because this space does not contain T = 0
states.

The |ψT=1
J=4 〉 state is a good approximation to the |ψT∼1

J=4 〉 state as isospin
breaking is small. To use the same shell model space (i.e., N = Z space),
we consider T−|ψT=1

J=4 〉 state where T− is a ladder operator of isospin. Here,
we can perform the filter diagonalization by taking this state as the |ψ〉 and
|φ〉 in Eq. (1). The target energy ε can be estimated by |ψT=1

J=4 〉 state. By
taking small circle around this target energy ε as an integral contour, we
can stably and efficiently evaluate a correct shell model energy by the filter
diagonalization.

4. Conclusion

We have presented a new shell model diagonalization method, called filter
diagonalization. The advantage of this method is to solve highly excited
states directly. Especially in the MED calculations, this advantage is shown
to be quite useful. We are now pursuing other applications on which the
filter diagonalization plays a significant role.
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