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Following the idea of Strutinsky we have evaluated in a liquid-drop
type of approach the shapes of fissioning nuclei along the fission valley in
a model independent way. These optimal shapes, which correspond to the
minimum of the LD energy for a given elongation, are compared with the
shapes obtained in some often used shape parametrisations. The effect of
rotation on the optimal shapes of nuclei is discussed within an optimal-
shape theory generalised to non-axial forms.
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A parameter-free description of nuclear shapes is one of the fundamen-
tal problems in nuclear-structure theory. Following the idea of Strutinsky
et al. [1] we have found parametrisation-independent shapes of rotating and
fissioning nuclei. These so-called optimal shapes correspond to the minimum
of the liquid drop (LD) energy and fulfil constrains for e.g. volume, elonga-
tion, quadrupole moment or mass asymmetry and centre of mass position.
Let us recall here the main equations of the optimal-shape theory [1, 2].

The binding energy of a charged and rotating liquid drop is the sum of
the volume, surface, Coulomb and rotational terms

E = EV + E0
SBS(def) + E0

C BC(def) + E0
R BR(def) + const. (1)
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Here E0
S, E

0
C and E0

R are the surface, Coulomb and rotational energies of the
spherical drop, and Bi = Ei(def)/E0

i are the corresponding shape functions
characterising the deformation. These functions can be written as integrals

Bi(def) =

zmax∫
zmin

dz

2π∫
0

dϕ bi (ρ, ρz, ρϕ) (2)

over the nuclear surface ρ(z, ϕ) expressed in the cylindrical coordinates.
Here, we have used the shorthand notation ρz = ∂ρ/∂z and ρϕ = ∂ρ/∂ϕ.
The integration limits zmin and zmax correspond to the z-coordinates of the
tips of the nucleus.

Following the notation of Ref. [3] one can write the LD deformation
energy (in units of E0

S) as
Edef = (BS − 1) + 2xLD(BC − 1) + yLD(BR − 1) , (3)

where xLD = E0
C/2E

0
S and yLD = E0

R/E
0
S are the fissility and rotational pa-

rameters, respectively. For a charged drop one has xLD > 0, while xLD < 0
corresponds to gravitating objects.

The variation principle (with respect to the different shapes of nucleus),
similar to that developed by Strutinsky et al. in Ref. [1], applied to the
deformation energy (3)

δρEdef = δρ

zmax∫
zmin

dz

2π∫
0

dϕ ξ(ρ, ρz, ρϕ; z, ϕ) = 0 , (4)

leads to a generalised Euler–Langevin partial differential equation
∂

∂z

∂ξ

∂ρz
+

∂

∂ϕ

∂ξ

∂ρϕ
− ∂ξ

∂ρ
= 0 (5)

which should be solved numerically. Here ξ(ρ, ∂ρ/∂z, ∂ρ/∂ϕ; z, ϕ) is the
“surface-energy density” of the deformation energy. The second term in the
above equation disappears when one deals with axially symmetric shapes,
only. The volume conservation and the deformation of the nucleus are im-
posed through appropriate constrains for fixed volume V and e.g. fixed
quadrupole moment Q

ξ −→ ξ̃
(
ρ, ρ′, z

)
= ξ

(
ρ, ρ′, z

)
− λ1V (ρ, z)− λ2Q(ρ, z) , (6)

where λi are the corresponding Lagrange multipliers.
The optimal fission barriers and corresponding nuclear shapes obtained

by solving Eq. (5) for different values of the fissility parameter xLD are
displayed in Fig. 1 as function of the distance between the mass centers of
symmetric fission fragments.
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Fig. 1. Optimal fission barriers and corresponding nuclear shapes for a few values
of the fissility parameter [2].

For a fixed value xLD = 0.75 of the fissility parameter, the form of the fis-
sion barrier obtained with optimal shape prescription is compared in Fig. 2
with the barriers obtained using the Funny-Hills (FH) shape parametrisa-
tion [4] and the modified Funny-Hills (MFH) shapes [5].
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Fig. 2. Comparison of the optimal fission barrier with the estimates obtained with
two-parameter shape parametrisations, the Funny-Hills [4] and the Modified Funny-
Hills [5] shapes.

It is seen that the MFH estimate of the barrier is very close to the optimal
one. In the expansion into spherical harmonics, a similar quality can only be
obtained when including six terms corresponding to the first even multipo-
larities, which demonstrates how powerful the FH or MFH parametrisation
are, which contain only two deformation parameters in the case of axially
symmetric shapes. The evolution of the shapes and the non-axiality in the
uncharged drop for some values of the rotational parameter yLD is shown in
Fig. 3, where the optimal shapes (l.h.s. plot) and the non-axiality parame-
ter η see Eq. (7)) are drawn as function of z-coordinate.
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Fig. 3. The optimal shapes (l.h.s. plot) and the non-axiality parameter η (r.h.s.
plot) of the rotating uncharged drop are as function of z-coordinate

These data are obtained by solving the two-dimensional Euler–Lagrange
equation (5) using the following simplified Ansatz for the form of the shape
profile

ρ2(z, ϕ) = ζ(z) [1 + η(z) cos(2ϕ)] (7)

which simplifies significantly the numerical calculations. It came as a sur-
prise to us to notice that the non-axiality parameter varies along the symme-
try axis (z-axis) when rotation is present and should therefore not be taken
as constant. This important result makes questionable shape parametrisa-
tions with constant non-axiality, like in an ellipsoid.

Summarising, we conclude that Strutinsky’s theory of optimal shapes
offers an useful tool to investigate the potential energy surface in liquid-
drop type models. Different types of nuclear deformations like elongation
or mass asymmetry can be achieved in the optimal-shape theory by adding
appropriate constrains e.g. for quadrupole or octupole moment. The op-
timal shapes allow to test different shape parametrisations of the surface
of fissioning and rotating nuclei. Our new two dimensional version of the
optimal-shape theory allows to study in details the Jacobi transitions and
Poincare instabilities. Further calculations are in progress.
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