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AND PARTIAL SYMMETRIES∗

A. Góźdź†, A. Szulerecka‡, A. Dobrowolski§

Division of the Mathematical Physics, Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

J. Dudek¶

IPHC/DRS and Université de Strasbourg
23 rue du Loess, B.P. 28, 67037 Strasbourg Cedex 2, France

(Received November 25, 2010)

It is shown that a mathematical modelling of the collective vibrations
in the presence of the tetrahedral symmetry, in contrast to the previous
simplistic predictions, may lead to large quadrupole moments Q0 in the
tetrahedral symmetry nuclear bands. Their tetrahedral character originates
from the fact that the vibrations take place around a tetrahedral minimum,
however, a large amplitude vibrations collect large contributions to Q0.
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Following microscopic calculations, cf. e.g. [1], an idea of an existence
of point-group symmetries generating four-fold degeneracy of the nucleonic
levels (tetrahedral and/or octahedral ones) has been advocated. Theoret-
ical description of the corresponding collective nuclear states requires con-
structing Hamiltonians with appropriate symmetries. For example, one can
expect that the collective wave-functions of the ground-state band built on
a quadrupole-triaxial state belong to an irreducible representation of the
D2h group. In the case of a possible coexistence of e.g. the D2h-quadrupole
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with the tetrahedral- or octahedral-symmetry bands the adapted Hamilto-
nians need to be constructed having a low symmetry, but containing terms
(“sub-Hamiltonians”) capable of describing bands with higher symmetries.

In this paper, we examine symmetries of collective Hamiltonians us-
ing from now on the intrinsic nuclear frames. A possibility of decompos-
ing an arbitrary Hamiltonian Ĥ into a sum of distinct-symmetry, orthog-
onal1 sub-Hamiltonians was discussed in Ref. [2]. Accordingly, one writes
Ĥ =

∑
G ĤG, where every sub-Hamiltonian ĤG is invariant under its own

symmetry group G. Such a decomposition introduces several coexisting
families of distinct-symmetry rotational bands whose states are mutually
orthogonal but they can couple through (possibly strong) electromagnetic
transitions. Every sub-Hamiltonian defines its own sub-set of rotational
bands and governs the symmetry-related physical properties.

Alternative constructions can be envisaged. Consider a deformed nucleus
in which rotations and vibrations are separated

Ĥ = Ĥvib + Ĥrot . (1)

In the following, symbols Gvib and Grot denote symmetry groups of the sub-
Hamiltonians Ĥvib and Ĥrot, respectively, and GH is the symmetry group
of the resulting collective Hamiltonian Ĥ. Equation (1) represents the de-
composition of Ĥ into two non-orthogonal sub-Hamiltonians having their
own symmetries. This decomposition is less powerful since it involves vector
spaces that are not orthogonal, however, it also allows to analyse spectra
and eigen-states in terms of symmetries.

The assumption about no (or weak) coupling between rotations and vi-
brations splits the eigen-value equations associated with Ĥ into two viz.

Ĥvib φνvΓvav(α) = ε
(vib)
νvΓv

φνvΓvav(α) , (2)

ĤrotRJMνrΓrar
(Ω) = ε

(rot)
J ;νrΓr

RJMνrΓrar
(Ω) . (3)

The eigen-values εJνvΓv ;νrΓr
and eigenfunctions ΨJMνvΓvav;νrΓrar

(α,Ω) of the full
Hamiltonian are now sums of eigen-values and products of eigenfunctions
obtained from the solutions of the equations (2) and (3), respectively. La-
bels J and M (angular momentum projection in the laboratory frame) de-
note angular momentum quantum numbers whereas {νv, νr} are additional
indices labelling equivalent irreducible representations of groups Gvib and
Grot, respectively. The labels av and ar distinguish basis vectors within the
irreducible representations Γv and Γr.

1 Two terms of the Hamiltonian, e.g. ĤG’ and ĤG” are called orthogonal if they act
on the mutually orthogonal vector spaces.
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A typical example illustrating the construction discussed so far is Bohr
Hamiltonian with neglected coupling between vibrations and rotations

ĤB = Ĥvib;2(β, γ) + Ĥrot(Ω) . (4)

Using the generators R1, R2 and R3 of the symmetrisation group Oh, derived
in the Ref. [4], it is easy to check that the vibrational part, Ĥvib;2, is invari-
ant under the octahedral group Gvib = Oh acting only in the deformation
subspace. On the other hand, the rotational part Ĥrot is invariant under the
group Grot = D2h acting only in the rotor space.

The most important message so far is that these are the symmetries of
commuting sub-Hamiltonians rather than the formal symmetry group of the
total Hamiltonian Ĥ that determine the effective symmetry structures of
vibrational and rotational states.

In order to be able to illustrate the preceding discussion, we have used a
simplified model Hamiltonian, Ĥ = Ĥvib;λ=2 + Ĥvib;λ=3 + Ĥrot, discussed in
detail in Ref. [6], cf. in particular Eqs. (10)–(12) and the surrounding text.
There, we have postulated a separable form of the collective Hamiltonian
with the effective potential energy treated within a harmonic approximation
— an approach which allows to obtain an order-of-magnitude estimates. In
the analysis quoted, the lowest negative parity in 156Gd band was inter-
preted as tetrahedral-symmetry band using the symmetry of the assumed
vibrational sub-Hamiltonian.

Recently, a new measurement on 156Gd has been published in Ref. [7]
suggesting that the tetrahedral-symmetry candidate negative-parity band
has the quadrupole moment comparable with the one in the ground-state
band — the result in an apparent contradiction to the original prediction
of small quadrupole moments for tetrahedral bands, cf. Ref. [1]. To illus-
trate the formalism introduced so far we have used the matrix elements of
transition-operators as introduced in Ref. [6] and the separable Hamiltonian
of Eq. (1). Calculations show that the quadrupole moment of the members
of the tetrahedral band, for small values of the octupole oscillator parame-
ter η3 =

√
B3ω3/~ =

√
C3/~ω3 introduced in Ref. [6], is growing rapidly in

function of the decreasing stiffness coefficient C and allows to reproduce the
experimental values of the quadrupole moment of the tetrahedral-candidate
negative parity band in 156Gd, close to the result of [7]. All the parameters
entering our estimates have been obtained from fitting to the microscopic
universal Woods–Saxon total-energy calculation results that predict a coex-
istence between the quadrupole and the tetrahedral configurations.

Essential parameters entering the calculations are: (a) for the quadrupole
part of the Hamiltonian, the quadrupole deformation parameters β = 0.23,
γ = 10◦ and the quadrupole oscillator parameter η2 = 12; (b) for the
octupole part of the Hamiltonian the tetrahedral deformation parameter
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ξ = Imα32 = 0.12 and a much smaller, compared to the 156Dy nucleus,
an octupole harmonic oscillator parameter η3 = 0.515; parameters η con-
tain the information about the stiffness coefficients C of the microscopi-
cally calculated total energy surfaces. Using these parameters we obtain the
quadrupole moment of the ground-state band equal to 788 e2 fm4 compared
to the experimental value of 683 e2 fm4.

The dipole transitions from the tetrahedral band to the ground state
band are dependent on irreducible representation to which the octupole
state belongs. The tetrahedral, octupole states may belong to one of the
three irreducible representations of the tetrahedral group Td. One can show
that the scalar representations, A1, does not allow for dipole transitions
to quadrupole band and it is not interesting in the present context. The
3-dimensional representation T2 contains the axial-symmetric vector corre-
sponding to axial octupole one phonon excitation of the nucleus whereas
the other 3-dimensional representation, T1, represents the tetrahedral exci-
tation. Both representations may contribute to the non-zero static tetrahe-
dral deformation ξ and both reproduce the experimental reduced E2 tran-
sition probabilities within the negative-parity band B(E2;T1 → T1) =
B(E2;T2→ T2) ∼ 298 W.u. However, representation T2, corresponding to
the “axial octupole excitation”, does not reproduce the experimental ratio
B(E2;T2 → T2)/B(E1;T2 → q) ∼ 3.6 × 103 fm2, which should be of the
order of 106. On the other hand, the representation T1, related to the “tetra-
hedral excitation”, gives the correct ratio B(E2;T1 → T1)/B(E1;T1 → q)
∼ 1× 106 fm2.

Moreover, the reduced transition probabilities from the octupole states
T1 to the ground-state band are B(E1;T1→ q) ∼ 7×10−3 W.u., which is in
agreement with the measured values, whereas the reduced transition proba-
bilities from T2 to the ground-state band are not reproduced by calculated
B(E1;T2→ q) ∼ 0.2 W.u. which is 2 orders of magnitude too large.

Summarising, the collective-model calculations suggest possibly large
contribution to the quadrupole moment of the negative parity tetrahedral-
candidate bands coming from large octupole vibrations in case of soft oc-
tupole collective potential. Further investigations are in progress.
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