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of the M1 and E2 transitions within and between partner bands.
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1. Introduction

For several years the concept of chiral symmetry [1] has been applied to
explain some properties of medium heavy odd–odd nuclei, see [2] for a re-
cent review. These properties are: the existence of nearly degenerate partner
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bands with the same electromagnetic features and a characteristic staggering
pattern ofM1 and E2 transitions with ∆I = 1. In [3] we studied such prop-
erties within the Core-Particle-Hole Coupling model [4] using both γ-soft
and rigid cores. It turns out that such staggering, obtained by numerical
calculations in [3], can be explained by a kind of selections rules following a
new, not discussed as yet, symmetry of the model. This symmetry is a com-
bination of the parity operation in the five dimensional space of deformation
of the core (we stress that it is not the parity in the ordinary space) and an
exchange of states of the unpaired particles. The considered symmetry is
not fully preserved in realistic cases, but small deviation from this symme-
try does not destroy the staggering patterns in the M1 and E2 transition
probabilities. A detailed presentation will be published elsewhere [5].

2. Symmetry of the CPHC model

2.1. Hamiltonian

We assume the Hamiltonian of the odd–odd nucleus of the form

Ho−o = Hcore − χQ · qπ + χQ · qν + χqπ · qν , (1)

where Q, qπ, qν are mass quadrupole operators of the core, proton–particle
and neutron–hole respectively. The sign of the two last terms of Eq. (1)
reflects the fact that neutron is a hole. The core is described by the general
Bohr Hamiltonian

Hcore = HGBH(β, γ,Ω) = Tvib(β, γ) + Trot(β, γ,Ω) + V (β, γ) , (2)

where β, γ are the deformation variables in the intrinsic frame and Ω stands
for the Euler angles, for details see [6]. The kinetic energy is determined by
the six inertial functions Bββ , Bβγ , Bγγ and Bk, k = 1, 2, 3, depending, in
general, on β, γ variables. The moments of inertia are given by the relation
Jk(β, γ) = 4Bkβ2 sin2(γ − 2πk/3).

The symmetry operation S is a combination of the α-parity of the
core, Pα, and the exchange of the proton and neutron states, Cπν

S = PαCπν . (3)

The Pα operator is defined simply in terms of the laboratory variables

Pααµ = −αµ , µ = −2, . . . , 2 . (4)

It should be mentioned that Pα has no relation to the parity in the ordinary
space (αµ are invariant against the space parity). In the axial case Pα
transforms prolate into oblate shapes and vice versa. In the intrinsic frame
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the α-parity can be implemented in several equivalent ways. The form given
below is convenient if we consider the only one sextant 0 ≤ γ ≤ π/3 in the
deformation plane

Pα(β, γ,Ω) = (β, π/3− γ,Rx(π/2)Ω) , (5)

here Rx is a rotation around the intrinsic x-axis.
The exchange operator Cπν in the proton–neutron space is defined as

Cπν |(π, jπmπ)(ν, jνmν)〉 = |(π, jνmν)(ν, jπmπ)〉 . (6)

Such a definition makes sense for the same single-particle spaces for both
kinds of particles. Below we restrict ourselves to only one j-shell jπ = jν = j
for the proton and neutron. Obviously, squares of all three operators Pα,
Cπν , S are equal to identity.

An important result of the present paper is that if Hcore is invariant
against Pα then the odd–odd Hamiltonian Ho−o (Eq. 1) is invariant against
S and its eigenstates can be labeled by the additional number s = ±1. This
can be easily proved taking into account that Q is odd against Pα as being
proportional to α.

The Pα invariance of Hcore leads to several consequences for the proper-
ties of the even–even core which are not discussed here. We mention only the
conditions that must be fulfilled in order to HGBH be Pα-invariant. Again,
we consider the case of the first sextant of the deformation plane:

f(β, π/3− γ) = f(β, γ) for f = Bββ , Bγγ , Bx ,

Bβγ(β, π/3− γ) = −Bβγ(β, γ) ,
By(β, π/3− γ) = Bz(β, γ) ,
V (β, π/3− γ) = V (β, γ) . (7)

2.2. Electromagnetic transition operators

We show below that the M1 and E2 transitions between states with
the same s number are much smaller than those between the states with
different s. In the E2 case it is readily seen because the single-particle parts
of the transition operator are almost negligible compared to the core part,
which is odd against the S symmetry.

For a single-j orbital the M1 transition operator can be effectively writ-
ten as

T (M1) =

√
3

4π
µN (gRRcore + gπjπ + gνjν) , (8)

where Rcore, jπ, jν are angular momenta operators. Rcore is even against S
and the one-particle part, which does not have definite symmetry, cannot
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be neglected, but it can be checked by direct calculation that for gR− (gπ +
gν)/2 = 0 the matrix elements of T (M1) obey

〈I, s|T (M1)|I ′, s〉 = 0 for I 6= I ′ . (9)

In the case of the A ∼ 130 nuclei considered in [3], the values of the gyro-
magnetic factors are gR = 0.44, gπ = 1.22, gν = −0.21 which gives nonzero
but very small values of M1 transition probabilities between states with the
same s number.

Presently we apply the obtained results to the odd–odd Hamiltonian
with γ-soft core (Wilets–Jean type) studied in [3]. This Hamiltonian is ob-
viously S-invariant. The new quantum number s which labels the states and
discussed properties of the M1 and E2 operators provide a clear interpre-
tation of the pattern of strong transitions shown in Fig. 1. Such a pattern
was obtained in [3] by numerical calculations.
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Fig. 1. Schematic picture of the partner bands and strong E2 and M1 transitions
in an odd–odd nucleus. Symbols ⊕ and 	 correspond to s = ±1. Compare Fig. 3
in [3].
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Some remarks should be added. Firstly, the symmetry Pα of the core is
not quite new and was mentioned in various papers, e.g. [7,8]. Secondly, for
the rigid core (Davydov–Filippov) the rotation Rx(π/2) plays an analogous
role to Pα. An invariance with respect to this operation requires ‘maximal’
triaxiality, that is fixed deformation γ = π/6 of the core. Thirdly, one can
see some similarities with the symmetry operation discussed in [9] in the
context of the particle-rotor model.

3. Conclusions

The discussed symmetry of the CPHC model gives a valuable insight into
the background of staggering of theM1 and E2 transitions in some odd–odd
nuclei. To be preserved, the symmetry S needs rather stringent conditions
so it is very interesting to what extent it can be broken without complete
disappearing of the staggering pattern. We discuss this topic extensively
in [5]. Another interesting question, on which the work is in progress, is to
what extent the even–even cores calculated in the microscopic theory obey
the Pα symmetry.
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