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Several approaches to photonuclear reactions, based on the time-depen-
dent density-functional theory, have been developed recently. The stan-
dard linearization leads to the random-phase approximation (RPA) or the
quasiparticle-random-phase approximation (QRPA). We have developed a
parallelized QRPA computer program for axially deformed nuclei. We also
present a feasible approach to the (Q)RPA calculation, that is the finite am-
plitude method (FAM). We show results of photoabsorption cross-sections
for deformed nuclei using the QRPA and FAM calculations. Finally, the
canonical-basis approach to the time-dependent Hartree–Fock–Bogoliubov
method is presented, to demonstrate its feasibility and usefulness.
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1. Introduction

Photonuclear reaction cross-sections are the fundamental properties in
nuclear systems. In the energy region of giant resonances (E=10∼30 MeV),
the absorption process is dominated by the electric dipole excitations. The
giant dipole resonance (GDR) has been of significant interest in studies
of nuclear structure and reaction. It exhausts almost 100% of the energy-
weighted sum-rule value, corresponding to a collective oscillation of neutrons
against the protons. A typical measurement of the GDR in stable nuclei
is the photoneutron cross-section measurement using monoenergetic pho-
tons [1]. The energy of the GDR peak was found to have a mass dependence
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midway between A−1/3 and A−1/6 which correspond to the Steinwedel–
Jensen and Goldhaber–Teller models, respectively [2]. The energy-weighted
sum-rule value is larger than the classical Thomas–Reiche–Kuhn (TRK)
value by 20% [1] in average. The general trend of the width of the GDR is
well correlated with the neutron magic numbers, which may suggest that the
main origin of the spreading width is the shape fluctuations in the ground
state [3,4]. The double-peak structure in GDR appears for axially deformed
nuclei, known as the deformation splitting, because of the different frequen-
cies for vibrations along and perpendicular to the symmetry axis [1].

In a microscopic point of view, one can construct the giant resonance
from a superposition of particle-hole excitations. Since dynamics of the
giant resonances are basically in a small-amplitude regime, the random-
phase approximation (RPA) [2] has been extensively utilized for studies of
their properties. Although the spreading width Γ ↓ is not taken into account
in the RPA level, main features of the giant resonance are well reproduced. In
this paper, we present three theoretical approaches to studies of the nuclear
response; the standard quasiparticle RPA (QRPA) [2], the finite amplitude
method (FAM) [5], and the canonical-basis time-dependent Hartree–Fock–
Bogoliubov (Cb-TDHFB) method [6]. The numerical results will be shown,
mainly focused on the photoabsorption cross-section.

2. Quasiparticle random-phase approximation
for axially deformed nuclei

The quasiparticle RPA (QRPA) is a standard method to calculate linear
response in heavy open-shell nuclei [2]. However, since its application to
realistic energy functionals requires a large computational task and a com-
plicated programing, the QRPA calculation for heavy deformed nuclei is still
a challenging subject at present.

We have recently developed a parallelized computer code of the QRPA
based on the Hartree–Fock–Bogoliubov (HFB) state with the Skyrme func-
tionals, which is an extended version of that developed in Ref. [7], to in-
clude the residual spin–orbit interaction. A missing part is only the residual
Coulomb interaction that does not significantly affect nuclear response func-
tions (see Sec. 4.2).

First, we solve the following self-consistent HFB equation for the quasi-
particle states (

h− λ ∆
−∆∗ −(h− λ)∗

)(
Uµ
Vµ

)
= Eµ

(
Uµ
Vµ

)
, (1)

where the single-particle Hamiltonian h[ρ, κ] and the pair potential ∆[ρ, κ]
are functionals of the density ρ and the pairing tensor κ. The self-consistent
solution of Eq. (1) determines the ground-state densities (ρ0, κ0) and the
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ground-state Hamiltonians (h0, ∆0). To describe the nuclear deformation
and the pairing correlations, simultaneously, in good account of the contin-
uum, we solve the HFB equations in the cylindrical coordinate space. We
assume axial and reflection symmetries in the ground state. To reduce the
QRPA-matrix dimension, we introduce a cut-off energy E2qp

c = 60 MeV for
the two-quasiparticle states. For instance, the number of two-quasiparticle
states becomes about 38,000 for the Kπ = 0− excitation in 154Sm. Then, we
calculate the QRPA matrix elements and diagonalize the matrix, to obtain
the QRPA normal modes.

∑
γδ

(
Aαβ,γδ Bαβ,γδ
−Bαβ,γδ −Aαβ,γδ

)(
Xγδ

Yγδ

)
= ~ω

(
Xαβ

Yαβ

)
. (2)

Since the spreading effect is missing in this calculation, the dipole strength of
each discrete eigenmode is folded by the Lorentzian curve with a smoothing
parameter Γ . A more detailed description can be found in Ref. [8].

We show in Fig. 1 the photoabsorption cross-section for 154Sm. The HFB
calculation with the SkM* parameters produces the ground state in a prolate
deformation of β = 0.31. It clearly shows a deformation splitting due to a
prolate deformation of the ground state. The experimental data [3] are well
reproduced in the calculation. We have carried out a systematic analysis
on Nd and Sm isotopes and have found that the spreading effect with Γ =
2 MeV can well reproduce experimental data from spherical, transitional, to
deformed nuclei [8]. Especially, the agreement on the evolution of the GDR
width as a function of the neutron number is excellent.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

C
ro

s
s
 s

e
c
ti
o

n
 (

m
b

)

Energy (MeV)

154

Sm

Exp.
Total

K
π
=0

−

K
π
=1

−

Fig. 1. Calculated (lines) and experimental (symbols) photoabsorption cross-
section in 154Sm. The SkM* parameter set and the smoothing parameter of
Γ = 2 MeV is used. See text for details. Experimental values are taken from
Ref. [3].
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3. Finite amplitude method

In this section, we recapitulate the methodology of the finite amplitude
method (FAM) we have developed for small-amplitude oscillations based on
the time-dependent density-functional theory [5, 9].

3.1. FAM without pairing correlations

First, we discuss the case that the energy density functional is repre-
sented by normal density ρ only. In this case, the density can be expressed
by the Kohn–Sham orbitals, ρ =

∑
i |φi〉〈φi|, where the subscript i indi-

cates the occupied orbitals (i = 1, 2, . . . , A). The linear-response equation
to a weak external field with a fixed frequency, Vext(ω), can be expressed in
terms of the forward and backward amplitudes, |Xi(ω)〉 and 〈Yi(ω)|

ω |Xi(ω)〉 = (h0 − εi) |Xi(ω)〉+ P̂ {Vext(ω) + δh(ω)} |φi〉 , (3)
−ω 〈Yi(ω)| = 〈Yi(ω)| (h0 − εi) + 〈φi| {Vext(ω) + δh(ω)} P̂ , (4)

where the operator P̂ denotes the projector onto the particles space, P̂ =
1 −

∑
i |φi〉〈φi|. Usually, the residual field δh(ω) is expanded to the first

order with respect to |Xi(ω)〉 and |Yi(ω)〉. This leads to the well-known ma-
trix form of the linear-response equation, known as the RPA. For deformed
nuclei, the calculation of these matrix elements is time-consuming in prac-
tice and their storage requires a large memory capacity. In the FAM, we do
not explicitly linearize the equations. Instead, we utilize the fact that the
linearization can be numerically achieved for δh(ω) = h[ρ0 + δρ(ω)] − h0,
if the transition density δρ(ω) is small enough to validate the linear ap-
proximation. The FAM is nothing but a trick to perform this numerical
differentiation in the single-particle (Kohn–Sham) Hamiltonian h[ρ].

The residual field δh(ω) depends only on the forward “ket” amplitudes
|Xi(ω)〉 and backward “bra” ones 〈Yi(ω)|. In other words, it is independent of
bras 〈Xi(ω)| and kets |Yi(ω)〉. This is related to the fact that the transition
density δρ(ω) depends only on |Xi(ω)〉 and 〈Yi(ω)|

δρ(ω) =
∑
i

{|Xi(ω)〉〈φi|+ |φi〉〈Yi(ω)|} . (5)

We calculate the residual field by introducing a small real parameter η to
realize the linear approximation [5]

δh(ω) =
1
η

(h [ρη]− h0) , (6)

where h0 is the Hamiltonian for the ground state and ρη are defined by

ρη ≡
∑
i

{(|φi〉+ η|Xi(ω)〉)(〈φi|+ η〈Yi(ω)|)} . (7)
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Once |Xi(ω)〉 and 〈Yi(ω)| are given, the calculation of h[ρη] is an easy task.
This does not require complicated programming, but only needs a small
modification in the calculation of h[ρ]. Of course, eventually, we need to
solve Eqs. (3) and (4) to determine the forward and backward amplitudes.
We use an iterative algorithm to solve this problem. Namely, we start from
initial amplitudes |X(0)

i 〉 and 〈Y
(0)
i |, then update them in every iteration,

(|X(n)
i 〉, 〈Y

(n)
i |)→ (|X(n+1)

i 〉, 〈Y (n+1)
i |), until the convergence. In each step,

we calculate δh(ω) using the FAM as Eq. (6). For more details, readers are
referred to the reference [5].

We have developed a parallelized computer program of the FAM for a
Skyrme functional in the three-dimensional (3D) coordinate-space represen-
tation [9]. Currently, we are performing a systematic calculation of the
electric dipole response in even–even nuclei. So far, we have calculated the
photoabsorption cross-section in nuclei with A . 100. In Fig. 2, we demon-
strate a part of our achievement for nuclei up to Ca isotopes.
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Fig. 2. Electric dipole strength distribution in light nuclei. The horizontal axis
corresponds to excitation energy of 0 ∼ 35 MeV. The SkM* parameter set and the
smoothing parameter of Γ = 1 MeV is used.

For nuclei with A ≤ 40, the observed strength up to 30 MeV exhausts
only 60 ∼ 100% of the TRK sum-rule value [10]. This indicates that the
considerable amount of the GDR strength is located above 30 MeV in light
nuclei. We also observe that, although the RPA (FAM) calculation repro-
duces a gross feature of the dipole strength distribution, it systematically
underestimates the GDR peak energy by a few MeV for light nuclei [9].
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3.2. FAM with pairing correlations

The FAM in the previous section can be extended to superfluid nuclei,
namely, to the QRPA with the HFB formalism. A self-consistent solution
of Eq. (1) determines the ground-state densities (ρ0, κ0) and the ground-
state Hamiltonians (h0, ∆0). Then, following the same argument as that in
Ref. [5], we can derive equations for the residual fields, δh(ω) and δ∆(ω) as
follows

δh(ω) =
1
η

(h[ρη, κη]− h0) , (8)

δ∆(ω) =
1
η

(∆[ρη, κη]−∆0) , (9)

where the density and pairing tensor (ρη, κη) are defined by

ρη = (V ∗ + ηUX)(V + ηU∗Y )T , (10)
κη = (V ∗ + ηUX)(U + ηV ∗Y )T . (11)

Here, the forward and backward amplitudes (Xµν , Yµν) have subscripts µν to
specify two-quasiparticles. On the other hand, the subscripts of (Ukµ, Vkν)
indicate a basis of the single-particle space (k) and the quasiparticle (µ).
Again, utilizing an iterative algorithm for solution of the QRPA equation, we
can solve the QRPA linear-response equation without explicitly calculating
the residual interactions.
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Fig. 3. Calculated isoscalar monopole strength distribution for 50Ca. The SkM*
parameter set and the smoothing parameter of Γ = 1 MeV is used.

We show in Fig. 3 an example of our FAM calculation for isoscalar
monopole response in 50Ca. We use the same parameter set and the same
pairing energy functional as those in Ref. [11]. The quasiparticle states are
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truncated by the maximum quasiparticle energy of Eqp = 200 MeV. The
result agrees with Fig. 1 in Ref. [11]. The peak near zero energy should be
associated with a small mixture of the spurious mode (pairing rotation).

4. Canonical-basis time-dependent HFB method

In Secs. 2 and 3, we discuss methods to calculate linear response in nuclei,
based on the time-dependent density-functional theory. In this section, we
will show a feasible real-time method which is, in principle, applicable to
the non-linear regime as well.

The time-dependent Hartree–Fock (TDHF) method in the 3D coordi-
nate representation is a well established method to study nuclear dynam-
ics [12]. However, it cannot describe particle–particle (hole–hole) pairing
correlations. The pairing correlations are supposed to be very important
not only for static properties but also for nuclear dynamics. For instance,
it is well known that the life time of spontaneous fission is very different
between even and odd nuclei, which is supposed to be due to the pairing
correlations. A straightforward extension of the TDHF including the pair-
ing correlations is, of course, the time-dependent Hartree–Fock–Bogoliubov
(TDHFB) theory [13]. However, it uses the quasi-particle orbitals instead
of the occupied orbitals whose number is, in principle, infinite. Thus, the
accurate calculation of TDHFB is presently impractical and a new feasible
approach is highly desirable.

In this section, we present the equations of motion of “Canonical-basis
TDHFB” (Cb-TDHFB) method which we have developed recently [6]. Then,
we apply the method to the linear-response calculations using the full Skyrme
functional to show its reliability. For more details, readers should be referred
to the reference [6].

4.1. Basic equations

Our starting point is that the TDHFB state can be written in the canon-
ical form as

|Ψ(t)〉 =
∏
k>0

{
uk(t) + vk(t)c

†
k(t)c

†
k̄
(t)
}
|0〉 , (12)

where the creation operator of particles at the canonical state |φk(t)〉 is
expressed as ĉ†k(t) =

∑
σ

∫
d~rφk(~rσ; t)ψ̂†(~rσ). Here, the state k and k̄ are

not necessarily related to each other by the time reversal, and the time-
dependent (u, v) factors are complex numbers. Using the density matrix
and pairing tensor appearing in the HFB equation (1), one can write ρk(t) =
|vk(t)|2 and κk(t) = u∗k(t)vk(t) as
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ρk(t) =
∑
µν

〈φk(t)|µ〉ρµν(t)〈ν|φk(t)〉 =
∑
µν

〈φk̄(t)|µ〉ρµν(t)〈ν|φk̄(t)〉 ,(13)

κk(t) =
∑
µν

〈φk(t)|µ〉〈φk̄(t)|ν〉κµν(t) . (14)

Then, utilizing the TDHFB equation, we obtain the following equations for
the time evolution of ρk(t) and κk(t)

i
d

dt
ρk(t) = κk(t)∆∗k(t)− κ∗k(t)∆k(t) , (15)

i
d

dt
κk(t) = (ηk(t) + ηk̄(t))κk(t) +∆k(t) (2ρk(t)− 1) , (16)

where

∆k(t) ≡ −
∑
µν

∆µν(t)〈φk(t)|µ〉〈φk̄(t)|ν〉 , (17)

ηk(t) ≡ 〈φk(t)|h(t)|φk(t)〉+ i

〈
∂φk
∂t
|φk(t)

〉
. (18)

So far, there is no approximation in addition to the TDHFB is involved.
Now, we need to introduce an approximation for the pair potential. Namely,
the pair potential is assumed to be diagonal in the canonical basis

∆µν(t) = −
∑
k>0

∆k(t) {〈µ|φk(t)〉〈ν|φk̄(t)〉 − 〈ν|φk(t)〉〈µ|φk̄(t)〉} . (19)

In the static limit, this is identical to the BCS approximation. With the
approximation of Eq. (19), one can derive the following simple equations for
the time-dependent canonical states

i
∂

∂t
|φk(t)〉 = (h(t)− ηk(t))|φk(t)〉 , i

∂

∂t
|φk̄(t)〉 = (h(t)− ηk̄(t))|φk̄(t)〉 .

(20)
In summary, the Cb-TDHFB equations consists of Eqs. (20), (15), and

(16). To derive these equations from the TDHFB equations, we have as-
sumed the diagonal property of the pair potential, Eq. (19).

4.2. Linear response calculation in real time

We have applied the Cb-TDHFB method to study electric dipole reso-
nances in Ne and Mg isotopes [6]. Here, we apply the method to GDR in
the deformed 154Sm nucleus. We calculate the time evolution of the electric
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dipole moment, starting from the HF+BCS ground state with a perturbative
instantaneous external dipole field. Then, we perform the Fourier transform
to obtain the response function. The details of the calculation can be found
in Ref. [6].

We show in Fig. 4 the calculated photoabsorption cross-section in 154Sm.
Although the pair potential is simplified in the Cb-TDHFB calculation, the
result is almost identical to the QRPA calculation shown in Fig. 1, except
for a small difference seen in the second peak. We have examined the origin
of this difference and found that the neglect of the residual Coulomb in the
QRPA calculation is responsible for this small discrepancy. Thus, we may
conclude that the Cb-TDHFB can reproduce the QRPA result at its small
amplitude limit.
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It should be emphasized that the computational cost of the Cb-TDHFB
is significantly smaller than the QRPA. The present calculation in the full 3D
space can be achieved in roughly 50 CPU hours, while the QRPA calculation
in Fig. 1, that is restricted to the axially symmetric nuclei, requires roughly
1,000 CPU hours. This is because the Cb-TDHFB treats only the canonical
states whose number is the same order as the particle number. In contrast,
in the QRPA (or in the TDHFB), we need to treat the quasiparticle states
whose number is the same as the dimension of the model space.

5. Conclusion

We have presented our recent developments for studies of nuclear re-
sponse functions. The parallelized quasiparticle random-phase-approxima-
tion (QRPA) code is now ready for investigation for heavy axially deformed
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nuclei. The finite-amplitude method (FAM) was applied to systematic in-
vestigation of the photoabsorption cross-section in light nuclei. Recently,
the QRPA version of the FAM has been developed for superfluid nuclei,
including the pairing correlations. We also presented the canonical-basis
formulation of the TDHFB. This is applicable to large-amplitude nuclear
dynamics beyond the linear approximation.
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