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Devoted to the memory of Marian Ritter von Smolan Smoluchowski which
after several years spent at other universities (Paris, Glasgow, and Berlin)
moved to Lvov in 1899, where he took a position at the University of Lvov,
before he moved to Kraków in 1913, to take over the chair in Experimen-
tal Physics Department. In 1906, independently of Albert Einstein, he
described Brownian motion. Smoluchowski presented an equation which
became an important basis of the theory of stochastic processes.

Our studies are essentially based on the martingale differences method
developed in my previous papers for resolvents of random matrices. This
method possesses the self-averaging property of the entries of resolvents
of random matrices and, hence, we can deduce the stochastic canonical
equation. The lecture contains the most important results from numerous
papers and books dealing with the theory of Unitary random matrices and
functions of random matrices. We give the REFORM method of proving
of all results, avoiding the method of moments. We do not try to describe
here all known properties of the eigenvalues and eigenvectors for all classes
of random matrices. However, our aim is rather to present the theory of
stochastic canonical equations, and to give rigorous proofs of the proce-
dures used to deduce these equations on the base of the author’s General
Statistical Analysis. We consider special classes of analytic functions of ran-
dom matrices. The description problem for normalized spectral functions
of some analytic functions of random matrices is discussed in detail. Specif-
ically, we present here the new theory: LIFE, which is the abbreviation for
Limit Independence of Functions of Ensembles.
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Random matrix theory is a rapidly developing field and it has a great
influence to fundamental and applied sciences: statistics, nuclear physics,
and linear programming. Recent results in random matrix theory promoted
the interest of researchers in the field of statistical physics to the methods and
ideas developed for nuclear systems. One of the most intriguing applications
of random matrix theory is the application to quantum mechanics.

We assume that energy levels of an atom are described by the eigenvalues
of a random Hermitian operator, called the random Hamiltonian. It is very
important that the eigenvalues of certain random matrices of large dimension
converge to some nonrandom values, when the dimension of the matrix tends
to infinity (see the three laws of random matrix theory in [1]). At the same
time their eigenvectors remain to be random. In this manner, following
E. Wigner and F. Dyson we can reach an agreement with the experimental
observation of energy levels and wave functions of a nuclear of an atom on
the base of stochastic canonical equations.

Most of the areas under consideration are strongly correlated with the
spectral theory of nonsymmetric random matrices. The attention of scien-
tists in the physics of random matrices is mainly focused on the matrices
with zero expectations of their entries. The actual situation in the applica-
tion of random matrices to physics is quite different. As a rule, the entries
of matrices have nonzero means. We continue the development of a new
V-analysis for nonsymmetric random matrices from Girko’s ensemble when
the pairs of the entries of random matrices are independent. Therefore, the
main aim of the present lecture is to attract physicists to the new analysis
of random matrices appearing in numerous contemporary problems.

If the dimensionality of observations is large, then most statisticians
would agree that the efficiency of the classical parametric approaches is
doubtful. In the GSA General Statistical Analysis we try to find new statis-
tical estimators under two general assumptions. First, we do not require the
existence of a density of observations. For example, we do not require that
the observations have normal distributions. Second, we develop this analysis
for the case where the number of parameters mn can increase together with
the number of observations n. Using these two assumptions we can obtain
on the base of developed theory of canonical equations many new results
and I am sure that the general statistical analysis will be a turning point in
the multidimensional statistical analysis and Random Matrix Physics.

1. Canonical equation K1. The main assertion

Theorem 1. Assume that the entries ξ(n)
ij ; i ≥ j, i, j = 1, . . . , n, of a sym-

metric random matrix Ξn×n = (ξ(n)
ij )ni,j=1 are independent for each n =

1, 2, . . . and defined on a common probability space,
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Eξ
(n)
ij = a

(n)
ij , Var ξ(n)

ij = σ
(n)
ij , i ≥ j , i, j = 1, . . . , n ,

sup
n

max
i=1, ... ,n

n∑
j=1

σ
(n)
ij <∞ , (1.1)

sup
n

max
i=1, ... ,n

n∑
j=1

∣∣∣ a(n)
ij

∣∣∣2 <∞ , (1.2)

and Lindeberg’s condition is satisfied, i.e., for any τ > 0,

lim
n→∞

max
i=1, ... ,n

n∑
j=1

E
[
ξ
(n)
ij − a

(n)
ij

]2
χ
{∣∣∣ξ(n)

ij − a
(n)
ij

∣∣∣ > τ
}

= 0 , (1.3)

where χ is the indicator of a random event,

µn {x, Ξn×n} = n−1
n∑
k=1

χ(ω : λk < x) , (1.4)

and λ1 ≥ · · · ≥ λn are the eigenvalues of the symmetric random matrix
Ξn×n = (ξ(n)

ij )ni,j=1.
Then, for almost all x

lim
n→∞

|µn {x,Ξn×n} − Fn (x)| = 0 , (1.5)

with probability one. If, in addition,

inf
s,l=1,...,n

nσ
(n)
sl ≥ c > 0 , (1.6)

then, with probability one,

lim
n→∞

sup
x
|µn {x,Ξn×n} − Fn (x)| = 0 , (1.7)

where Fn(x) are distribution functions whose Stieltjes transforms are equal to
∞∫
−∞

(x− z)−1dFn(x) = n−1
n∑
i=1

ci(z) , z = t+ is , s 6= 0 , (1.8)

and the functions ci(z), i = 1, . . . , n, satisfy the canonical system of equations
K1:

ci(z) =


[
An×n − zIn×n −

(
δpl

n∑
s=1

cs(z)σ
(n)
s l

)n
p,l=1

]−1

ii

, (1.9)
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where i = 1, . . . , n δpl is the Kronecker symbol, An×n =
(
a

(n)
ij

)n
i,j=1

, and

In×n is the identity matrix of the n-th order. There exists a unique solu-
tion ci(z), i = 1, . . . , n, of the system of equations K1 in a class of analytic
functions

L = {z : Imz Imci(z) > 0 , Imz 6= 0 , i = 1, . . . , n} (1.10)

and the functions ci(z), i = 1, . . . , n, are the Stieltjes transforms of certain
distribution functions.

Note that, for some special cases, equation K1 has been found. In the
case where the matrix An×n is diagonal, the variances of the entries of a
random matrix Ξn×n are equal, and Lindeberg’s condition is satisfied for
the components of each row vector of the matrix Ξn×n, a special case of this
equation was obtained by Pastur [2]. In the case where An×n is a zero matrix
and the variances of the entries of a random matrix Ξn×n are bounded, it
was established by F. Berezin (see [1]). The case where the matrix An×n is
diagonal and the variances of the entries of a random matrix ξ(n)

ij may be
different and satisfy Lindeberg’s condition was studied by Girko [1].

2. Canonical equation K27 for normalized spectral functions of
random symmetric block matrices

Consider random symmetric matrices Ξn×n = (ξ(n)
ij )ni,j=1 with asymptot-

ically independent entries. It is proved that, for almost all x and any ε > 0,
under certain restrictions,

lim
n→∞

P {|µn(x)− Fn(x)| > ε} = 0 , (2.1)

where

µn(x) = n−1
n∑
k=1

χ(λk < x) , (2.2)

χ(λk < x) is the indicator function, λk are eigenvalues of the matrix Ξn×n =
(ξ(n)
ij )ni,j=1, Fn(x) is the distribution function whose Stieltjes transform is

equal to

∞∫
−∞

(x−z)−1 dFn(x) = n−1
p∑

k=1

TrCkk(z) , z = t+ is , s 6= 0 , (2.3)
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and the block matrices Ckk(z), k = 1, . . . , p, of dimensionality q × q satisfy
the system of canonical equations K27

Ckk(z)=


Apq−zIpq−(δlj p∑

s=1

EH
(n)
js Css(z)H

(n)∗
js

)p
l,j=1

−1
kk

, (2.4)

where k = 1, . . . , p, Apq×pq is a nonrandom matrix, Ipq×pq is the identity
matrix, H(n)

js are random matrices of dimensionality q× q, p and q are some
integers and notation {A}kk means the kth diagonal block of size q × q of
the matrix A.

3. Manhattan project and SOS-laws

The Manhattan Project was the effort, led by the United States with
participation from the United Kingdom and Canada, which resulted in the
development of the first atomic bomb during World War II and was carried
out in extreme secrecy. In 1939 and 1940, Eugene Paul Wigner (1902–
1995) played a major role in agitating for a Manhattan Project, to build
an atomic bomb. From 1942–1945, he worked on the Manhattan Project at
the University of Chicago. Recall that historically Wigner limit density for
the n.s.f. of symmetric random matrices was motivated by a certain model
of heavy nuclei. The plot of this density is a certain semicircle (actually
it is semiellipse). But this semielliptic density disappointed him and other
physicists. The real densities of the energy levels of atom nucleus have
another form. But we are now in a position to find such limit density
for the random block matrices. For the simple random block matrices, we
have Block Matrix Density which, for some matrices Aq×q and Bq×q, is
equal to Sum Of Semielliptic laws (SOS-laws) with different centers and
radii. Therefore, it is possible to approximate any probability density using
such SOS-law and it is possible to achieve an agreement with the observed
densities of energy levels of atoms and the spectral density of our random
block matrix.

To obtain the simplest result, we assume that the matrices Aq×q and
Bq×q commute.

Theorem 2. If, in addition to the conditions of Section 2, we have

Aq×q = Hq×qΛ
(1)
q×qH

T
q×q , Bq×q = Hq×qΛ

(1)
q×qH

T
q×q , (3.1)

where

Λ
(1)
q×q = (δijλi(Aq×q)) , Λ

(2)
q×q = (δijλi(Bq×q)) ,

λ1(Aq×q) ≤ · · · ≤ λq(Aq×q) , λ1(Bq×q) ≤ · · · ≤ λq(Bq×q) (3.2)
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are eigenvalues of matrices Aq×q and Bq×q, and Hq×q is an orthogonal ma-
trix, then, for all x with probability one

lim
p,q→∞

|µpq (x,Ξpq×pq)− Fq (x)| = 0 , (3.3)

where Fq(x) is the distribution function whose density is equal to

d

dx
Fq(x) =

1
q

q∑
k=1

1
2πλ2

k(Bq×q)
χ
{

[x−λk (Aq×q)]
2 < 4λ2

k(Bq×q)
}

×
√

4λ2
k(Bq×q)− [x− λk (Aq×q)]

2 , (3.4)

which is equal to the sum of semicircular laws (SOS-laws).

4. The canonical equation K96 for Girko’s ensemble
of random ace-matrix Ξn. Elliptical galactic law

The structure of this section is the following: at first we repeat the first
20 years old strong Elliptical law for random matrices Ξn = {ξ(n)

ij }. Then we
give the strong Elliptical law for random matrices Ξn of the general form,
i.e. when their diagonal entries ξ(n)

ii have nonzero expectations, and when
we require the existence of the probability densities of the entries of random
matrices and Lyapunov condition. In this case the Elliptical Galactic law
means that the support of the accompanying spectral density of eigenvalues
looks like the picture of several galaxies made by telescope. If the distances
between the centers of these galaxies are large enough we have several almost
elliptical galaxies. These statements are based on the VICTORIA-transform
of random matrix which is the abbreviation of the following words: Very
Important Computational Transformation Of Random Independent Arrays.

We follow the main strategy of the theory of limit theorems of the prob-
ability theory, i.e. we try to solve the problem of description of all limits of
normalized spectral functions

νn (x, y,AnΞnBn+Cn)

=
1
n

n∑
k=1

χ
{

Reλk(AnΞnBn+Cn) < x , Imλk(AnΞnBn+Cn) < y
}
, (4.1)

where λk(AnΞnBn+Cn) are eigenvalues of the matrix AnΞnBn+Cn, An, Bn,
and Cn are nonrandom matrices, under general (as only possible) conditions
on the entries ξ(n)

ij of random matrices Ξn, χ is the indicator function. We
emphasize that the spectral theory of Hermitian random matrices is rather
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profound. For example, in 1975 Girko proved the general stochastic canon-
ical equation for ACE (Asymptotically Constant Entries)-symmetric matri-
ces [1, 3]: Assume that for any n, the random entries ξ(n)

ij , i ≥ j, i, j =

1, . . . , n, of a symmetric matrix Ξn×n =
[
ξ
(n)
ij − α

(n)
ij

]n
i,j=1

are independent

and they are ACE, i.e., for any ε > 0,

lim
n→∞

sup
p,l=1,...,n

P
{∣∣∣ξ(n)

pl

∣∣∣ > ε
}

= 0, α(n)
ij =

∫
|x|<τ

x dP
{
ξ
(n)
ij < x

}
(4.2)

and τ > 0 is an arbitrary constant, and that, for every 0 ≤ u ≤ 1 and
0 ≤ v ≤ 1,

Kn (u, v, z)⇒ K (u, v, z) , −∞ < z <∞ , (4.3)

where the symbol ⇒ denotes the weak convergence of distribution when
n→∞,

Kn (u, v, z) = n

z∫
−∞

y2
(
1 + y2

)−1
dP
{
ξ
(n)
ij − α

(n)
ij < y

}
, (4.4)

in−1 ≤ u < (i+ 1)n−1, jn−1 ≤ v < (j + 1)n−1, and K (u, v, z) is a
nondecreasing function with bounded variation in z and continuous in u
and v in the domain 0 ≤ u, v ≤ 1. Then, with probability one, for almost
allx,

lim
n→∞

∣∣∣∣∣n−1
n∑
k=1

χ{λk (Ξn×n) < x} − F (x)

∣∣∣∣∣ = 0 , (4.5)

where λk (Ξn×n) are eigenvalues, F (x) is a distribution function whose Stielt-
jes transform satisfies the relation

∞∫
−∞

dF (x)
1 + itx

= lim
α↓0

1∫
0

[ 1∫
0

x dxGα (x, y, t)

]
dy , (4.6)

Gα (x, y, t), as a function of x, is a distribution function satisfying the regu-
larized stochastic canonical equation K3 [2,3] at the points x of continuity,

Gα (x, z, t) = P
{[

1 + t2ξα {Gα (∗, ∗, t) , z}
]−1

< x
}
, 0 ≤ x ≤ 1 ,

(4.7)



1008 V.L. Girko

ξα {Gα (∗, ∗, t) , z} is a random real functional whose Laplace transform of
one-dimensional distribution is equal to

E e{−sξα[Gα(∗,∗,t),z]}

= exp

{ 1∫
0

1∫
0

 ∞∫
0

[
exp

{
− syx2

(1+α |x|)2

}
− 1
]

1 + x2

x2
dxK (v, z, x)


dyGα (y, v, t) dv

}
, (4.8)

where α > 0 , s ≥ 0 , 0 ≤ z ≤ 1 .
The integrand

[
exp

{
−syx2 (1 + α |x|)−2

}
− 1
] (

1 + x−2
)
is defined at

x = 0 by continuity as −sy. There exists a unique solution of the canonical
equation K3 in the class L of functions Gα (x, y, t) that are distribution
functions of x (0 ≤ x ≤ 1) for any fixed 0 ≤ y ≤ 1, −∞ < t <∞, such that,
for any integer k > 0 and z, the function

∫ 1
0 x

kdxGα (x, z, t) is analytic in t
(excluding, possibly, the origin). The solution of the canonical equation K3

can be found by the method of successive approximations.
For the first time in 1980 and in 1990 this equation was rewritten in the

following form (here we use the simplest equation, when α = 0)

m(s, t, z)− 1 =

∞∫
0

exp

{ 1∫
0

1∫
0

[ ∞∫
0

[
m
(
t2yx2, t, v

)
− 1
]

×1 + x2

x2
dxK(v, z, x)

]
dv

}
∂

∂y
J0(2
√
sy)e−ydy , (4.9)

where

m(s, t, z) =

1∫
0

e−sxdxG0(x, z, t) , s ≥ 0 , (4.10)

J0(x) is the Bessel function which is equal to

J0(x) =
∞∑
k=0

(−1)kx2k 1
22lk!k!

. (4.11)

In [4], a technical improvement and a new proof of the uniqueness of solu-
tion of canonical equation K3 are presented, where m(s, t, z) has a unique
representation in the family of integrable functions. The analytic details of
the statement and of the proof are elaborate.
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We give here the strong Elliptical Galactic law for random matrices Ξn of
the general form, i.e. their diagonal entries ξ(n)

ij have nonzero expectations

and the pairs of the entries (ξ(n)
ij , ξ

(n)
ji ) have nonzero covariances. In this

case the Elliptical Galactic law means that the support of the accompanying
spectral density of eigenvalues of matrix Ξn looks like the picture of several
galaxies made by telescope.
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Fig. 1. See explanation in the text.

Fig. 1 (left) shows the collision of elliptic supports of the limit spectral
density of n.s.f. of random matrix An +ΛnΞn, where An is a diagonal com-
plex matrix with diagonal entries (0.7, 0), (−1, 0), (0, 0.7i) for corresponding
three equal parts of the main diagonal, and random matrix Ξn has equal
covariances ρ(

√
ρ = 0.2 + i0.8) of independent pairs of entries (ξ(n)

ij , ξ
(n)
ji )

with zero mean and is multiplied by diagonal matrix Λn with diagonal en-
tries (1, 0), (0.5, 0.5i), (−1, 0) for corresponding three equal parts of the main
diagonal. We have chosen in picture 1 three different diagonal entries of the
matrix An at a short distance. In Fig. 1 (right), we consider the diagonal
matrix An with diagonal entries (2, 0), (−2, 0), (0, 2i) at a large distant for
corresponding three equal parts of the main diagonal. In the letter case we
have several domains-supports like ellipses. For the exposition of the Ellip-
tical law we have chosen the random matrix Ξn of dimension 30 and 300
its Monte Carlo simulation. If the distances between the centers of these
galaxies are large enough we have several almost elliptical galaxies.

Fig. 2 shows the elliptic support of the limit spectral density of n.s.f.
of random matrix An + Ξn, where An is a diagonal matrix with 5 different
diagonal entries (1, 0); (−1, 0); (−0.5,−i); (0, 0.5i); (0, i) and random matrix
Ξn has equal covariances ρ(

√
ρ = 0.5+ i0.5) of the entries (ξij , ξji). We have

chosen five different diagonal entries of the matrix An at a short distance
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in Fig. 2 (left) and at a large (2, 0); (−2, 0); (−1,−2i); (0, i); (0, 2i) in Fig. 2
(right). In the letter case we have several domains-supports like ellipses. For
the exposition of the Elliptical law we have chosen the random matrix Ξn
of dimension 50 and 300 its Monte Carlo simulation.
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Fig. 2. See explanation in the text.

If the distances between the centers of these galaxies are large enough
we have several almost elliptical galaxies.

Maybe the reader remembers the Monte Carlo simulations of eigenvalues
of matrices Ξn+An, where Ξn belongs to the domain of attraction of Circular
law and An is the diagonal matrix whose diagonal entries forms letter R on
a complex plain [3]. For the case when the matrix Ξn belongs to the domain
of attraction of Elliptical law the simulation of eigenvalues of the matrix
Ξn +An looks like the following picture — Fig. 3.
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Fig. 3. See explanation in the text.
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There are essentially three methods of the proof of Elliptical Laws that
have been proposed: the REFORM method and Berry–Esseen inequality [1],
the method of perpendiculars [1,3], the method of the central limit theorem
and limit theorems for eigenvalues of random matrices [1, 3]. The main
advantage of REFORM approach is that it enables the results of the previous
version of Elliptical law to be extended to the case under consideration. The
REFORM-method (or G-martingale approach) enables us to suggest a new
method for construction of stochastic canonical equations.

We give the following Elliptical Galactic Law which generalizes the Strong
Circular Law and Weak Circular Law (see the sketch of the proof of this
law in the paper V-transform, Dopovidi Akademii Nauk Ukrainskoi RSR.
Seriia A, Fizykotekhnichni ta matematychni nauky, 1982, N3, pp. 5–6.): For
every n, let the pairs of random entries (ξ(n)

ij , ξ
(n)
ji ); i = 1, . . . , n, j = 1, . . . , n,

of the complex matrix Ξn×n = (ξ(n)
ij )j=1,...n

i=1,...,n be independent and given on a

common probability space, Eξ(n)
ij = 0,E

∣∣∣ξ(n)
ij

∣∣∣2 = σ
(n)
ij n

−1, 0 < r1 < σ
(n)
ij <

r2 <∞,Eξ(n)
ij ξ

(n)
ji = ρ

(n)
ij n

−1, i 6= j, i, j = 1, . . . , n, and

sup
n

max
i=1,...,n,
j=1,...,n

{
n∑
j=1

∣∣∣(A−1
n CnB

−1
n )ij

∣∣∣2 +
n∑
i=1

∣∣∣(A−1
n B−1

n )ij
∣∣∣2

+
n∑
j=1

∣∣∣(A−1
n CnB

−1
n )ji

∣∣∣2 +
n∑
i=1

∣∣∣(A−1
n B−1

n )ji
∣∣∣2} <∞ , (4.12)

where An =
{
a

(n)
ij

}
i,j=1,...,n

, Bn =
{
b
(n)
ij

}
i,j=1,...,n

and Cn =
{
c
(n)
ij

}
i,j=1,...,n

are nonrandom matrices, detAn 6= 0, detBn 6= 0, and the real and imaginary
parts of entries

√
nξ

(n)
ij ,
√
nξ

(n)
ji , i > j have the densities

p
(n)
ij (x1, x2, y1, y2)

=
∂4

∂x1 ∂x2 ∂y1 ∂y2
P
{

Re
√
nξ

(n)
ij < x1, Re

√
nξ

(n)
ji < x2 ,

Im
√
nξ

(n)
ij < y1, Im

√
nξ

(n)
ji < y2

}
(4.13)

satisfying the corrected Elliptic condition: for some β > 1

sup
n

max
l=1,...,n
k 6=l

∞∫
−∞

∞∫
−∞

max
k=1,..,n

 ∞∫
−∞

 ∞∫
−∞

p
(n)
kl (x, y, u, v)dy

β dx


1/β

du dv <∞ ,

(4.14)
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or

sup
n

max
l=1,...,n
k 6=l

∞∫
−∞

∞∫
−∞

max
k=1,..,n

 ∞∫
−∞

 ∞∫
−∞

p
(n)
kl (x, y, u, v)dx

β dy


1/β

du dv <∞ ,

(4.15)
and there exist the densities p(n)

ii (x) of the entries
√
nReξ(n)

ii , or the densities
q
(n)
ii (x) of the entries

√
nIm ξ

(n)
ii , satisfying the condition: for some β1 > 1

sup
n

max
k=1,...,n

∞∫
−∞

[
p
(n)
kk (x)

]β1

dx <∞ , (4.16)

or

sup
n

max
k=1,...,n

∞∫
−∞

[
q
(n)
kk (x)

]β1

dx <∞ , (4.17)

the Lyapunov condition is fulfilled: for some δ > 0,

max
p,l=1,...,n

E
∣∣∣ξ(n)
pl

√
n
∣∣∣2+δ

≤ c <∞ . (4.18)

Then, with probability one, for almost all x and y

lim
α↓0

lim
n→∞

|νn (x, y,AnΞnBn + Cn)− Fn,α (x, y)| = 0 , (4.19)

where

νn (x, y,AnΞnBn + Cn) = n−1
n∑
k=1

χ {Reλk < x, Imλk < y} , (4.20)

λk are eigenvalues of the matrix AnΞnBn+Cn, the Global probability density
pn,α(t, s) = (∂2/∂t ∂s)Fn,α(t, s) is equal to

pn,α (t, s) =

 − 1
4π

∞∫
α

[
∂2

∂t2
+ ∂2

∂s2

]
bn (y, t, s) dy for (t, s) /∈ Gn ,

0 for (t, s) ∈ Gn,
(4.21)

where α > 0,

bn

(
y, t, s

)
=

i

2
√
y
n−1 Tr [I2ni

√
y −Q2n(y, t, s) + C2n(y, t, s)]−1 ,

Q2n(y, t, s) =
(
δijQ

(ii)
2×2(y, t, s)

)
i,j=1,...,n

, C2n(t, s) =
{
C

(ij)
2×2(t, s)

}
,
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where C2n(t, s)=
(
c
(ij)
2×2(t, s)

)
i,j=1,...,n

is a block matrix, C(ij)
2×2 =

{
0 s

(n)
ij

s̄
(n)
ji 0

}
,

s
(n)
ij (t, s) are entries of the matrix

Sn(t, s) = A−1
n (Cn − Inτ)B−1

n =
{
s
(n)
ij (t, s)

}
, (4.22)

and Q2n(y, t, s) =
(
δijQ

(ii)
2×2(y, t, s)

)
i,j=1,...,n

is the block diagonal matri-

ces, whose diagonal block Q(ii)
2×2(t, s) satisfy the system of canonical equa-

tions K97

Q
(jj)
2×2(y, t, s) =

{
iI2n
√
y + C2n(t, s)

−
[
δij

n∑
i=1

E

{
0 ξij
ξ∗ji 0

}
Q

(ii)
2×2(y, t, s)

{
0 ξij
ξ∗ji 0

}∗ ]
i,j=1,...,n

}−1

jj
(4.23)

j = 1, . . . , n, and Ḡ is a support of the Global probability density, where

G =
{

(t, s) : lim
α↓0

lim sup
n→∞

α
∂

∂α
bn(α, t, s) = 0

}
. (4.24)

There exists a unique solution of canonical equation K97 in the class of
positive definite block matrices Q(ii)

2×2(y, t, s) > 0, y > 0, i = 1, . . . , n of the
order 2× 2, analytic in y > 0, t, s.

5. The border of the support of limit spectral density p(x, y) for
pure G-ensemble when only two constant of diagonal matrix

are pure imaginary numbers. Sand clock density

The next example is the simplest case of matrices from G-ensemble, when
only two diagonal complex entries of diagonal matrix An are different and
random matrix Ξn is Hermitian matrix. We can find the border support
of accompanying spectral density, but even in this simple case the solution
is not simple and the mathematical equation for the curve of the border of
accompanying support of limit spectral density occupies almost the half of
a page.

Theorem 3. If additionally to the conditions of the previous theorem
ρ(n) = 1, ak = ir, k = 1, . . . , [n/2]; al = −ir, l = [n/2] + 1, . . . , n then the
border of the support of accompanying probability spectral density is given by
the following equation
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(
d4k4 + d3k2

( (
(−2)bkl + 2al2 − 4akq

) )
+ d2

((
c2k3l + b2k2l2 − 2abkl3

+a2l4 + 3bck3p− 5ack2lp− 3abk2p2 + 4a2klp2 + 2b2k3q + 2abk2lq

−4a2kl2q + 6a2k2q2
))

+ d
(( (
−c3

)
k3p− b2ck2lp+ 2abckl2p− a2cl3p

+b3k2p2 + 3ac2k2p2 − 2ab2klp2 + a2bl2p2 − 3a2ckp3 + a3p4 − 4bc2k3q

−2b3k2lq2ac2k2lq + 4ab2kl2q − 2a2bl3q + 2abck2pq + 2a2cklpq

+2a2bkp2q − 4a3lp2q − 4ab2k2q2 + 2a2bklq2 + 2a3l2q2 − 4a3kq3
))

−q
(( (
−c4

)
k3 − b2c2k2l + 2abc2kl2 − a2c2l3 + b3ck2p+ 3ac3k2p

−2ab2cklp+ a2bcl2p− 3a2c2kp2 + a3cp3 − b4k2q − 4abc2k2q

+2ab3klq + 3a2c2klq − a2b2l2q + 5a2bckpq − 3a3clpq − a3bp2q

−2a2b2kq2 + 2a3blq2 − a4q3
)))

= 0 , (5.1)

where

a = 1 , k = 1 , p = 0 , b =
t2

2
− 2r2 , c = −2r2

s
,

d =
t4

16
+
t2r2

2
+ r4 , l =

t2

2
− 1− 2r2 , q =

t4

16
+
t2r2

2
+ r4 − t2

4
− r2 .

6. Several examples of the border support and Monte Carlo
simulations performed by Mathematica 5 for pure G-ensemble.

Sand clock density

We give here several examples. For the reader conveniences we provide
them by corresponding program of Mathematica 5. Enjoy considering dif-
ferent cases of random matrices.

Fig. 4 shows the elliptic support of the limit spectral density of n.s.f. of
random matrix An+Ξn.We have chosen the constant r = 0.5, ρ = 1. In this
case we have one domain-like ellipse. For the exposition of the Elliptical law
we have chosen the random Hermitian matrix Ξn of dimension 20 and 500
its Monte Carlo simulation.

Fig. 5 shows the elliptic support of the limit spectral density of n.s.f.
of random matrix An + Ξn considered in Theorem 3. We have chosen the
constant r = 1, ρ = 1. In this case we have two domain like ellipses with one
common point which look like sand clock. For the exposition of the Elliptical
law we have chosen the random Hermitian matrix Ξn of dimension 20 and
300 its Monte Carlo simulation.
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Fig. 6 shows the elliptic support of the limit sand clock spectral density
of n.s.f. of random matrix An + Ξn. We have chosen the constant r = 1.5,
ρ = 1. In this case we have two separated domain like ellipses. For the
exposition of the Elliptical law we have chosen the random matrix Ξn of
dimension 20 and 100 its Monte Carlo simulation.

7. VICTORIA-transform for the matriciant
of the growing dimension

We consider the random matrizant

Z
(m)
n×n =

m∏
i=1

[
In + In

f( i
m)
m

+
g( i
m)
√
m
Ξ(i)
n

]
(7.1)

of random ACE matrices Ξ(i)
n whose entries may have different variances.

We give a new method of deriving general canonical equation for the
VICTORIA-transform of normalized spectral functions (n.s.f.)

νn(u, v) = n−1
n∑
k=1

χ
{
=λk(Z

(m)
n×n) < u,<λk(Z

(m)
n×n) < u

}
(7.2)

of the product of random matrices (matriciant) Eq. (7.1) of the independent
matrices Ξ(i)

n , which was recently obtained for some particular cases on the
base of free probability theory. Here, λk(Z

(m)
n×n), k = 1, . . . , n mean the

eigenvalues of matrix, f(x) and g(x) are certain functions, In×n is identity
matrix and the product of random matrices is taken from the left to the
right. We will use for quadratic matrices two notations: An×n and An.
We apply the REFORM-method and the simplest and the shortest Girko’s
theory of the proof of the Circular law ( [1, 3]) for the deduction of the
system of canonical equations K91 for normalized spectral functions νn(u, v)
of this matriciant Z(m)

n×n. The probability distributions of random matrices
Ξ

(i)
n×n, i = 1, 2, . . . belong to the domain of attraction of the Circular law.

8. The G-method

In this section, we show the power of our G-method in comparison to
replica trick, the supersymmetry approach and free probability theory , on the
example of the product of two random matrices. Other examples when we
can consider more matrices will easily follow from this example.
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Step 1. We can establish the self averaging property of n.s.f. of permu-
tation matrices A2n×2nA

∗
2n×2n due to the presence the logarithmic function

in the V -transform.
Step 2. We can make the V -regularization choosing very small parameter

of regularization like α = n−q2 . Where q2 is a number and for our theory
the value of this number is not important. For our purposes it is enough
that this number is fixed and does not depend on n.

Step 3. Then we extend det[αnI2n×2n +A2n×2nA
∗
2n×2n] once again:

det[αnI2n×2n +A2n×2nA
∗
2n×2n] = (−1)2n det

[
i
√
αnI2n×2n A∗2n×2n
A2n×2n i

√
αnI2n×2n

]
(8.1)

and now we consider the n.s.f. of Hermitian matrices

G4n×4n =
[

0 A∗2n×2n
A2n×2n 0

]
. (8.2)

Step 4. We find a canonical equation for the Stieltjes transform of the
non-random accompanying n.s.f. µn(t, s, x).

Step 5. Then we can use the rough estimator of convergence of the
n.s.f. of the corresponding random permutation matrix with the speed of
convergency like n−q3 . All calculations are almost the same which were used
in the G-theory.

9. G-method, the Berry–Esseen inequality

We are using the Berry–Esseen inequality, the random variable γ and we
do not pursue the precise order of convergency of n.s.f. νn(G4n×4n, t, s, x, )
to the accompanying n.s.f. µn(t, s, x):

sup
x
|νn(G4n×4n, t, s, x, )− µn(t, s, x)| ≤ cn−q3 , c > 0 . (9.1)

Then we can perform the limit procedure in V -transform.

10. G-method. Canonical equation K91 for the product
of two independent matrices with independent entries

Theorem 4. If the real matrices Ξ(j)
n = {ξ(n,j)pl }, j = 1, 2; p, l = 1, . . . , n be

independent for every n = 1, 2, . . . and their entries satisfy the conditions of
Circular law. Then for every t and s

lim
α↓0

p lim
n→∞

νn
[
t, s,

2∏
j=1

(In + εjΞ
(j)
n )
]



1018 V.L. Girko

+
1

4π

∞∫
α

(
∂2

∂s2
+
∂2

∂t2

)
1

−2i
√
y
bn

(
y, t, s

)
dy

 = 0 , (10.1)

where bn(y, t, s) = 1
n

∑4n
p=1 r

(n)
pp (y, t, s) and r(n)

pp (y, t, s), p = 1, . . . , 4n satisfy
the following system of canonical equations K91:

r
(n)
kk =

([
iy(1/2)I4n×4n+B4n×4n−G4n×4n

(
y, t, s

)]−1
)
kk

, k = 1, . . . , 4n ,

(10.2)
where

B4n×4n

(
t, s

)
=
(
b
(n)
ij

(
t, s

))j=1,...,4n

i=1,...,4n

=


0 0 Inτ

(1/2) L1

0 0 L2 Inτ
(1/2)

Inτ̄
(1/2) L∗2 0 0
L∗2 Inτ̄

(1/2) 0 0

 ,

Li = In + εiEΞ
(i)
n (10.3)

G4n×4n

(
y, t, s

)
=
(
g
(n)
ij

(
y, t, s

))j=1,...,4n

i=1,...,4n

=


ε21G

(1)
n 0 0 0

0 ε22G
(2)
n 0 0

0 0 ε21G
(3)
n 0

0 0 0 ε22G
(4)
n

 , (10.4)

G(1)
n

(
y, t, s

)
=
[
δil

1
n

4n∑
p=3n

r(n)
pp

(
y, t, s

)
σ

(n),1
pl

]
i,l=1,...,n

,

G(2)
n

(
y, t, s

)
=
[
δil

1
n

3n∑
p=2n

r(n)
pp

(
y, t, s

)
σ

(n),2
pl

]
i,l=1,...,n

,

G(3)
n

(
y, t, s

)
=
[
δil

1
n

2n∑
p=n

r(n)
pp

(
y, t, s

)
σ

(n),1
pl

]
i,l=1,...,n

,

G(4)
n

(
y, t, s

)
=
[
δil

1
n

n∑
p=1

r(n)
pp

(
y, t, s

)
σ

(n),2
pl

]
i,l=1,...,n

. (10.5)

There exists a unique solution of this equation in the class of analytical
functions in t and s.
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11. The border G93(t, s) of the support of the accompanying
spectral density p93(t, s) for random matrices whose entries

have equal variances and nonzero expectations
for diagonal entries

It is difficult to find the accompanying probability spectral density of the
product of two matrices, but surprisingly more easily to find the border of
the support G of the accompanying spectral density for random matrices.

Then from Theorem 4 we obtain the border of the support G of the
accompanying spectral density for random matrices with equal variances.
Now we can consider many interesting cases of distribution of eigenvalues
of the product of two matrices. For example, if EΞn(1) = EΞn(2) = An,

E|ξ(j)pl − a
(j)
pl |

2 = n−1, ε(j) = 1, j = 1, 2, then we have equation for the
border of the support of accompanying spectral density

1 =
1
n

Tr
{
|τ |+ (In +An)(In +An)∗ − [

√
τ(In +An)∗+

√
τ̄(In +An)]

× [|τ |+(In+An)(In+An)∗]−1
[√

τ(In+An)∗+
√
τ̄(In+An)

]}−1

. (11.1)

The second example, if EΞ(1)
n = EΞ

(2)
n = An and the matrix In +An is

a symmetric real matrix with eigenvalues λk, k = 1, . . . , n. then the border
G91(t, s) of the support of the limit spectral density of the product of two
matrices (In +Ξ

(1)
n )(In +Ξ

(2)
n ) is equal to

1
n

n∑
k=1

1
√
t2 + s2 + λ2

k − |
√
τ̄ +
√
τ |2 λ2

k√
t2+s2+λ2

k

= 1 . (11.2)

We have chosen in the pictures below two points λk = 0.55, k = 1, . . . , [n/2],
λj = 2, j = [n/2] + 1, . . . , n in two equal parts for all eigenvalues, and
similarly we have chosen in the second picture eigenvalues 0.55; 1.8;3 in
three equal parts and 0.55;1.6;2,4; 3,4 in four equal parts. Then we can
see the structure of the border support for the limit spectral density of the
product of two matrices

(
In +Ξ

(1)
n

)(
In +Ξ

(2)
n

)
.

Of course, we can consider any matrix An in our equation for the border
support, for example, we can consider diagonal complex matrix, but behavior
of border will be similar, i.e. if the distance between diagonal entries of
diagonal matrix An are large enough, then the border support looks like
several closed almost circles.
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12. Heart law

In principal we can consider now any sum of product of independent
matrices. Let us start to investigate the product of three matrices

∏3
j=1

[An + Ξ
(j)
n ]. Under the same assumptions with respect to random matrices

as in the previous theorem we get canonical equation

b(t, s)
1 + b(t, s)

=
1
n

Tr
[
Iny(1 + b(t, s))2

+

 I3nτ
1/3 0n An

An Inτ
1/3 0n

0n An Inτ
1/3


 Inτ̄

1/3 A∗n 0n
0n Inτ̄

1/3 A∗n
A∗n 0n Inτ̄

1/3


−1

(12.1)

The above formula is equal to:

1
n

Tr

I3n[|τ |
2
3 + y(1 + b)2]+

 AnA
∗
n τ1/3A∗n τ̄1/3An

τ̄1/3An AnA
∗
n τ1/3A∗n

τ1/3A∗n τ̄1/3An AnA
∗
n


−1

. (12.2)

We simplify this equation assuming that matrix An is symmetric matrix
and denoting its eigenvalues by λk.

Then this equation is equivalent to the following

b(t, s)
1 + b(t, s)

=
1
n

n∑
k=1

[
|τ |2/3 + |λk|2 + y(1 + b)2 −

(
τ̄1/3λk, τ

1/3λ̄k

)

×

{
|τ |2/3+|λk|2+y(1+b)2 −τ1/3λ̄k

−τ̄1/3λk |τ |2/3+|λk|2+y(1+b)2

}(
τ̄1/3λk, τ

1/3λ̄k
)T

[|τ |2/3+|λk|2 + y(1 + b)2]2− |τ |2/3|λk|2


−1
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=
1
n

n∑
k=1

[
|τ |2/3 + |λk|2 + y(1 + b)2

−
2|τ |4/3|λk|2 + 2|λk|2(|λk|2 + y(1 + b)2)− λ̄3

kτ − λ3
kτ̄

|τ |4/3 + [|λk|2 + y(1 + b)2]2 + |τ |2/3|λk|2 + 2|τ |2/3y(1 + b)2

]−1

=
1
n

n∑
k=1

|τ |4/3 + |λk|4 + |λk|2|τ |2/3

|τ |2 + |λk|6 + λ̄3
kτ + λ3

kτ̄
. (12.3)

Using this equation we can as in Theorem 3 to find the accompanying
spectral density but since in this case we should solve the equation of the
third order the final formula becomes more complicated with comparison to
the case of the product of two matrices. Much easily we can find the border
of the support of this density. As in the case of the product of two matrices
we have

1 =
1
n

n∑
k=1

|τ |4/3 + |λk|4 + |τ |2/3|λk|2

|τ |2 + |λk|6 + τ λ̄3
k + τ̄λ3

k

. (12.4)

Another border when the diagonal entries have nonzero different expec-
tations is:
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4

In the first picture we have chosen a = 0, b = −1.42, c = 1.42; in the
second a = 1.5, b = 0, c = 0; and in the third a = b = c = 1.

If all eigenvalues λk are equal to one then the equation of the border is
simple

|τ |2 + τ + τ̄ = |τ |4/3 + |τ |2/3 . (12.5)
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Using this equation we can find the picture of this border

-5 -4 -3 -2 -1 0 1
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-1

0
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3

The reader can compare this picture with the border which looks like
heart and corresponds to the case of the product of two matrices which was
found in the papers [5, 6] (a = 1.2):
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6

Another border when the diagonal entries have nonzero equal expecta-
tions a = 0.3:
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After obtaining the results for n.s.f. of a single symmetric, non symmet-
ric and unitary random matrices [1,3] we now move in this paper toward the
main goal, namely to the most general solution of the problems of the limit
theorems of the theory of randommatrices: to find limit distributions of n.s.f.
of random matrices f [(Ξ(j)

n )k, (Ξ(j)∗
n )p, j, k, p = 1, 2, . . .], where f(x1, x2, . . .)
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is an analytical function and Ξ(j)
n , j = 1, 2, . . . are independent ACE (Asymp-

totically Constant Entries)-random matrices (in particular, unitary random
matrices). Particularly, using the canonical equation K91 we derive so called
LIFE law: under a certain conditions

∏m
j=1Ξ

(j)
n ∼ L̃IFE ∼ {Ξ(1)

n }m.
Roughly speaking LIFE means that n.s.f. of the sum of nonrandom

matrix An and the power of a non Hermitian matrix Hk
n with indepen-

dent ACE-entries (Asymptotically Constant Entries) is approximately equal
to n.s.f. of the sum of nonrandom matrix An and the product of k inde-
pendent random matrices H(1)

n H
(2)
n · · ·H(k)

n having the same structure as
the initial random matrix Hn but their entries may have any distributions
from a certain class G2 or G3 of matrices which were used in Girko’s Cir-
cular law. The similar assertion we can prove for other certain function
f [(Ξ(j)

n )k, (Ξ(j)∗
n )p, j, k, p = 1, 2, . . . [7]. This assertion is a simple Corollary

from Equation K91.

By tradition of choosing the names of laws in probability theory (Arcsine
law, law of iterated logarithm, etc.) we call this unusual behavior of the n.s.f.
of the power of random matrix Ξk

n as the Halloween law keeping in mind
that the appearance instead in n.s.f. of k copies of the same random matrix
Ξn its k independent copies Ξ(j)

n , j = 1, . . . , k looks like phantom or illusion.
More important that the histogram and the density of this law look like
a hat that people wear during Halloween days (see Figs. 7 and 8 below).

13. The ∼ L̃IFE ∼-phenomenon

For the first time the powers of matrices Ξn from class G1 were investi-
gated by Wegmann [8]. In our case when the matrix Ξn is non Hermitian
and belongs to the class G2 or G3 the Wegmann’s method is not valid.
Nevertheless, we can find some relatively simple relation for the spectra of
functions of random matrices using the LIFE phenomenon(the main state-
ment): in the LIFE sense the spectra of random matrix Ξk

n, Ξn ∈ G1 ÷G3,
where k > 1 and the matrix Ξn is not Hermitian, approximately is equal
to the spectra of the product of k independent random matrices

∏k
j=1Ξ

(j)
n ,

where Ξ(j)
n ≈ Ξn, the symbol ≈ staying between two matrices Ξn and Hn

means coincidence of distributions of these matrices. This assertion is a
simple Corollary from Equation K91 [7].

Fig. 7 (left) shows the 300 Monte Carlo simulation of the support of
the accompanying spectral density of the sum of diagonal matrix A60 with
six different diagonal entries a = 1, b = −1, c = −1 − i, d = i, e = −i,
f = 1.5 + 1.5i chosen in equal parts and the product of five independent
random matrices with independent entries Ξ(p)

60 = (ξ(p)ij ), p = 1, 2, 3, 4, 5;
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Fig. 7. See explanation in the text.

Eξij = 0, E[ξij ]2 = 1/60, i, j = 1, . . . , 60. Fig. 7 (right) shows the 300
Monte Carlo simulation of the support of spectral densities of the sum of
the same matrix A60 and the power of matrix: [Ξ(1)

60 ]5 and these pictures give
the conformation of the LIFE law: approximately the support of spectral
densities of two matrices A60+[Ξ(1)

60 ]5 and A60+
∏5
p=1Ξ

(p)
60 are approximately

the same.
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Fig. 8. See explanation in the text.
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Fig. 8 (upper left) shows the 300 Monte Carlo simulation of the support of
the accompanying limit spectral density p(x, y)= 1

5π (x2+y2)
1
5
−1χ{x2+y2≤1}

of the product of five independent random matrices with independent entries
Ξ

(p)
60 = (ξ(p)ij ), p = 1, . . . , 5;Eξij = 0,E[ξij ]2 = 1/60, i, j = 1, . . . , 60. Fig. 8

(upper right) shows the Halloween density for k = 5. This picture gives
the conformation of the LIFE law: approximately the supports of spectral
densities of the product of five matrices

∏5
j=1H

(j)
60 , and {H

(1)
60 }5 are the

same. Fig. 8 (lower left and right) shows the histograms (Halloween law)
and support of the accompanying limit spectral density.

These pictures give the conformation of the LIFE law. We see that Fig. 8
(upper right) looks indeed like a hat that some people wear during Halloween
days.

14. Sombrero law for matrices AnΞ
m
n

LIFE phenomenon is working also for a matrices AnΞk
n, where An is a

diagonal non random and Ξn is a random matrices. We do not present here
corresponding calculations, because all proofs are almost the same as for
matrices An +Ξk

n.

15. The ∼ L̃IFE ∼-operator

Here we give the main properties of ∼ L̃IFE ∼-operator:

1. First of all this operator is acting on analytical functions f(Ξn(j),
Ξ

(j)∗
n , j = 1, 2 . . .) of non Hermitian matrices Ξn(j) and its conjugate

matrices Ξ(j)∗
n . If matrix f(Ξn(j), Ξ(j)∗

n , j = 1, 2 . . .) is Hermitian then
our ∼ L̃IFE ∼-criterion is understood as the corresponding Stieltjes
transform, if this matrix is non Hermitian then we consider the corre-
sponding VICTORIA-relation. To simplify our calculations we assume
that Hermitian analytical matrix-function f(Ξn(j), Ξ(j)∗

n , j = 1, 2 . . .)
is a polynomial function. More precisely it is equal to

f
(
Ξn(j), Ξ(j)∗

n , j = 1, 2 . . .
)

= Bn+
∑
k=0

(Ξn(1))k g
(
Ξn(j), Ξ(j)∗

n , j = 2 . . .
)(

Ξ(1)∗
n

)k
, (15.1)

where g(Ξn(j), Ξ(j)∗
n , j = 2 . . .) is a polynomial.

2. If
f
(
Ξn(j), Ξ(j)∗

n , j = 1, 2 . . .
)

= Ξk
n, Ξn ∈ G3 (15.2)
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then

Ξk
n ∼ L̃IFE ∼

k∏
j=1

Ξ(j)
n , (15.3)

where Ξ(j)
n , j = 1, . . . , n are independent and Ξ(j)

n ≈ Ξn.

3. If

f
(
Ξn(j), Ξ(j)∗

n , j = 1, 2 . . .
)

= Ξk
n ±

(
Ξk
n

)∗
, Ξn ∈ G4 (15.4)

then

Ξk
n ±

(
Ξk
n

)∗
∼ L̃IFE ∼

k∏
j=1

Ξ(j)
n ±

 k∏
j=1

Ξ(j)
n

∗ . (15.5)

16. G-method in comparison to replica trick, the supersymmetry
approach and free probability theory

We give here more clarifications for the procedure described in Section 9,
starting from Step 5.

Step 5. Then we can use the rough estimator of convergence of the
n.s.f. of the corresponding random permutation matrix with the speed of
convergency like n−q3 . All calculations are almost the same which were used
in the G-theory. We are using the Berry–Esseen inequality, the random
variable γ and we do not pursue the precise order of convergency of n.s.f.
νn(G4n×4n, t, s, x, ) to the non-random accompanying n.s.f. µn(t, s, x):

sup
x
|νn(G4n×4n, t, s, x, )− µn(t, s, x)| ≤ cn−q3 , c > 0 . (16.1)

Step 6. Then we can perform the limit procedure in V -transform replac-
ing n.s.f. of permutation random matrices by non random accompanying
n.s.f.
∞∫
0

ln (i
√
αn+x) dνn(G4n×4n, t, s, x, ) =

∞∫
0

ln (i
√
αn+x) dµn(t, s, x, ) + εn ,

(16.2)
where limn→∞ εn = 0 and receive the accompanying expression which is
expressing through canonical equation K91.

Consider VICTORIA-transform of matrix Ξ2
n:

bn(α, t, s) =
1
n

Tr
[
Inα+

(
Ξ2
n − τIn

)(
Ξ2
n − τIn

)∗]−1

, (16.3)
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where α > 0, τ = t + is. We prepare matrix Ξn in the following form,
considering the first row vector ~ξ1 of the matrix Ξn: (For other row vectors
~ξj , j = 2, . . . , n we have similar formulas).

Despite that, even in this case, the structure of this matrix is quite
complicated, we prove the following assertion [7].

Theorem 5. If Ξn ∈ G2, then the following canonical equation K71 is valid

ΞnΞ
∗
n +Ξ∗nΞn ∼ L̃IFE ∼ ΞnΞ∗n +H∗nHn , (16.4)

where random matrices Ξn and Hn are independent and Ξn ≈ Hn. Here
the symbol ≈ staying between two matrices Ξn and Hn means coincidence
of distributions of these matrices.

Proof. The idea of the proof of this assertion consists in the following.
Firstly, we prepare the matrices in such a way that their entries should be
symmetric. Since this step is very important we consider this method in the
special section. But now we should establish the self averaging property of
n.s.f.

17. Self averaging of normalized traces of resolvents of random
matrices in law of independency of ensembles of random

matrices (LIFE)

For the proof of self averaging property of normalized traces of resolvents
of random matrices ΞnΞ∗n + Ξ∗nΞn we can use the main statement which
was proven in [3] Chapter 1, Volume I. As the reader may remember, we
have used the invariance principal for matrices Ξn and if the entries of
this matrix are independent with zero expectations and the same variances,
then we have replaced matrix Ξn by Gaussian matrix and its distribution
is invariant with respect to the orthogonal transformation. We have proved
that matrices ΞnΞ∗n, Ξ∗nΞn are asymptotically stochastically independent.
But in the general case of the distribution of matrix Ξn this method does
not work, therefore we follow here the LIFE procedure.

Theorem 6. If Ξn ∈ G2, then for every t > 0

lim
n→∞

E

∣∣∣∣ 1n Tr [Int+ΞnΞ
∗
n+Ξ∗nΞn]−1−E 1

n
Tr [Int+ΞnΞ

∗
n+Ξ∗nΞn]−1

∣∣∣∣2 = 0 .

(17.1)

18. The Wegmann’s canonical equation K73

Due to the LIFE-statement we can find the canonical equation for the
Stieltjes transforms of n.s.f. of matrices Ξk

n(Ξ∗n)k.
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Theorem 7. If matrices Ξn belong to G1-class of random matrices,
i.e. if the variances of the entries ξ(n)

pl , p, l = 1, . . . , n are equal to n−1 and

expectation of all entries ξ(n)
pl , p, l = 1, . . . , n of matrices Ξn are equal to

zero, for an integer k > 1

sup
n

max
i,j=1,...,n

E|ξij
√
n|2k+δ <∞ , (18.1)

then with probability one for this integer k for almost all x ≥ 0

lim
n→∞

µn

{
x,Ξk

n(Ξ∗n)k
}

= F (k)(x) , (18.2)

where F (k)(x) is the probability distribution function whose Stieltjes trans-
form

m(z) =

∞∫
0

(x− z)−1dF (k)(x), Imz > 0 , (18.3)

satisfies canonical equations K73 [8]

(−1)k+1zkmk+1(z) + zm(z) + 1 = 0 . (18.4)

There exist the unique solution to canonical equations K73 in the class L of
analytic functions L={m(z) : Imz > 0, Imm(z) > 0}.

Proof. Using the proof of Theorem 5 we have

Ξk
n(Ξ∗n)k ∼ L̃IFE ∼

k∏
j=1

Ξ(j)
n

 k∏
j=1

Ξ(j)
n

∗ , (18.5)

where matrices Ξ(j)
n , j = 1, . . . , k are independent and their entries also

independent and are distributed by normal law N(0, n−1). Denote

fk(z) =
1
n
E Tr

−Inz +
k∏
j=1

Ξ(j)
n

 k∏
j=1

Ξ(j)
n

∗
−1

, (18.6)

Λ
(s)
n ={δijλi(s)}j,i=1,...,n are eigenvalues of the matrix

∏s
j=1Ξ

(j)
n [
∏s
j=1Ξ

(j)
n ]∗.

In order to explain this result we need to prepare our resolvent for the
further calculations. Firstly, using the invariance principle we can change
approximately matrix Ξn by standard Gaussian random matrix Hn. Then,
we know that Hn = UnΛnVn, where the matrices Un and Vn are independent
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and are distributed by probabilistic Haar measure, and Λn is a diagonal
random matrix of corresponding eigenvalues of matrix (HnH

∗
n)1/2. Then,

due to our theory

fk(z) = E
1
n

Tr
{
−zIn +Ξ(1)

n Λ(k−1)
n Ξ(1)∗

n

}−1
+ o(1) . (18.7)

Then, using the canonical equation K7 [3] we obtain

fk(z) =
1
n

n∑
i=1

E [−z − zfk(z)λi(k − 1)]−1 + o(1)

= − 1
zfk(z)

n∑
i=1

1
n
E

[
1

fk(z)
+ λi(k − 1)

]−1

+ o(1) . (18.8)

or

− zf2
k (z) = fk−1

(
1

fk(z)

)
+ o(1) , (18.9)

where

fk−1

(
1

fk(z)

)
=

n∑
i=1

1
n
E

[
1

fk(z)
+ λi(k − 1)

]−1

. (18.10)

Continuing such process of calculations we get

f2
k−1

(
1

fk(z)

)
= fk(z)fk−2

(
− 1
fk−1

)
+ o(1) . (18.11)

We simplify calculations writing

fs−1

(
1

fs(z)

)
= fs−1(z), s = 1, . . . , k . (18.12)

Then we have the system of canonical equations

f2
k−1(z) = fk(z)fk−2(z) + o(1) ,
f2
k−2(z) = fk−1(z)fk−3(z) + o(1) ,

...
f2
5 (z) = f6(z)f4(z) + o(1) ,
f2
4 (z) = f5(z)f3(z) + o(1) ,
f2
3 (z) = f4(z)f2(z) + o(1) ,
f2
2 (z) = f3(z)f1(z) + o(1) ,

(18.13)
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and the last equations is a simple consequence of the theory of Gram random
matrices:

f1(z) = f2(z)
1

1 + f1(z)
+ o(1) . (18.14)

Now finding from the last equation

f2(z) = f1(z)(1 + f1(z)) + o(1) (18.15)

and substituting f2(z) in the previous two last equations we obtain

f3(z) = f1(z)[1 + f1(z)]2 + o(1) , (18.16)
f2
3 (z) = f4(z)f1[1 + f1(z)] + o(1) . (18.17)

Hence, we have the system of equations

−zf2
k (z) = fk−1(z) + o(1) ,

f2
k−1(z) = fk(z)fk−2(z) + o(1) ,
f2
k−2(z) = fk−1(z)fk−3(z) + o(1) ,

...
f2
3 (z) = f4f1(z)(1 + f1(z)) + o(1) ,
f1(z)(1 + f1(z))2 = f3(z) + o(1) .

(18.18)

Solving it we get

− zf2
k (z) = f1(z)(1 + f1(z))k−2 + o(1) , (18.19)
fk(z) = f1(z)(1 + f1(z))k−1 + o(1) . (18.20)

From this system we obtain canonical equation K73

(−1)k+1zkfk+1
k (z) + zfk(z) + 1 = 0 . (18.21)

Theorem 7 is proved.

Remark The corresponding Wegmann’s equation (see [8]) follows from
this equation if we will put fk(z) = −x−1f(x−1).

19. The Quatriq law

Corollary 1. [8] If in addition to the condition of Theorem 7, k = 3
then with probability one

lim
n→∞

µn
(
x,Ξ3

n(Ξ∗n)3
)

= F (3)(x) , (19.1)
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where F (3)(x) is one quarter circle distribution function whose density p(x)
is equal to

∂F (x)
∂x

=


√

3
2π

[(
q(x)/2+

√
Q(x)

)1/3

−
(
q(x)/2−

√
Q(x)

)1/3
]
, Q(x)>0 ,

0 , Q(x)<0 ,
(19.2)

where Q (x) = [θ (x)/3]3 + [q (x)/2]2, θ = −a2/3 + b, q = 2(a/3)3−ab/3 +d,
a = 0, b = −1/x, c = −1/x2.

Proof. In this case the canonical equation K73 has a form

z3m4(z) + zm(z) + 1 = 0 . (19.3)

As in previous chapters we prove that there exists the limits

q(x) = lim
ε↓0

Rem(x+ iε), p(x) = π−1 lim
ε↓0

Imm(x+ iε) . (19.4)

Therefore, using equation (18.21) we have for these functions

x3[q(x) + iπp(x)]4(z) + x[q(x) + iπp(x)] + 1 = 0 . (19.5)

From this equation considering separately the real and imaginary parts
and taking into account that we are interested in positive probability density
we have two equations 4x2q2(x)−4x[πp(x)]2+1 = 0, x3q4(x)−4x3[πp(x)]2+
x3[πp(x)]4 − 2x3q2(x)[πp(x)]2 + xq(x) + 1 = 0.

Now, using formulas for the roots of polynomial of fourth degree as in [3]
we complete the proof of Corollary 1.

20. The Cubic law

Corollary 2. [8] If in addition to the condition of Theorem 7 k = 2 then
with probability one

lim
n→∞

µn
(
x,Ξ2

n(Ξ∗n)2
)

= F (2)(x) , (20.1)

where F (2)(x) is one quarter circle distribution function whose density p(x)
is equal to where F (x) is the probability distribution function whose density
p(x) is equal to

∂F (x)
∂x

=


√

3
2π

[(
q(x)/2+

√
Q(x)

)1/3

−
(
q(x)/2−

√
Q(x)

)1/3
]
, Q(x) > 0 ,

0 , Q(x) < 0 ,
(20.2)
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where Q (x) = [θ (x)/3]3 + [q (x)/2]2, θ = −a2/3 + b, q = 2(a/3)3−ab/3 +d,
a = 0, b = −1/x, c = −1/x2.

Proof. In this case the canonical equation K73 has a form

− z2m3(z) + zm(z) + 1 = 0 . (20.3)

Now using Cardano formulas as in [3] we complete the proof of Corol-
lary 2.

21. The one quarter circle law

Corollary 3. [8] If in addition to the condition of Theorem 7, k = 1
then with probability one

lim
n→∞

µn(x,Ξn(Ξ∗n)) = F (1)(x) , (21.1)

where F (1)(x) is one quarter circle distribution function whose density p(x)
is equal to

p(x) =
1

2π

√
4− x
x

χ {0 < x < 4} . (21.2)

Proof. In this case the canonical equation K73 has a form

zm2(z) + zm(z) + 1 = 0 . (21.3)

Now solving this equation as in [3] we complete the proof of Corollary 3.

22. Application of extended V -transform

Of course, we can find also other canonical equations for our matrices
using the extended V -transform. We give here only the sketch of this ap-
proach. In this case we already have the product of 2k matrices:

Tr
[
Ξk
nΞ

k∗
n − Inz

]−1
= − ∂

∂z
ln det

[
Ξk
nΞ

k∗
n − I2nz

]
+ nz−1

= − ∂

∂z
ln

∣∣∣∣∣∣∣∣∣det


I2nz

1/4 02n 02n G
(1)
2n

G
(2)
2n I2nz

1/4 02n 02n

02n G
(3)
2n I2nz

1/4 02n

02n 02n G
(4)
2n I2nz

1/4


∣∣∣∣∣∣∣∣∣+nz

−1 , (22.1)
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where

G
(1)
2n =

{
An Hn

0n 0n

}
, G

(2)
2n =

{
Hn 0n
0n Bn

}
,

G
(3)
2n =

{
Bn 0n
0n H∗n

}
, G

(4)
2n =

{
H∗n 0n
An 0n

}
.

Now we can apply for this expression the VICTORIA-transform and find

n.s.f. of the matrix
{

08n Q8n

Q∗8n 08n

}
, where

Q8n =


02n 02n 02n G

(1)
2n

G
(2)
2n 02n 02n 02n

02n G
(3)
2n 02n 02n

02n 02n G
(4)
2n 02n

 .

The next step consists in derivation of canonical transform(16n equations,
or, we can replace matrix Q8n by block matrix (every block has dimensions
2k × 2k) and derive one equation for block matrices of dimension 2k.

So, we have two proofs: one is based on the existence of probability
densities of the entries of random matrices and the second is based on the
G-Lindeberg condition. But the final formulas for the limit spectral densities
coincide. Therefore we can simplify our first final formula.

23. The ∼ L̃IFE ∼-operator for block random matrices

We can repeat all previous calculations for the block random matrices.
See corresponding material in Volumes I and II of [3]. As a result we have
the following assertion.

Theorem 8. If Ξn ∈ G1, then the following canonical equation K69 is
valid

f(ΞnΞ∗n) + g(Ξ∗nΞn) ∼ L̃IFE ∼ f(ΞnΞ∗n) + g(H∗nHn) , (23.1)

where f(x), g(x) are analytic functions, the blocks of random matrices Ξn
and Hn are independent and Ξn ≈ Hn. Here the symbol ≈ staying be-
tween two matrices Ξn and Hn means coincidence of distributions of these
matrices.

24. The canonical equation K74

Repeating the proof of Theorem 7, when matrices Ξn belong to the class
of matrices G1 we have proved the following assertion.
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Theorem 9. Let as in the previous chapter we have the same matrix Ξn,
i.e. we require that their entries ξij , i, j = 1, . . . , n have zero expectations and
equal variances n−1, for some δ > 0 and integer k > 0

sup
n

max
p,l=1,...,n

E
∣∣∣ξ(n)
pl

√
n
∣∣∣4k+δ < c <∞ , (24.1)

let matrix An = (aij) be symmetric and

sup
n

max
i,j=1,...,n

n∑
j=1

a2
ij < c <∞ . (24.2)

Then with probability one for almost all x and this k > 0

lim
n→∞

{
µn

{
x,An +Ξk

n(Ξk
n)∗
}
− L(k)

n (x)
}

= 0 , (24.3)

where L(k)
n (x) is the probability distribution function whose Stieltjes trans-

form

mn(z) =

∞∫
0

(x− z)−1dL(k)
n (x) , Imz > 0 (24.4)

satisfies the canonical equations K74

mn(z) =

∞∫
−∞

dFn(y)
−z + y +m−1

n (z)− b
[
−m−1

n (z)
] , (24.5)

where Fn(y) is the n.s.f. of the matrix An, and b(z) satisfies the canonical
equation K74

(−1)kzk−1bk(z) + zb(z) + 1 = 0 . (24.6)

There exist the unique solution to canonical equations K74 in the class L of
analytic functions

L = {m(z) , Im z > 0 , Imm(z) > 0} . (24.7)

25. The canonical equation K79

Let us find the equation for the Stieltjes transform of n.s.f. for matrices
belonging to the class of matrices Ξk

n(Ξ∗n)k + (Ξ∗n)kΞk
n.

Theorem 10. If matrices Ξn belonging to the class of G-matrices and
their entries have expectations zero, variances n−1 and for a certain δ > 0

max
i,j=1,...,n

E
∣∣∣ξ(n)
ij

√
n
∣∣∣4k+δ ≤ c , (25.1)
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then with probability one for every k > 0

lim
n→∞

µn

{
x,Ξk

n(Ξ∗n)k + (Ξ∗n)kΞk
n

}
= F (x) , (25.2)

where F (x) is the probability distribution function whose Stieltjes transform

m(z) =

∞∫
−∞

(x− z)−1dF (x) , Imz > 0 , (25.3)

satisfies canonical equations K79 [8]

(−1)k−1

[
zm(z)− 1

2

]k
m(z) +

zm(z)− 1
2

+ 1 = 0 . (25.4)

There exist the unique solution to canonical equations K80 in the class L of
analytic functions L={m(z), Imz > 0, Imm(z) > 0, lim|z|→∞m(z) = 0}.

Proof. In this case

mn(z) =
1
n
E Tr

[
−zIn +Ξk

n(Ξ∗n)k + (Ξ∗n)kΞk
n

]−1

=
1
n
E Tr

[
−zIn +ΞnΛnΞ

∗
n + Ξ̃nΛnΞ̃n

]−1
+ o(1) , (25.5)

where Λn is the diagonal matrix of eigenvalues of matrix Ξk−1
n (Ξ∗n)k−1.

Obviously

mn(z) =
1
n
E Tr[−zIn +BnB

∗
n]−1 =

1
n
E Tr[−zI2n +B∗nBn]−1 +

1
z
, (25.6)

where
Bn = [ΞnΛn, Ξ̃nΛn ] .

Using canonical equation K5 we get

mn(z) =
2
n

n∑
j=1

E
[
−z − zmn(z)λ(k−1)

j

]−1
+

1
z

+ o(1)

= − 2
zmn(z)

f(
1

mn(z)
) +

1
z

+ o(1) , (25.7)

where f(−u) satisfy the canonical equation K75

(−1)kuk−1fk(−u) + uf(−u) + 1 = 0 , Imu > 0 . (25.8)
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Putting in this equation u = −1/(mn(z)) we get

(−1)k
(−1)(k−1)

mk−1
n (z)

fk
(

1
mn(z)

)
− 1
mn(z)

f

(
1

mn(z)

)
+ 1 = 0 . (25.9)

Then taking into account that from (79.66) we have

f

(
1

mn(z)

)
= −zm

2
n(z)−mn(z)

2
(25.10)

we get canonical equation K79

(−1)k−1

mk−1
n (z)

(
zm2

n(z)−mn(z)
2

)k
+

1
mn(z)

(
zm2

n(z)−mn(z)
2

)
+ 1 = 0 .

(25.11)
Hence, we obtain equation K79. Theorem 10 is proved.

Corollary 4. [8] If in addition to the condition of Theorem 10, k = 1
then with probability one

lim
n→∞

µn

{
x,Ξk

n(Ξ∗n)k + (Ξ∗n)kΞk
n

}
= M(x) , (25.12)

where M(x) is the probability distribution function whose density p(x) is
equal to

p(x) =
1

2πx

√
−x2 + 6x− 1χ

{
3−
√

8 < x < 3 +
√

8
}
. (25.13)

26. The canonical equation K82

Let us find the equation for the Stieltjes transform of n.s.f. for matrices
belonging to the class of G-matrices.

Theorem 11. If matrices belonging to the class of G(k)-matrices, i.e.
if matrices Ξn belonging to the class of G-matrices and their entries have
expectations zero, variances n−1 and for a certain δ > 0

max
i,j=1,...,n

E
∣∣∣ξ(n)
ij

√
n
∣∣∣4k+δ ≤ c , (26.1)

then with probability one for integer k > 0

lim
n→∞

µn

{
x,Ξk

n(Ξ∗n)k −Ξk
n(Ξ∗n)k

}
= F (x) , (26.2)
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where F (x) is the probability distribution function whose Stieltjes transform

m(z) =

∞∫
−∞

(x− z)−1dF (x) , Imz > 0 , (26.3)

satisfies canonical equations K82 [8]

zm(z)2 +m(z) = f(m(z)) + f(−m(z)) , (26.4)

where the analytic function f(m(z)) satisfies equations

− f(m(z))k

m(z)k−1
− 1
m(z)

f(m(z)) + 1 = 0 , (26.5)

(−1)k
f(−m(z))k

m(z)k−1
+

1
m(z)

f(−m(z)) + 1 = 0 . (26.6)

There exist the unique solution to canonical equations K82 in the class L of
analytic functions L = {m(z), Imz > 0, Imm(z) > 0}.

Proof. In this case

mn(z) =
1
n
E Tr

[
−zIn +Ξk

n(Ξ∗n)k − (Ξ∗n)kΞk
n

]−1

=
1
n
E Tr

[
−zIn +ΞnΛnΞ

∗
n − Ξ̃nΛnΞ̃n

]−1
+ o(1) , (26.7)

where Λn is the diagonal matrix of eigenvalues of matrix Ξk−1
n (Ξ∗n)k−1.

Obviously

mn(z) =
1
n
E Tr [−zI2n +B∗nBn]−1 +

1
z

+ o(1) , (26.8)

where
B∗n =

[
ΛnΞn
ΛnΞ̃n

]
. (26.9)

Using canonical equation K5 we get

mn(z) =
1
n

n∑
j=1

E Tr[−z − zmn(z)λj ]−1

+
1
n

n∑
j=1

E Tr[−z + zmn(z)λj ]−1 +
1
z

+ o(1)

= − 1
zmn(z)

[
f(

1
mn(z)

) + f(
−1

mn(z)
)
]

+
1
z

+ o(1) , (26.10)
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where
f(−u) (26.11)

satisfy the canonical equation K75

(−1)kuk−1fk(−u) + uf(−u) + 1 = 0 , Imu > 0 . (26.12)

Putting in these equations

u = − 1
mn(z)

(26.13)

we get canonical equation K82. Theorem 11 is proven.

Corollary 5. (Cubic law) [8] If in addition to the condition of Theorem 4
k = 1, matrices Ξn belonging to the class of G(k)-matrices, i.e. their entries
have expectations zero, variances n−1 and for a certain δ > 0

max
i,j=1,...,n

E
∣∣∣ξ(n)
ij

√
n
∣∣∣4k+δ ≤ c , (26.14)

then with probability one

lim
n→∞

µn{x,ΞnΞ∗n +Ξ∗nΞn} = M(x) , (26.15)

where F (x) is the probability distribution function whose density p(x) is
equal to

∂F (x)
∂x

=


√

3
2π

[(
q(x)/2+

√
Q(x)

)1/3
−
(
q(x)/2−

√
Q(x)

)1/3
]
, Q(x)>0 ,

0 , Q(x)<0 ,
(26.16)

where

Q (x) =
[
θ (x)

3

]3

+
[
q (x)

2

]2

,

θ = −a2/3 + b , q = 2(a/3)3 − ab/3 + d ,

a = −1
x
, b =

x− 1
x

, c =
1
x
.

Proof. In this case the system of canonical equations K81 has a form

− zm2(z) +m(z) = f(m(z)) + f(−m(z)) ,
−f(m(z))−m−1(z)f(m(z)) + 1 = 0 ,

−f(−m(z)) +m−1(z)f(−m(z)) + 1 = 0 . (26.17)
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Solving it we obtain the cubic equation

zm3(z)−m2(z) +m(z)(z − 1) + 1 = 0 . (26.18)

Now using Cardano formulas as in [3] we complete the proof of Corollary 5.

27. The canonical equation K85

In the particular case when the expectations of the entries ξ(n)
ij of random

matrices Ξn are equal to zero and variances are equal to

E
∣∣∣Ξ(n)

ij

∣∣∣2 = n−1 , (27.1)

we have the following assertion which appeared for the first time in [8] in
1976.

Theorem 12. [3] If additionally to the conditions of this theorem the
variances are equal n−1 and expectation of all entries of matrices are equal
to zero, then with probability one

lim
n→∞

µn

(
x,Ξk

n + (Ξ∗n)k
)

= G(x) , (27.2)

where G(x) is the probability distribution function whose Stieltjes transform

m(z) =

∞∫
−∞

(x− z)−1dG(x) , Imz > 0 (27.3)

satisfies canonical equations K85 [8]

[z +m(z)]k−1mk+1(z) + zm(z) +m2(z) + 1 = 0 . (27.4)

There exist the unique solution to canonical equations K75 in the class L of
analytic functions L = {m(z), Imz > 0 , Imm(z) > 0}.

Proof. Using (27.2) we have

mn(z) =
1
n
E Tr

[
−zIn +Ξk

n + (Ξ∗n)k
]−1

=
1
n
ETr[−zIn +Ξ(1)

n An +A∗nΞ
(1)
n ]−1 + o(1) , (27.5)

where
An = Ξk−1

n .
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Due to invariance principle (Volume 1) we can assume that the matrix Ξ(1)
n

is the standard Gaussian. Therefore, using the invariance property of the
standard Gaussian matrices with respect to orthogonal transformations we
obtain

mn(z) =
1
n
E Tr

[
−zIn +Ξ(1)

n Λn + ΛnΞ
(1)∗
n

]−1
+ o(1) , (27.6)

where Λn = (δijλi) is the diagonal matrix of eigenvalues of the Hermitian
matrix [AnA∗n]1/2. Therefore, using the canonical equation K1 we get

mn(z) =
1
n

n∑
j=1

cj(z) + o(1) , (27.7)

where the analytic functions

cj(z), j = 1, . . . , n (27.8)

satisfy the system of equations:

cj(z) =

{
−z − 1

n

n∑
s=1

E[ξjsλj + ξsjλs]2cs(z)

}−1

, j = 1, . . . , n

= E

{
−z − 1

n

n∑
s=1

λ2
scs(z)− λ2

j

n∑
s=1

cs(z)

}−1

, j = 1, . . . , n . (27.9)

Since this system of equations has unique solution in a certain class of ana-
lytic functions we can choose solution

cj(z) = m(z) , j = 1, . . . , n (27.10)
which satisfies such system of equations.

Now we apply for thus expression an unusual result of LIFE which easily
follows from the previous calculations. Changing the power of a matrix by
the product of corresponding independent matrices we get

Lemma Under conditions of Theorem 12 for any k = 1, 2, . . .
1
n
E TrΞk

n(Ξ∗n)k = 1 + o(1) . (27.11)

Using this assertion we get from (27.21)

mn(z) =
1
n

n∑
j=1

{
−z −mn(z)− λ2

jmn(z)
}−1

, j = 1, . . . , n

= − 1
mn(z)

n∑
j=1

1
n
E
{

[z +mn(z)]m−1
n (z) + λj

}−1
. (27.12)



Theory of Stochastic Canonical Equations of Random Matrix Physics . . . 1041

Considering
[z +mn(z)]m−1

n (27.13)

as a parameter we can use equation K78

−m2
n(z) = f

{
[z +mn(z)]m−1

n

}
, (27.14)

where the function f(u) satisfies the following algebraic equations

(−1)kuk−1fk(−u) + uf(−u) + 1 = 0 . (27.15)

Putting
u = −[z +mn(z)]m−1

n (z) (27.16)

in this equation we obtain

(−1)k−1[z+mn(z)]k−1m−k+1
n (z)m2k

n (z)−[z+mn(z)]m−1
n (z)(−m2

n(z))+1=0 .
(27.17)

Hence

[z +mn(z)]k−1

mk−1
n (z)

m2k
n (z) + [z +mn(z)]mn(z) + 1 = 0 . (27.18)

Or, the Stieltjes transform

m(z) =

∞∫
−∞

(x− z)−1dG(x) , Imz > 0 , (27.19)

satisfies canonical equations K82 [8]

[z +m(z)]k−1mk+1(z) + zm(z) +m2(z) + 1 = 0 . (27.20)

Theorem 12 is proved.

Corollary 6 [8] If additionally to the conditions of Theorem 12 the vari-
ances are equal n−1, expectation of all entries of matrices are equal to zero
and k = 1 then with probability one

lim
n→∞

µn(x,Ξn +Ξ∗n) = G(x) , (27.21)

where G(x) is the probability distribution function whose density p(x) is
equal to

p(x) =
1

4π

√
8− x2χ

{
|x| <

√
8
}
. (27.22)
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28. Simple example of LIFE for matrices Ξk
n − (Ξ∗

n)k

We start simple example of matrices for which we can apply results of
LIFE using the REFORM method.

Theorem 13. Let as in the previous chapters we have the same ma-
trix Ξn. Then as in the sense of normalized common traces the main asser-
tion of LIFE is the following:

Ξk
n − (Ξ∗n)k ∼ L̃IFE ∼

k∏
j=1

Ξ(j)
n −


k∏
j=1

Ξ(j)
n


∗

, (28.1)

where the matrices Ξ(j)
n , j = 1, . . . , k are independent and Ξ(j)

n ≈ Ξn, j =
1, . . . , n.

29. The canonical equation K87 for matrices An + Ξk
n + Ξ∗k

Theorem 14. If additionally to the conditions of Theorem 13 the vari-
ances are equal n−1 and expectation of all entries of matrices are equal to
zero, An is a symmetrical matrix with bounded eigenvalues, then with prob-
ability one

lim
n→∞

{
µn

(
x,An +Ξk

n + (Ξ∗n)k
)
−Gn(x)

}
= 0 , (29.1)

where Gn(x) is the probability distribution function whose Stieltjes transform

m(z) =

∞∫
−∞

(x− z)−1dGn(x) , Imz > 0 , (29.2)

satisfies the system of canonical equations K58 [3]

mn(z) =

∞∫
−∞

dµn(x,An)
x− z + fn(z)

,

mn(z) =

∞∫
−∞

dν(x)
x− z + gn(z)

,

1 = fn(z)mn(z)− (z − gn(z))mn(z) .

(29.3)

There exists a unique solution

{mn(z), fn(z), gn(z)} , z = t+ is (29.4)
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of the system of canonical equations K58 in the class of analytic functions

L =
{

[mn(z), fn(z), gn(z)] : Immn(z) > 0 , Im fn(z) > 0, Im gn(z) > 0 ,

z = t+ is, Im z > 0, lim
s→∞

sup
|t|

1
s

[|fn(z)|+ |gn(z)|+ |mn(z)|] = 0
}
. (29.5)

The Stieltjes transform

b(z) =

∞∫
−∞

dν(x)
x− z

(29.6)

of distribution function ν(x) satisfies equation K81

[z + b(z)]k−1bk+1(z) + zb(z) + b2(z) + 1 = 0 . (29.7)

There exist the unique solution to canonical equations K75 in the class L of
analytic functions

L = {b(z) , Im z > 0 , Im b(z) > 0} . (29.8)

I wish to express my appreciation to E. Gudowska-Nowak and M.A. Nowak
for their overall support of my lecture during my stay in Kraków. I believe
that this conference will establish a fruitful collaboration for people working
in the area of Random Matrix Physics. I am indebted to the Acta Physica
Polonica B Editorial Office for their invaluable help in converting my TEX
version of this paper to the readable and more understandable text.
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