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DOORWAY STATES COUPLED TO A BACKGROUND:
FIDELITY AND SURVIVAL PROBABILITY*
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The doorway mechanism in which a distinct state is coupled to a back-
ground is encountered in a rich variety of systems. Similar scenarios are
likely to be relevant in quantum information theory. We review recent an-
alytical and numerical results obtained for various statistical observables:
the distribution of the maximum overlap coefficient between doorway and
the true eigenstates of the total Hamiltonian, the averaged fidelity which
equals survival probability, and the distribution of fidelity.
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1. Introduction

In more complicated quantum many-body systems, the Hilbert space is
usually not organized in a “democratic” fashion, rather there are some indi-
vidual states which are distinct, while many other states form a background
coupled to these distinct states which can often be modelled statistically.
The distinct states are then said to act as doorways to the background.
Of course, this doorway mechanism heavily depends on how the system in
question is probed. Although a recent discussion is available in Ref. [1], we
briefly discuss the salient features by means of examples to make the present
contribution self-contained. Consider anticrossing spectroscopy in molecular
physics, see Ref. [2]. As displayed in Fig. 1, a singlet state |s) is excited by
a laser from the singlet ground state |s0). This is the doorway state. It is
not an eigenstate of the Hamiltonian due to a small interaction V,, with the
triplet state |tu). The interaction becomes important when the two states
are energetically close. The whole manifold of triplet states forms the back-
ground. In the present case, this background can be shifted in energy by a
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Fig. 1. Left: anticrossing spectroscopy in molecular physics, taken from Ref. [2].
Right: schematic illustration of the Giant Dipole Resonance in nuclei, taken from
Ref. [1].

strong magnetic field while the singlet states, the ground state and the door-
way, do not change their energetic position. Hence, whenever a triplet state
is close to |s), the fluorescence yield from [s) back to |s0) is lowered due to
the coupling V,,. Thus, the doorway mechanism makes precise spectroscopy
of the triplet levels possible.

Nuclei provide a wealth of further examples in which collective exci-
tations are doorways. Consider the Giant Dipole Resonance [3,4] which is
found in all nuclei. The cross section of electric dipole radiation shows a huge
peak at higher excitation energies which can be interpreted in a schematic,
semiclassical picture according to Fig. 1. Ignoring the relative motion of
protons to one another and neutrons to one another, we view the nucleons
as confined in two spheres, one for the protons, one for the neutrons, within
which the particles are “frozen”. The excitation is then the one-dimensional
linear oscillation of these two spheres against each other. In this schematic
picture, the excitation is fully collective, i.e. coherent in phase space. The
corresponding state, however, is certainly not an eigenstate of the true many-
body Hamiltonian. A true eigenstate must contain contributions due to the
relative motion of the particles within each sphere. It becomes more rel-
evant the further the excitation energy is away from the peak energy. A
broad resonance results with a typical spreading width I". It measures the
coupling strength between the schematic model for the collective state and
the surrounding background states which are of single-particle type. The
true states are thus superpositions. The local density of states around the
peak has a Lorentzian shape and is referred to as Breit—-Wigner line. It is
very robust [3].

The doorway mechanism has been identified in numerous systems, metal
clusters are another example, see Refs. [5,6]. In quantum chaos [7], yet
another example for the doorway mechanism was recently investigated in
Ref. |8]. The distinct states are superscars in a pseudo integrable microwave



Doorway States Coupled to a Background: Fidelity and Survival . .. 1047

billiard which exist together with a large number of non-scarring states form-
ing the background. In contrast to the previous examples, the wave functions
could be measured, rendering a full-fledged statistical study possible which
can, at least nowadays, not be carried out in many-body systems. In this
context, the distribution of the coupling coefficients is of high interest. Here,
we will review recent analytical results [9] for the case of different statistical
choices for the background.

The doorway mechanism turns out to be relevant in the quickly expand-
ing field of quantum information. Here, one wishes to know how well a
prepared state can be isolated and how the unavoidable mixing with the
surrounding behaves. Of course, different ways are conceivable in which the
prepared states and the states forming the surrounding are coupled. One
possible way is certainly the one which maps one-to-one to the doorway
mechanism: a prepared state is identified with a doorway, the surrounding
with the background, and the mixing with the coupling. The interesting
objects here are the fidelity averaged over the background which coincides
with the survival probability. We review recent analytical and numerical
results obtained in Refs. [10, 11].

The paper is organized as follows. In Sec. 2, the doorway mechanism is
modelled and statistical assumptions are discussed. The distribution of the
maximum overlap coefficients is studied in Sec 3. In Sec. 4, fidelity, survival
probability and their distribution are addressed. We summarize in Sec. 5.

2. Modelling the doorway mechanism

For the convenience of the reader, we sketch the statistical model of the
doorway mechanism, see also Refs. [3,8]. The total Hamiltonian

H = Hs+ Hpg+V (2.1)

has three parts: ﬁg and fIB are the Hamiltonians for doorway and back-
ground states, respectively. The interaction V' couples these two classes of
states. The Schrédinger equations for the doorway and background Hamil-
tonians are

Hs|s) = E,ls)  and  Hg|b) = Ey|b). (2.2)
One assumes that the interaction only couples states from different classes,
(s|V|s') = (b|V|t)) = 0 and (b|V|s) = Vs (2.3)

for any s, s’, b, . As already pointed out in Sec. 1, a doorway state is not
an eigenstate of the Hamiltonian H. For the sequel, we may assume that
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there is only one doorway state |s). The Schrodinger equation for the full
Hamiltonian,

Hin) = & ln) (2.4)
can be solved, the exact but implicit equation
N
V2
En=FEs— bs 2.5
X 55 9

results. The true eigenstates are found to be

o~ Vi
In) = csn (’5> - Z Eb—6’|b>> . (2.6)
b=1 "

Employing the normalization, one finds the formula

N V2 —1/2
= (n|s) = —bs .
Csn_< | > <1+;(Eb_5n)2> (27)

for the overlap coefficients of the doorway |s) to each true eigenstate |n).
So far, statistical assumptions have not been made. To introduce such,
we now go over to a matrix description by writing

H:[€ Z;] (2.8)

where Fs is the energy of the doorway and where the background matrix
Hp has dimension N x N. We model Hg by random matrices over which
an ensemble average is taken. A review of Random Matrix Theory can be
found in Ref. [12]. To obtain meaningful results, the cut-off N has to be sent
to infinity at the end of all calculations. It is a well-known general result
of Random Matrix Theory that all statistical observables then depend only
on (V2) = VIV/N. This quantity has to be compared with the mean level
spacing D of the background states such that

A (2.9)

D

turns out to be the proper dimensionless parameter measuring the average
coupling strength to the doorway. The above mentioned width of the Breit—
Wigner line is in this model given by I' = 27(V?)/D = 2wA2D. These
statements apply even without making statistical assumptions about the
interaction matrix elements Vj,, but usually one takes them as Gaussian
distributed random variables centred around zero with variance v? which
then replaces (V2).




Doorway States Coupled to a Background: Fidelity and Survival . .. 1049

3. Distribution of the maximum overlap coefficients

In Ref. [8], the maximum overlap coefficient, more precisely its maximum
modulus,

Cmax = Max (|csn|) (3.1)

was found to be a useful quantity because its distribution

pmax(c) = <5(C - CmaX))HB,V (3.2)

depends very sensitively on the average coupling strength and thus allows
for a reliable extraction of the parameter A\. This was demonstrated for
the data obtained in the experiment. The empirical distributions were also
shown to compared well with random matrix simulations. In Ref. [9], we
derived analytical results for the case of weak coupling A\. Then, the overlap
cs0 between the unperturbed doorway state |s) (at A = 0) and the evolved
doorway state |0) (at A > 0) should be largest. Thus, we approximately
have

Pmax(¢) ~ po(c) = (6(c —[es0)) gy v - (3:3)

We managed to calculate the distribution pg(c) analytically and found closed
form results [9]. In the case of a regular background, i.e., Poisson statistics
for Hp, the calculation is rather straightforward. We found

oisson 2agA WCQ
pop (c) = W exp <— (aﬁ)\)Q 1_ cz) (3.4)

for arbitrary, factorizing distributions of the coupling matrix elements V.
We distinguished real and complex coupling, labelled 5 = 1 and 8 = 2,
respectively. The numerical values for the parameters ag differ for the chosen
distributions of the coupling matrix elements. In the Gaussian case, we found

the values
V2/7 ~ 0.80 B=1
_ ) ) 3.5
@6 { 7/l o~ 089, pB=2, (3:5)

which are numerically very similar.

For a chaotic background, we studied real symmetric and Hermitean ma-
trices Hp, i.e., we drew them either from the Gaussian Orthogonal Ensemble
(GOE) or from the Gaussian Unitary Ensemble (GUE). The symmetries of
the total Hamiltonian then require that the coupling matrix elements V34 are
real in the GOE and complex in the GUE case. Furthermore, it follows from
general considerations that the choice of distribution for the coupling matrix
elements is largely irrelevant in such chaotic cases [12]. We thus settled with
Gaussian distributions. To proceed, we had to resort to the supersymmetry
method. The rather complicated calculations will not be presented here.
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Luckily, the results for different choices for the statistics of the background
matrix Hg are quite compact. We obtained

36 4 2,2 2
GOE . T3 \o¢ _ TA°C
o) =\ g P < 41— c2)>
m2\2c? m2\2c?
< (o () o ()
GUE, \ _ TA? | 2m2N\2c?
po o (c) = a—ap exp ( ) 1+ qT—a ) (3.6)

As often, the GOE result is the more complicated one, it contains the mod-
ified Bessel functions Ky and K; of the second kind.

As seen in Fig. 2, the distributions sensitively depend on the coupling
strength X\. For A = 0.1, most overlap coefficients are very small, and the few
which are not are close to unity. For A = 2.0, however, the doorway spreads
over the entire background spectrum, and many coefficients have smaller
and only very few have larger values. An intermediate situation is found
for A = 0.5. Our weak coupling approximation (3.3) is valid for A = 0.1
and A = 0.5, but even for A = 2.0 it gives qualitatively the right picture
for pmax(c). Importantly, the results for a given A are not very different for
regular and chaotic background, and in the chaotic case not very different for
real and Hermitean symmetry. Hence, a reliable extraction of the coupling
strength A is possible, even if one has little or no information about the
statistics of the background states.

po (c) Po (<)
10 10,

A=20
L o™=,
Lot

™,

1.0 0.0 02

Fig. 2. Distribution pg(c), analytical results for three different values of the coupling
parameter A, adopted from Ref. [9]. Left: regular background, real (solid line) and
complex (thin dashed line) coupling matrix elements. Right: chaotic background,
for a given A, the GUE result is slightly shifted to the left as compared to the GOE
result.
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4. Fidelity, survival probability and their distribution

We turn to the observables which are of interest in quantum information.
In the sequel, we compile the main points of the discussion in Refs. [10, 11].
The fidelity amplitude f(t) is the overlap between the time evolved states

exp <_h (s + 1n) t> 5) and exp (_h (Hs + fin + 1) t) 5).
(4.1)

Without loss of generality, we may choose Fs = 0 for the doorway energy.
We then easily find

F(t) = (5] exp (-21%) 1s) = an lean|2 exp <—;5nt> @)

where H = I:Is + I:IB + V is the total Hamiltonian. The Fourier transform

p(E) = Z |Csn|25(E - gn) (4'3)

is the local density of states which has, as mentioned in Sec. 1, a Lorentzian
shape under very general conditions on the background and the coupling
matrix elements. The fidelity is given by

F(t)=|fO)F. (4.4)

We decompose it into a diagonal and an off-diagonal part,
i
F(t) =" |com|*|con|® exp <h(5m - €n)t> = IPR + Fiuc(t). (4.5)
m,n

The diagonal part
IPR =) |conl* (4.6)

is in solid state physics referred to as “inverse” participation ratio. It is time
independent, while the off-diagonal part

Em — €
=23 leamnPlesnl? )
Foy(t) =2 |csm || csn|” cos < - t> (4.7)

m#n
strongly fluctuates with time. The survival probability
P(t) = (F(t))msv (4.8)

is in the present context simply the averaged fidelity.
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Of course, at first sight, one expects the survival probability to decay as
time grows. A “Drude approximation” seems to support that. If we replace
the average of the modulus squared with the modulus squared of the average,

P(t) = (F)) v = (IFO)1) g, v = [(F @) v |* = exp(=I),  (4.9)

we arrive at an exponential decay because we know that the local density of
states (4.3) has Lorentzian shape with width I". This decay can be viewed
as due to Fermi’s Golden Rule. However, the first correction to be added is
the average inverse participation ratio (IPR)g, v = D/mI" which remains
constant in the limit ¢ — oco. But this cannot be the final answer yet, because
(IPR) i, v has an unphysical divergence for I' = 0, i.e., A = 0. Gruver
et al. [13] assumed random matrix statistics for the background states and
calculated further corrections. Their final result is approximative, but it
shows a revival of the survival probability at larger times. The saturation
value is coupling dependent and given by the average inverse participation
ratio, P(oo) = (IPR)py v.

Using supersymmetry, the survival probability was calculated exactly in
Refs. |10, 11] for complex coupling. The rather involved details will not be
presented here. For a technical reason, the case of real coupling remained
analytically inaccessible, but was simulated numerically. The results are
shown in Fig. 3 wersus time in units of the Heisenberg time. The revival
and the saturation are clearly seen. Once more, we observe that the type
of coupling, i.e., real or complex, is more significant than the type of back-
ground statistics, where real and Hermitean symmetry yield almost the same
curves in the chaotic case while the curve for the regular case is a bit above.
Wu et al. [14] experimentally studied a system which can be interpreted as
a doorway coupled to a background. They realized a quantum kicked rotor
by atomic interferometry of matter waves in a periodically pulsed optical
standing wave. Although the details of the setup are difficult to understand,
we are quite confident that they indeed measure the survival probability
versus time. The curves are very similar to the ones in Fig. 3.

Finally, we address the distribution

Qi(2) = (0(z = F(1))) v (4.10)

of the fidelity which parametrically depends on time. At least for now, we
do not know how to calculate this quantity analytically, but we carried out
detailed numerical simulations in Ref. [10]. In Fig. 4, results are displayed for
real coupling matrix elements with strength A = 0.1 and a GOE background.
For t = 1, the distribution is very sharp, it becomes broader for larger times
and reaches a stable limit for ¢ > 20. This is so, because the contribution
of the fluctuating part (4.7) must be exhausted beyond a certain time scale.
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Fig.3. Average fidelity P(t) which equals survival probability, adopted from [10].
Curves in the main figure are for coupling strength A = 0.1. The full lines corre-
spond top down to real coupling to a Poisson, to a GOE and to a GUE background.
The dashed lines describe top down complex coupling to the same backgrounds.
The inset shows the survival probability on shorter times top down for A = 0.1,
0.2, 0.3 and 0.4 for complex coupling to Poisson background. For comparison, the
exponential decay is shown as thinner dotted lines.
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Fig.4. Fidelity distribution @Q:(z) for real coupling matrix elements with strength
A = 0.1 and a GOE background, taken from Ref. [10]. The curves correspond to
timest =1,t=2.5,t=>5,t =10 and t = 20. For times ¢t > 20 the distribution is
stable.
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In Fig. 5, we compare three distributions for real coupling matrix elements
with strength A = 0.05 and a GOE background. The distribution of fidelity
in the stable limit must have a finite contribution due to the fluctuating part
(4.7). Hence, as to be expected, it is sharper and has a higher peak than the
distribution of the inverse participation ratio (4.6). The latter is seen to be
indistinguishable form the distribution of the maximum overlap coefficient
to the fourth power which can easily be obtained from the results given
in Sec. 3. For the very weak coupling strength A = 0.05 this ought to be
S0, because the inverse participation ratio is dominated by the contribution
from the overlap coeflicient cy.
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Fig.5. Comparison of three distributions for real coupling matrix elements with
strength A = 0.05 and a GOE background, taken from Ref. [10]. The distribution
of fidelity in the stable limit peaks highest. The distribution of the inverse partici-
pation ratio IPR and of the maximum overlap coefficient to the fourth power, here
denoted ¢}, peak lower and are indistinguishable.

5. Summary

The doorway mechanism is ubiquitous in physics, it is found in numerous
many-body and other systems, particularly in quantum chaotic ones. The
doorways are somehow distinct, for example due to a simple semiclassical or
schematic interpretation. They are coupled to a background of states which
in our context can be treated statistically. Prompted by recent experimental
studies, we analytically calculated the distribution of the maximum overlap
coefficient between doorway and the true eigenstates of the total Hamilto-
nian. We did that in the framework of a random matrix model for weak
coupling.
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In quantum information theory, one is interested in isolating prepared
states, i.e., one needs to know how the mixing to the surrounding influences
these prepared states as time evolves. One possible scenario can be mapped
one-to-one to the doorway mechanism. The relevant statistical observables
are then the averaged fidelity which equals survival probability. Exact an-
alytical calculations as well as numerical simulations confirm and extend
earlier approximative results which yield an exponential decay followed by
a revival and a finite saturation limit. There is a striking difference for real
and complex couplings. The distribution of fidelity has a stable limit beyond
a certain time scale.
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Sommers. [ acknowledge support from Deutsche Forschungsgemeinschaft
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metries and Universality in Mesoscopic Systems”.
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