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The geographic layout of the physical Internet inherently determines
important network properties. In this paper, we analyze the spatial prop-
erties of the Internet topology. In particular, the distribution of the lengths
of Internet links is presented — which was possible through spatial em-
bedding of a representative set of IP addresses by applying a novel IP
geolocalization service, called Spotter. The dataset is a result of a geo-
graphically dispersed topological discovery campaign. After showing the
spatial likelihood of Internet nodes we present two approaches to describe
the length distribution of the links. The resulting characterization reveals
that the distribution can be separated into three characteristic distance
ranges which can be mapped to the regional, transcontinental and inter-
continental connections. These regimes follow a power-law function with
different exponents.
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1. Introduction

One of the fundamental problems of Internet research is to elaborate our
knowledge on the network’s topology [1]. Besides the theoretical modeling of
the network structure, a considerable amount of effort has been devoted to
the construction and analysis of Internet maps [2,3]. Despite the versatile
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and significant contribution of the related studies, some structural aspects
of this global network still remained hidden. One of the reasons for that is
that most of the existing work handle the underlying network as a graph and
analyze its properties with the tools of graph theory. In this sense, these
analyses were carried out in a “topological” space.

When geographic properties of network elements are not neglected any-
more, new aspects of the Internet can be revealed [4,5]. This, in return,
opens the door for a wide range of research and application scenarios that
could benefit from the deeper understanding of the spatial properties of the
topology and traffic.

Despite its crucial role, until recently, there have been only a handful
of quantitative studies dealing with the spatial properties of the physical
Internet. New studies in this field are primarily limited by the challenges of
obtaining reliable geographic location information for Internet resources.

In this work we apply Spotter, a newly emerged measurement based lo-
cation estimation service to embed the Internet topology into the geographic
space. This approach enables the investigation of the geographical properties
of the Internet, such as the characterization of the lengths of Internet links.
We extend the few existing empirical results that describe the length distri-
bution of Internet links by determining the characteristic distance ranges of
regional, transcontinental and intercontinental connections and presenting
the corresponding power-law exponents.

2. Geographic embedding of the network

Spatially embedded networks have emerged and attracted attention in
different domains of science during the last decades. Besides theoretically
motivated analyses of spatial graphs a wide range of empirical studies have
dealt with the quantitative characterization and the theoretical modeling
of spatially embedded networks, such as airline, power grid, social or bio-
logical networks'. However, in the case of the Internet, obtaining reliable
geographic location information for network nodes is not a trivial task.

We apply a measurement based method to determine geographic location
of target nodes. By doing so, we expect to prepare a reliable geographic em-
bedding of the Internet and thus derive results that reflect a correct picture
of the actual network.

In this section we describe the measurement method used for obtaining
geographic location of network nodes, and the data set collected to represent
the Internet for the link length analysis.

L For a recent review of spatial networks, please consult [6].
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2.1. Theoretical overview of Spotter

During the recent years several geolocation techniques have emerged, all
of them aim to give an accurate approximation of the location of network
hosts which are not known a priori.

As presented in this section, the applied, publicly available active ge-
olocation service, Spotter, is built on a probabilistic measurement based
approach.

In the following, we give a brief summary of its basic methodology and
its theoretical background based on |7].
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Fig.1. Target localization from three landmarks. (a) The sum of the probability
density surfaces for three landmarks illustrates the ring-like structure of the in-
dividual spatial densities. The locations denoted by light gray (green) color are
less probable than the dark gray (red) ones where the three rings meet. (b) The
probability distribution of the standardized delay-distance data indicates generic
behavior and describes the radial profile of the rings.

In the typical scenario of measurement based geolocation we have land-
mark nodes with known geographic location and a target node without known
position. To approximate the location of the target we measure propaga-
tion delays from the landmarks to the target, and then convert the delays
into geographic distances based on a delay-distance model. The resulting
set of distance constraints is used to determine the target’s estimated loca-
tion with a triangulation-like method [8,9]. The heart of this process is the
delay-distance model.

Through a large scale calibration process it became possible to determine
a delay-distance probability function reflecting the overall probabilistic char-
acteristics of the Internet as a whole network. This means that by measuring
a round-trip delay time between any two of its nodes a probability density
function profile, characterizing the distance between these two nodes, (see
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figure 1(b)), is identified. With the help of a series of landmark nodes with
known geographic coordinates, this probabilistic relation is used to deter-
mine a spatial probability density function measured for any of the nodes
previously only identified with their IP addresses, but with an unknown
geolocation.

Compared to other methods, Spotter claims to give localization results
with higher accuracy than state-of-the-art measurement techniques [7]|. This
has also been verified through different performance analyses that confirm
the city-level precision of this geolocation service.

2.2. Geographic representation of the Internet

To represent the geographic structure of the Internet we followed a
twofold approach. First, we conducted a geographically dispersed topol-
ogy discovery campaign by utilizing the well-known traceroute command.
Then we applied the Spotter geolocation service (see Section 2.1) to embed
the identified routers into the geographic space. To represent the structure
of the Internet we use a data set constructed from the previously collected
topology data measured between 700 nodes of the PlanetLab research net-
work. We used all the PlanetLab nodes in source and destination roles
resulting a collection of more than 400, 000 traceroute experiments and iden-
tified 16,065 distinct 1P addresses. Spotter successfully provided location
estimates for 15,339 distinct IP addresses. The achieved 95% success rate
can be considered as high. This is probably due to the speciality of our
IP set (i.e. the set contains only those routers that have already replied to
traceroute packets).

2.8. Spatial likelihood of Internet nodes

When visualizing the resulting data set, the collective results of multi-
ple probabilistic measurements give rise to different options. The thematic
measurement campaigns, where a series of related network interfaces are
localized, can easily result in several thousands of individual spatial distri-
butions. Since, at this scale, there is a significant overlap between these
spatial distributions, aggregating them into one common geographic map in
order to show the arising geographic structure inevitably reduces the amount
of information carried by each of the original, individual probability distribu-
tions — such as their individual spatial extent, maximum places or weighted
centers. This only means that what we can read from a resulting collective
map will greatly depend on the method of aggregation, and different meth-
ods will be suitable to give the answer to different questions regarding the
results of the campaign.
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Our intention is to preserve the distribution-like property of the highly
accurate geolocalization method, so that our results remain correct. For this
reason our choice is not to reduce the individual distributions to the mapping
of the center points of the probability distributions, so that the resulting
maps do not give the false impression of infinite-precision localization results.

Besides the trivial solution of simply assigning the local maximum prob-
ability values to each of the cells — that would result in a great amount of
information loss — one can choose between several other possibilities.

Hereby we present two different approaches that preserve different infor-
mation about the results of large scale localization campaigns. Both of them
show the regions covered by the localization results. The first kind of map
also depicts the “weights” of the determined concentration centers compared
to each other — these centers are almost inevitably formed, since targets
are mostly organized following the structure of populated places: the urban
areas.

On the other hand, the resulting maps of the second method emphasize
the locations of target centers — regardless of them being the location of
multiple targets — and thus possibly dominating the entire data set —
or only hosting a small number of IP addresses, and disappearing beside
the highly targeted locations. The high accuracy city-level resolution, that
is attainable with the Spotter measurement service, enables us to create
these kinds of maps, and to reveal the underlying information without loss
of the distribution-like characteristics of the individual targets.

For both methods, as an input, there are a number of N individual
spatial probability distributions f(lng,lat) that Spotter has returned for N
different IP-address localizations. For the K" distribution that means, that

/fK(lng,lat)dA =1,

where the integral goes over the surface of the Earth, and the (lng,lat)
values represent the geographic coordinates of a point. If the surface of the
Earth is divided into a number of M disjoint cells — as in the case of the
“hierarchical triangular mesh” (htm) method [8,9] used by Spotter — in
the discrete equation this integral becomes a sum of the local integrals over
the cells, 7.e. the sum of “cell probability” values:

M

> / fr(Ing,lat)dA = "pr;=1.

z:lithcell
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The joint probability distribution map

The first method comprises of the formation of a 2-dimensional, histo-
gram-like, aggregated spatial probability distribution. The value assigned to
the i*? cell is calculated by the simple local summation of the cell probability
values assigned to it by each of the overlapping individual distributions. In
return, integrating these locally aggregated cell probability values over the
entire globe results N, the number of different IP addresses on the map:

ZpK,i =N.
K

This graphic representation can be seen as the joint spatial probability
density function of the targets, and by assigning a corresponding color scale
to these values, it instantly shows the concentration of well localized target
areas. Nevertheless, when dealing with high scale campaigns, this method
can still hide the under-represented individual target locations, for example
when several partially overlapping distributions hide the original boundaries.

Localizing areas of target centers

This second approach can be useful when one is interested in showing the
structure of well localized target centers. In this case we proceed as follows:
a transformation of the individual probability distributions will take place
prior to the aggregation, and a suitable form of collective distribution will be
derived by means of local weighted averages of the transformed distribution
values.

Our aim with the transformation is to characterize the territory covered
by the original function in a manner emphasizing that the weighted center
of the distribution is the strongest point of all covered cells — but without
discarding the weaker ones.

One way to do that is to consider the expected value of error, measured in
distance, when choosing a cell over the others — given the cell probability
values assigned to each of the cells by the measurement. It results in a
function that has a minimum value and is concentricly increasing with the
distance from its minimum place. This makes it suitable for our purpose.

This minimum value equals to the average absolute deviation of the spa-
tial distribution, and is assigned to the point with coordinates corresponding
to the expected value derived from the spatial probability distribution (the
place with the geographic coordinates corresponding to the weighted aver-
age position). By minimizing this expected error function at least the cell
that is closest to the center will have the minimum value assigned?. Thus

2 There are cases where the center does not fall into the area, but this does not change
the use of the transformation.
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this function may not only be regarded as a cost function that one wishes
to minimize when choosing between cells covered by the distribution, but it
also can localize the center of the distribution and give a measure of how “far
away” the possible location cell — with non-zero cell probability — is from
the center. Also, the distinction between different distributions of different
extents becomes possible: the greater the minimal value, the greater the av-
erage extent of the distribution®. This means that for the K*" distribution
and the i*" cell — if it is in the covered area

(error;) = Z pr,jd(i, J)
jEK

where d(i, j) stands for the average geographic distance between the i*" and
the j'™ cells, and is calculated as the great-circle distance between their
centers.

Following this transformation the aggregation method is closed by cal-
culating the local weighted average for each cell, taking into account the
relative weights of probabilities assigned to the cell by the different overlap-
ping distributions. For the i*" cell

((error;)) = Z _DPKEi (error;) j .

i LK PKi

Examples of different regions

In figures 2 and 3 we illustrate results of the embedding with the center
localization process in three different regions of the world. The expected
error values are represented by a diverging color map [10]. (The htm cell
level resolution of the illustrations is realized by the use of the Quantum GIS
software, an Open Source Geographic Information System [11]. The different
geographical and cultural aspects of the maps were created with the use of
Natural Earth vector maps [12].)

We find that the spatial distribution of the PlanetLab router set is
strongly correlated with the structure of the urban areas — which is in accor-
dance with the anticipated similarity of geographic distribution of populated
places and the Internet. This can be observed in figure 3 where urban areas
are indicated for the East-Coast cities of the North of the USA Other ur-
ban areas with high target localization density show a qualitatively similar
picture.

3 If the transformation was to calculate the expected value of the square of the error
distances, this minimum value would be assigned to the center as well, but it would
be equal to the sigma of the original spatial distribution.
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(b) Inter-PlanetLab routers in Asia.

Fig.2. Likelihood of router positions is shown with well localized centers being
colored to darker red shades. On these maps over 11,000 embedded nodes are
represented along network paths between PlanetLab node pairs.

3. Modeling the link length distribution

In order to gain insight into the spatial character of the Internet we ad-
dress the following question: do the distances between interconnected routers
follow specific rules? To answer this question we introduce the notation r;
for the i*" node in our topology and the notation l;,; to represent a directed
connection between r; and ;. The spatial embedding of r; is given by the
latitude and longitude coordinates returned by Spotter, as discussed in the
previous sections. By calculating the great-circle distance between neigh-
boring routers we can approximate the length of the IP level links in the
topology.
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(a) Inter-PlanetLab routers in the USA

(b) Inter-PlanetLab routers in the USA with urban areas indicated.

Fig.3. Likelihood of router positions is shown with well localized centers being
colored to darker red shades. On these maps over 11,000 embedded nodes are
represented along network paths between PlanetLab node pairs.

Although insight into the actual distribution of link lengths would pro-
vide important input for the refinement of topology models, there is only
a very limited number of available papers presenting such results for the
Internet. Such knowledge would help the validation of existing models and
enable their annotation with link latency values. In the following we analyze
the distribution of link lengths from a qualitative perspective to expand our
knowledge on the spatial structure of the network.
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3.1. Large scale properties of the probability distribution

To provide an overall view on link lengths we plotted their complementer
cumulative distribution in figure 4(a). The linear decaying on the log-linear
plot indicates logarithmic relationship, implying that the probability distri-
bution can be approximated as

P(d) ~ 1/d. (1)

This approximation gives a general view on the large-scale geographic struc-
ture of the Internet over four orders of magnitude. Our observation is in
accordance with the conclusions of [2| where the authors present similar

results for a narrower distance range”.
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Fig.4. CCDFs of the link lengths. In figure (a) the log-linear plot indicates a
general, logarithmic relationship between the link lengths and their cumulative
probability values. Figure (b) depicts the power law behavior on log—log scales.

8.2. Characteristic distance ranges

With an alternative representation of the same data a slightly different
character of the distribution can be exposed. Now, in figure 4(b) the data is
plotted on log—log scales. The sectional linear decaying on the logarithmic
plot suggests that the distribution has three different power-law regimes with
different exponents. Accordingly, the probability density can be written as

P(d) ~d?, (2)

* The authors of [2] omit distances below =2 200 km from their analysis. We suspect
that the reason for that is the inability of their applied registry based embedding to
resolve shorter distances.
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where ¢ is a regime-dependent parameter. The first breakpoint appears at
~ 350 km, which can be interpreted as the typical size of an economic region,
while the second breakpoint appears at =~ 5,300 km which matches well
with the typical size of a continent. Consequently, the emerging regimes can
be corresponded to regional connections (below 350 km), transcontinental
connections (between 350 and 5,300 km) and intercontinental connections
(above 5,300 km). The cumulative shares of these ranges are 60%, 30% and
10%, respectively.

We note that a similar separation between the regional and transconti-
nental scales appears in [4]. The authors investigate the distance-sensitivity
of router connectivity and find significantly different behavior below and
above =~ 350 km. We suspect that this phenomenon is not an accidental
coincidence, but rather suggestive of some hidden driving forces that shape
the network’s evolution. Further research could confirm that well-studied
graph-theoretic metrics (e.g. the degree distribution or the density of the
network) also expose distinguishable statistical behavior over the identified
regimes. As our traceroute-based dataset is not appropriate for such graph-
theoretic investigations, addressing these questions is beyond the scope of
this paper.

One would expect that certain factors (e.g. geographic, geopolitic or eco-
nomic constraints), which vary from continent to continent, have a traceable
effect on the distribution of link lengths. To verify this we investigate the in-
tracontinental data for USA and Europe, where a sufficient number of links
are available for statistical inference. We depict the resulting length distri-
butions in figures 5(a) and 5(b). Here, the same regimes can be observed as
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Fig.5. CCDFs of the link lengths for different regions. Figures (a) and (b) depict
the power law behavior on log—log scales for different geographic regions. The
exponent of the probability distribution can be calculated by subtracting 1 from
the fitted values.
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before, certainly without the intercontinental section. In both decomposed
distributions the breakpoint appears at ~ 350 km, while the fitted power-
law exponents slightly differ in the USA and Europe. In other words, the
share between short and long links is shifted, reflecting structural differences
between the two continents. The deeper analysis of this phenomenon is not
trivial and requires further research. Table I lists the fitted § power-law
exponents for the regional and transcontinental regimes.

TABLE I

Power-law exponents for distance distributions.

USA Europe All the World

Regional connections 1.20 1.16 1.16
Transcontinental connections | 2.05 3.07 1.51

Finally, we emphasize that while (1) provides a good link length model
for all scales, a x? analysis shows that for particular scales (2) gives more
accurate description of the link length distribution. These descriptions could
refine the existing graph-theoretical models of the Internet with fundamen-
tal spatial properties comprising geographical, economical and political de-
cisions as well.

4. Conclusion

In this study the analysis of the geographic properties of Internet were
presented. Our findings are based on an experimental data collection and
the spatial embedding of the representative set of Internet nodes. The loca-
tion estimates are provided by Spotter, a measurement based geolocation
service. The location estimates are visualized on geographic maps by their
spatial likelihood function which enables the investigation of spatial corre-
lation with urban areas. The length distribution of the Internet links has
been investigated, and two approaches are presented for their description.
The distribution can be separated into three characteristic distance ranges,
identified as regional, transcontinental and intercontinental connections. On
these regimes the distribution shows specific power-law function behavior
with different exponents. Although the data set used in this study is incom-
plete, it is our belief that this analysis takes us one step closer to a more
accurate representation of the global Internet, and opens the door for further
studies of the geographic reality of this abstract network.
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