
Vol. 42 (2011) ACTA PHYSICA POLONICA B No 5

THREE-CYCLE PROBLEM IN THE LOGISTIC MAP
AND SHARKOVSKII’S THEOREM∗

M. Howard Lee

Department of Physics and Astronomy, University of Georgia
Athens, GA 30602 USA†

and
Korea Institute for Advanced Study, Seoul 130-012, Korea

MHLee@uga.edu

(Received March 23, 2011)

In the logistic map a 3-cycle does not appear until after the end of
stable 2k cycles. An impetus for analytical studies of 3-cycles is provided by
Sharkovskii’s theorem, according to which the existence of a 3-cycle means
the existence of all other cycles, hence chaos. It is a rigorous definition
of chaos. We give a simple and direct proof of the existence of 3-cycles.
The logistic map at fully developed chaos is shown to be isomorphic to the
dynamics of a harmonic oscillator chain at the thermodynamic limit. Chaos
in the logistic map is signified by a 3-cycle and in the harmonic oscillator
chain by the thermodynamic limit.
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1. Introduction

The logistic map is to chaos nearly like the harmonic oscillator model is
to many-body physics. It is basic to the study of chaos and no doubt best
known as a means to understanding chaos [1, 2, 3]. Although it has been
studied by many for over several decades, there seems to be still something
new to be uncovered or at least to be understood more deeply. See [4, 5].

Let a function f(x) be defined continuously in the interval x = (0, 1),
such that x′ = f(x), where x′ = (0, 1) too. Thus f(x) maps onto itself. If
the function is self similar, xn+1 = f(xn) = fn+1(x), n = 0, 1, 2, . . . , where
f1 = f and x0 (no prime) = x.
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A one-cycle is defined by f(x) = x, where x denotes the fixed points, the
zeros of P1(x) = f(x)− x = x(x− x0). A two-cycle is defined by f2(x) = x.
The fixed points are the zeros of P2(x) = f2(x)−x, excluding x = 0 and x0,
the zeros of P1(x). A three-cycle is defined by f3(x) = x. The fixed points
are the zeros of P3(x) = f3(x)− x = 0, excluding the zeros of P1(x).

It is now well known that if f(x) = ax(1 − x), with the control param-
eter a = (0, 4), which defines the logistic map, there develops a bifurcation
sequence with increasing a, yielding 2k cycles [1, 2, 3]. The process goes as:
1 → 2 → 4 → 8 → . . . A 3-cycle never appears where 2k cycles are stable
up to a = a∞ = 3.56994 . . . [6]. If a > a∞, are there odd-numbered cycles
such as a 3-cycle? What significance do they hold if they exist? If a < a∞,
the domain is periodic, not chaotic. Is it chaotic everywhere a > a∞?

2. Sharkovskii’s theorem

In the domain of a from a = 1 to a∞, a 3-cycle (or any other odd-
numbered cycles) cannot occur. If a 1-cycle bifurcates into two cycles (as if
one branch begets two branches), the two begotten branches have exactly
the same value of slope df2/dx. Thus these two branches must themselves
bifurcate at exactly the same value of a = a2 = 1 +

√
6, each to two new

branches, thus giving altogether 4 new branches or a 4-cycle. Thus a 3-cycle
cannot occur while stable 2k cycles are at work. Where a > a∞, one can
show graphically that a 3-cycle can occur for some values of a. Exactly at
what value of a can it occur?

There is a remarkable theorem due to Sharkovskii [7, 8, 9], which states
that the existence of a 3-cycle implies the existence of a 5-cycle, a 7-cycle,
etc. in the following sequence:

3→ 5→ 7→ . . . (all odd numbers) →
2× 3→ 2× 5→ 2× 7→ . . . , which we shall write as
2 × (all odd numbers) → 22× (all odd numbers) → . . .→
2k× (all odd numbers) → . . .→
. . . → 24 → 23 → 22 → 2→ 1 .
This sequence counts all natural numbers. We recognize at once that if

the sequence is read in reverse, it begins as a 2k cycles and ends in a 3-cycle.
Thus the theorem says that if a 3-cycle exists, all other cycles must exist.
The existence of all cycles defines chaos. There is a similar theorem due
to Li and Yorke [10], which turns out to be a corollary of Sharkovskii’s
theorem. It states that a 3-cycle implies chaos. Thus to show that a
3-cycle exists is to show that chaos exists. It is of central importance thus
to establish analytically that a 3-cycle does exist and to determine the value
of a whence it comes into existence (the onset value of a denoted as b3).
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3. Three-cycles

A 3-cycle is defined by

f(x1) = x2 , (1)
f(x2) = x3 , (2)
f(x3) = x1 . (3)

That is, f3(xi) = xi, i = 1, 2, 3, each xi is a fixed point and a zero of P3(x) =
f3(x)−x. Let us assume that a 3-cycle occurs at a = b3 > a∞ = 3.569945 . . .
If a < b3, what would be the zeros of P3(x)? This answer cannot be given
until a general solution for P3 is obtained. But one can gain an insight into
it by looking at P2(x) = f2(x)− x which may be put in the form

P2(x) = x(x− x0)Q2(x) , (4)

where x0 = 1− 1/a for the logistic map and

Q2(x) = (x− x1)(x− x2) . (5)

If a < a1 = 3, x1 and x2 are a pair of complex conjugates x2 = x1∗. At
a = a1, they are real and x2 = x1. If a > a1, they remain real but x2 6= x1.

Thus it is reasonable to think that if a < b3, there must be 3 pairs of
complex conjugates: xi, xi∗, i = 1, 2, 3. At a = b3, they become real, hence
there are 3 degenerate zeros. If a > b3, there must be 6 unequal zeros (not
3 unequal zeros as we might have expected from our knowledge on the 2k

cycles.) We could put P3(x) in the form

P3(x) = x(x− x0) a7 Q3(x) , (6)

where

Q3(x) =
3∏

i=1

(x− xi)
(
x− x′i

)
, (7)

where xi and x′i would be a pair of complex conjugates if a < b3, which
become degenerate at a = b3. If the above analysis is valid, there are two
3-cycles, not one, if a > b3. The formation of an odd-numbered cycle seems
fundamentally different from that of a 2k cycle.

4. Three-cycles at special values

An explicit form for Q3(x) obtained by solving f3(x) = x using the
logistic map has the following form

Q3(x) = x6 − a−1(3a+ 1)x5 + a−2
(
3a2 + 4a+ 1

)
x4 − a−3

×
(
a3 + 5a2 + 3a+ 1

)
x3 + a−4

(
2a3 + 3a2 + 3a+ 1

)
x2

− a−5
(
a3 + 2a2 + 2a+ 1

)
x+ a−6

(
a2 + a+ 1

)
. (8)
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The above is a sextic equation. If it were a general sextic equation,
according to Abel one could not obtain zeros by radicals. As discussed
above, there are two sets of three zeros which are degenerate at a = b3, but
independent if a > b3. This behavior suggests that the sextic equation may
be made up of two cubic equations tangled up in some manner. If it could be
untangled, the sextic equation might still be solved by radicals. For studies
of polynomials of high degrees in physical problems, see [4, 11, 12].

In this work we shall look for such solutions at special values of a: (1)
b̄3 (superstability), (2) a = 4 (fully developed chaos), (3) a = b3 (onset of
3-cycles). A general solution obtained by exploiting cubic character will be
deferred to a later paper. It should be noted that this approach based on
the cubic equation is in our view more natural and more direct than one due
to Gordon based on a Fourier analysis [13].

4.1. At superstability

If one of the 3-cycles is superstable, one of its fixed point must be at
the symmetry point, x1 = 1/2, say. This value may be substituted in (8) to
obtain a polynomial of degree 6 in a: Q3(1/2) = 2−6a−6Q(a),

Q(a) = a6 − 6a5 + 4a4 + 24a3 − 16a2 − 32a− 64 = 0 . (9)

The above can also be deduced directly by (1), (2) and (3): If x1 = 1/2,
x2 = a/4, and x3 = a × a/4(1 − a/4). Hence f(a × a/4(1 − a/4)) = 1/2.
The result is a hexatic equation in a. If the superstability of the 1-cycle is
factored out, the hexatic equation is reduced to the sextic equation given
above.

To solve (8), we first note that Q(−a) 6= 0 if Q(a) = 0. Suppose there
is a′ = F (a) such that Q(−a′) = Q(a′) = 0. Then Q(a′) must be a cubic
equation in a′2, solvable by radicals. This required transformation turns out
to be a simple translation: If a = a′ + 1,

Q
(
a′
)

= a′ 6 − 11a′ 4 + 35a′ 2 − 89 . (10)

There are 6 values for a, of which only one is of interest to us: a = b̄3,

b̄3 = 1 +
{

11/3 + 2/3
(

100 +
√

9936
)1/3

+ 2/3
(

100−
√

9936
)1/3

}1/2

= 3.83187402552 . . . . (11)

The structure of the above solution manifests the symmetry of a triangle of
Galois group theory. For the detail, see [14].
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4.2. At fully developed chaos [15]

Letting a = 4 and x = t/4 in (8), we obtain: Q3(x) = 4−6Q(t),

Q(t) = t6 − 13t5 + 65t4 − 157t3 + 189t2 − 105t+ 21
=
(
t3 − 7t2 + 14t− 7

) (
t3 − 6t2 + 9t− 3

)
. (12)

We have said that the sextic equation (8) might be made up of a pair
of cubic equations. At fully developed chaos, the sextic equation indeed is
a simple product of two cubic equations. There are two independent sets of
zeros:

x = sin2 π/7 , sin2(2π/7) , sin2(3π/7) , (13)
x′ = sin2 π/9 , sin2(2π/9) , sin2(4π/9) . (14)

We shall discuss the significance of these solutions in Sec. 5.

4.3. At the onset

We shall make one assumption with no other conditions introduced: At
a = b3, the two sets of zeros are real and degenerate. By this assumption,
(7) becomes

Q3(x) = q23(x) , (15)

where

q3(x) = (x− x1)(x− x2)(x− x3) = x3 − αx2 + βx− γ , (16)
α = x1 + x2 + x3 , (17)
β = x1x2 + x2x3 + x3x1 , (18)
γ = x1x2x3 . (19)

These coefficients α, β and γ represent symmetry properties of the cubic
equation. That is, q3(x) is invariant under the permutation of the three
zeros.

If (16) is squared, Q3(x) is now expressed in terms of the three symmetry
coefficients only

Q3(x) = x6−2αx5+
(
2β + α2

)
x4−2 (γ + αβ)x3+

(
2αγ + β2

)
x2−2βγx+γ2 .

(20)
At a = b3 and only at this value of a, Eq. (20) and Eq. (8) must be equal.

Let us compare them term by term:

(a) By the terms of x5,
2α = 3 + a−1 . (21)
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(b) By the term of x4 and by (21),

2β = 3/4 + 5/2a−1 + 3/4a−2 . (22)

(c) By the term of x3 and by (21) and (22),

2γ = −1/8 + 7/8a−1 + 5/8a−2 + 5/8a−3 . (23)

We have succeeded in expressing the three symmetry coefficients in terms
of a. They may be used in the remaining three terms of x2, x1 and x0 to
obtain 3 new equations, resp., S2, S1 and S0 now entirely in a:

S2 = 3a4 − 12a3 − 141a2 + 52a+ 35 , (24)
S1 = 3a5 − 11a4 − 18a3 + 42a2 + 63a+ 49 , (25)
S0 = a6 − 14a5 + 39a4 + 60a3 − 161a2 − 206a− 231 . (26)

The required solution a = b3 must be one which makes S2 = S1 = S0 = 0
simultaneously (to be referred to as the onset condition). Eq. (24) is solvable
by radicals but (25) and (26) are not unless they can be reduced by some
factoring. In fact, we find that the three equations are all factorable into
the following form:

S2 = B2A , (27)
S1 = B1A , (28)
S0 = B0A , (29)

where

B2 = 3a2 − 6a− 5 , (30)
B1 = 3a3 − 5a2 − 7a− 7 , (31)
B0 = a4 − 12a3 + 22a2 + 20a+ 33 , (32)
A = a2 − 2a− 7 . (33)

The three equations for B2, B1 and B0 are now all solvable by radicals.
Each has one solution in the interval (0,4): 2.6329 . . . , 2.7984 . . . , and
3.5822 . . . for Eqs. (30), (31) and (32), resp. They are all distinct so that
the onset condition cannot be met. It must mean that A = 0 is the only
possibility. Eq. (33) yields at once

a = b3 = 1 +
√

8 . (34)

This value has been long conjectured based on numerical studies [16]. It
was first deduced analytically by Saha and Strogatz [17]. Their solution is
rather complicated. Bachhoeffer has simplified it [18]. Ours is perhaps the
simplest.
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5. Implications by Sharkovskii’s theorem

5.1. Stable 3-cycle

We have proved that at a = b3 a pair of degenerate 3-cycles are formed,
one of which becomes superstable at a = b̄3. At fully developed chaos they
exist in pure cyclic form, see Sec. 4.2. Even though our proof of existence is
only for 3 special values of a, it seems reasonable to conclude that 3-cycles
exist from the onset value a = b3 to fully developed chaos at a = 4. We can
then assert by Sharkovskii’s theorem (and by Li–Yorke’s theorem) that in
this interval a = (b3, 4), there is chaos.

This interval a = (b3, 4) includes a narrow window where one of the
3-cycles is stable. When a cycle is stable, its Lyaponov exponent is negative.
It is commonly said that when the Lyapunov exponent is negative, it is
periodic, not chaotic [19]. This is at odds with the strong statements due to
Sharkovskii and Li and Yorke.

We are thus led to say that the Lyapunov exponent must not give a
full picture for the 3-cycle window. There are infinitely many cycles in this
window, which according to Sharkovskii and Li and Yorke denote chaos.

5.2. Unstable 3-cycles and others

We have deduced that, at fully developed chaos [15], there are two
3-cycles in pure cyclic form

x = sin2 πy/2 , y/2 = 1/7, 2/7, 3/7; 1/9, 2/9, 4/9 . (35)

The values of y are discrete and bounded 0 < y < 1, so that the values
of x are irrational but discrete and bounded 0 < x < 1. It can be further
shown that cycles 1,2,4 and 5 have the same form as (35) with different sets
of discrete values for y but still bounded the same way. Therefore without
considering other higher cycles, we contend by Sharkovkii’s theorem that
at fully developed chaos y has all possible values in the interval y = (0, 1),
representing all possible cycles. That is,

x = sin2 πy/2 , 0 < y < 1 . (36)

The interval x = (0, 1) is now dense, replete with all possible irrational
numbers, i.e. its invariant measure µ(x) = 1, where dµ(x) = ρ(x)dx, where
ρ(x) is an invariant distribution [20], satisfying

1∫
0

ρ(x)dx = 1 . (37)
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Eq. (36) implies that

ρ(x) =
1

π
√

(x(1− x))
, 0 < x < 1 . (38)

This invariant distribution was first derived by Ulam by a stochastic method
[21].

In a chaotic region, trajectories are initial-value sensitive. In a periodic
region such as where 2k cycles exist, trajectories are not initial-value sensitive
except when the initial values happen to take on fixed points. Then the
iteration immediately goes into a cycle of that fixed point. The probability
of such an occurrence is low since the x space of isolated fixed points is sparse.
Thus almost any initial value upon iteration tends to converge toward an
attractor. At fully developed chaos the x space is dense, in which every
point in the interval x = (0, 1) is a fixed point of some very high multi-cycle.
Thus almost every initial value will give a unique trajectory.

6. Isomorphism and concluding remarks

We introduce a new function ω by

ω = 2|1− 2x| , (39)

where x is given by (36). Since 0 < x < 1, 0 < ω < 2. If we write
ρ(ω)dω = ρ(x)dx and use (39) in (38), we obtain

ρ(ω) =
1

π
√

4− ω2
, 0 < ω < 2 . (40)

If y = ka/2π + 1/2 in (36),

ω = 2| sin ka/2| , −π/a < k < π/a . (41)

We recognize that (41) is the thermodynamic limit of the dispersion
relation for an nn coupled 1d harmonic oscillator chain in periodic boundary
conditions where k is a wave vector if a is the nn distance [22]. (In our units,
ωo =

√
κ/m = 1, κ the coupling constant and m the mass.). Similarly, (40)

is the density of the frequencies in the harmonic oscillator chain in periodic
boundary conditions at the thermodynamic limit [23,24].

Since the x space and its invariant distribution ρ(x) can be mapped on to
the ω space and its frequency distribution ρ(ω), resp., the iterative behavior
of the logistic map at fully developed chaos is isomorphic to the dynamics of
the harmonic oscillator chain at the thermodynamic limit. There must be
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chaos in the dynamics of this linear many-body model. It comes into exis-
tence at the thermodynamic limit for there are infinitely many frequencies,
the recipe for chaos according to Sharkovskii.

By the isomorphism the dynamic behavior of a harmonic oscillator chain
must also be present in the iterative behavior of the logistic map at fully
developed chaos. Among the most important may be the velocity autocor-
relation function r(t) = 〈v(t)v(0)〉, where v(t) is the time evolution of the
velocity v of anyone of the oscillators in the chain and 〈. . .〉 denotes an en-
semble average. It is possible to show that (40) implies r(t) = J0(2t), in
these units employed where J0 is the Bessel function of order 0. If an equiv-
alent quantity could be defined for the iterative trajectories, there would be
found the Bessel function in it.

Irreversibility in Hermitian systems is given by r(t→∞) = 0 [25]. The
irreversible behavior in the oscillator chain, a conservative system, stems
from its density of frequencies ρ(ω) given by (40). Since ρ(ω) can be simply
mapped on to ρ(x) given by (38), irreversibility must also be present in the
logistic map at fully developed chaos.

Perhaps more subtle is ergodicity. According to the ergometric theory of
the ergodic hypothesis [26], a dynamical variable such as v in a Hermitian
many-body system is ergodic if W ≡ ρ(ω = 0) 6= 0,∞. Irreversibility is
determined by the low-frequency spectrum of the density of frequencies while
ergodicity by the density at the origin. For a variable which is irreversible
and possibly ergodic, its density of frequencies must be given by a multi-
valued function. It means that the spectrum is dense as a consequence of
the thermodynamic limit as shown in this work.

In the oscillator chain, v is ergodic by the ergodic condition W . The
strange attractors such as those in the logistic map at fully developed chaos
are often viewed as ergodic. In the end the ergometric theory may very well
shed light on understanding the ergodic theory of chaos [27,28] through the
isomorphism established here in this work.

A portion of this work was completed while the author was a visi-
tor at the Korea Institute for Advanced Study. It is a pleasure to thank
Prof. Hyunggyu Park for his kind and warm hospitality during his stay at
the Institute. This work is dedicated to the memory of Ryszard Zygadło.
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