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We collect explicit and user-friendly expressions for one-point densities
of the real eigenvalues {λi} of N×N Wishart–Laguerre and Jacobi random
matrices with orthogonal, unitary and symplectic symmetry. Using these
formulae, we compute integer moments τn = 〈

∑N
i=1 λ

n
i 〉 for all symmetry

classes without any large N approximation. In particular, our results pro-
vide exact expressions for moments of transmission eigenvalues in chaotic
cavities with time-reversal or spin-flip symmetry and supporting a finite
and arbitrary number of electronic channels in the two incoming leads.
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1. Introduction

We consider the Wishart–Laguerre (L) and Jacobi (J) ensembles of ran-
dom matrix theory characterized by the following joint probability density
(j.p.d.) of real eigenvalues [1, 2, 3]:

P(L)
β (λ1, . . . , λN ) := C

(L)
N,β,ν

∏
j<k

|λj − λk|β
N∏
j=1

λ
β
2
(ν+1)−1

j e−
1
2
λj , (1)

(1081)
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P(J)
β (λ1, . . . , λN ) := C

(J)
N,β,a,b

∏
j<k

|λj − λk|β
N∏
j=1

(1− λj)a(1 + λj)b . (2)

In the above equations, C(L)
N,β,ν and C

(J)
N,β,a,b are normalization constants,

while the index β = 1, 2, 4 characterizes the symmetry class of the ensemble
(orthogonal, unitary and symplectic respectively).

The Wishart–Laguerre ensemble contains covariance matrices of the form
W = XX †, where X is a N × M (M − N := ν ≥ 0) matrix with i.i.d.
Gaussian entries (real, complex or quaternionic variables). The matrix W
is symmetric and positive semidefinite, so its N real eigenvalues are non-
negative ({λj} ≥ 0). Originally introduced by Wishart [1], matrices from
this ensemble have been extensively used in multivariate statistical data
analysis [4, 5] with applications in various fields ranging from meteorological
data [6] to finance [7, 8]. They are also useful when analyzing the capacity
of channels with multiple antennae and receivers [9], in nuclear physics [10],
chiral quantum chromodynamics [11] and also in statistical physics such as
in a class of (1 + 1)-dimensional directed polymer problems [12]. Recently,
they have also appeared in the context of knowledge networks [13] and new
mathematical results for the case ν < 0 have also been lately obtained
[14, 15]. Large deviation properties of the eigenvalues have been investigated
in [16, 17, 18], while for an excellent review we refer to [19].

The Jacobi ensemble contains combinations of two N × N Wishart–
Laguerre matrices W1 and W2 of the form:

J = (W1 −W2)(W1 +W2)−1 (3)

and its eigenvalues are real and lie on the support −1 ≤ {λj} ≤ 1. Matrices
distributed according to the Jacobi weight arise as (i) truncations of Haar
orthogonal, unitary or symplectic matrices (for the case of unitary matri-
ces, an important application arises in the theory of electronic transport in
mesoscopic systems at low temperatures as detailed in Appendix A); (ii) as
composition of projection matrices [20].

In order to proceed, we first define a shifted version of the Jacobi ensem-
ble with eigenvalues between 0 and 1:

P(sJ)
β (λ1, . . . , λN ) := C

(sJ)
N,β,a,b

∏
j<k

|λj − λk|β
N∏
j=1

λa
j(1− λj)b (4)

which appears more frequently in physical applications (see Appendix A)
and numerical algorithms [21, 22]. By changing variables λj=1−2yj in (2),
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it is easy to see that

C
(J)
N,β,a,b =

C
(sJ)
N,β,a,b

2N(a+b+1)+β
2
N(N−1)

. (5)

We also define the average spectral densities (ρ(x) = 〈 1
N

∑N
i=1 δ(x − λi)〉)

for the three ensembles above as the marginals of their respective j.p.ds.:

ρ
(L)
N,β,ν(λ1) =

∫
[0,∞]N−1

dλ2 · · · dλNP(L)
β (λ1, . . . , λN ) , (6)

ρ
(J)
N,β,a,b(λ1) =

∫
[−1,1]N−1

dλ2 · · · dλNP(J)
β (λ1, . . . , λN ) , (7)

ρ
(sJ)
N,β,a,b(λ1) =

∫
[0,1]N−1

dλ2 · · · dλNP(sJ)
β (λ1, . . . , λN ) . (8)

It follows immediately from the definition that the above densities are all
normalized to 1, and that the following relation holds between the Jacobi
and the shifted-Jacobi densities:

ρ
(J)
N,β,a,b(1− 2x) = 1

2 ρ
(sJ)
N,β,a,b(x) . (9)

The purpose of this paper is twofold:

• to collect and present in a user-friendly way (well-known, but somehow
scattered throughout the literature) explicit formulae for the above
densities for finite N and all symmetry classes;

• to use these formulae to compute integer moments of the eigenvalues
τn = 〈

∑N
i=1 λ

n
i 〉 (where the average is taken w.r.t. any of the three

j.p.ds. above). More precisely, we define:

τ (L)
n (N, β, ν) :=

∫
[0,∞]N

dλ1 · · · dλNP(L)
β (λ1, . . . , λN )

(
N∑
i=1

λni

)
, (10)

τ (J)
n (N, β, a, b) :=

∫
[−1,1]N

dλ1 · · · dλNP(J)
β (λ1, . . . , λN )

(
N∑
i=1

λni

)
, (11)

τ (sJ)
n (N, β, a, b) :=

∫
[0,1]N

dλ1 · · · dλNP(sJ)
β (λ1, . . . , λN )

(
N∑
i=1

λni

)
. (12)
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One application to the case of quantum transport in chaotic cavities is de-
tailed in Appendix A. Other interesting mathematical results for the La-
guerre case can be found e.g. in [23] and references therein. We are
also aware that formulae for the Wishart–Laguerre and Jacobi moments
for β = 1, 2, 4 and finite N have been derived by Mezzadri and Simm [24].
These are different from the ones provided here and obtained via a different
method, but equivalent.

It is easy to see that the average of any linear statistics (i.e. a quantity
of the form A =

∑N
i=1 f(λi))

〈A〉 =
∫
dλ1 · · · dλNPβ(λ1, . . . , λN )

(
N∑
i=1

f(λi)

)
(13)

can be computed as a one-dimensional integral over the corresponding spec-
tral density of the ensemble as:〈

N∑
i=1

f(λi)

〉
= N

∫
dxρ(x)f(x) . (14)

The technical achievement we report in this paper is an explicit computation
of this integral valid for finite matrix dimension N and all three βs for the
case f(x) = xn, n ∈ N. The integral (14) also elucidates a possible strategy
to evaluate a regular asymptotic expansion of moments for large N , which
has been recently highlighted [25] as a problem of current interest in the
context of electronic transport in chaotic cavities (see Appendix A): all one
has to do is to seek for a regular (1/N) expansion of the macroscopic spectral
density of the form:

ρ(x) = ρ(∞)(x) +
1
N
ρ(1)(x) +

1
N2

ρ(2)(x) + . . . (15)

in the spirit of high genus correlator expansions [26], and then integrate
term by term. While this program is far from completion and is thus left for
future work, we show in Appendix B that at least the leading order of the
asymptotic expansion of moments is well reproduced for the case of quantum
transport in cavities with broken time-reversal symmetry (β = 2).

The plan of this paper is as follows: in Section 2 we consider the Wishart–
Laguerre ensemble. We first summarize the densities for all three βs, then
use the integral formula (14) to compute integer moments for β = 1, 2, 4 in
the three subsections. Then in the last subsection we collect results from
numerical simulations for the density and moments. The same thing is done
for the Jacobi ensemble in Section 3. A summary and outlook is provided
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in Section 4. In Appendix A we provide a detailed introduction to the
problem of quantum transport in chaotic cavities which constitutes the main
motivation for this study, while in Appendix B we show that the leading
order term in the expansion of the moments via spectral density is correctly
reproduced.

2. Wishart–Laguerre ensemble

2.1. Spectral densities

The spectral density for the Laguerre ensemble is known for all three
symmetry classes [27, 28, 29, 30] and, after tedious algebraic manipulations
can be cast in the form ρ

(L)
N,β,ν(x) = 1

2NR
(L)
N,β,ν(x/2), where

R(L)
N,1,ν(x) = 2R(L)

N,2,ν(2x)−
Γ ((N + 1)/2)
Γ ((N + ν)/2)

L
(ν)
N−1(2x) {φ1(x)− φ2(x)} ,(16)

R(L)
N,2,ν(x) = xνe−x

N−1∑
m=0

Γ (m+ 1)
Γ (m+ ν + 1)

(
L(ν)
m (x)

)2
, (17)

R(L)
N,4,ν(x) =

1
2
R(L)

2N,2,2ν(x)− x
2νe−xL

(2ν)
2N (x)

Γ (N + 1)
22ν+1Γ (N + ν + 1/2)

×
N−1∑
m=0

Γ (m+ 1/2)
Γ (m+ ν + 1)

L
(2ν)
2m (x) , (18)

and

φ1(x) = (2x)νe−2x

(κ+N−2)/2∑
m=0

dmL
(ν)
2m+1−κ(2x) , (19)

φ2(x) = x(ν−1)/2e−x
[
(1− κ)2Γ ((ν + 1)/2, x)

Γ ((ν + 1)/2)
+ 2κ− 1

]
, (20)

dm =
Γ (m+ 1− κ/2)

2ν−1Γ (m+ (ν − 1)/2 + 2− κ/2)
. (21)

In the above equations, κ = N mod 2, L(ν)
N (x) is a generalized Laguerre

polynomial defined by the sum:

L(λ)
n (z) =

n∑
k=0

ck(n, λ)zk , (22)

where
ck(n, λ) =

Γ (λ+ n+ 1)(−n)k
n!k!Γ (λ+ k + 1)

(23)
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and Γ (a, x) =
∫∞
x ta−1e−tdt is the incomplete Gamma function, while (x)n =

Γ (x+ n)/Γ (x) is the Pochhammer symbol.
In the following subsections, we present the results for integer moments

τ
(L)
n (N, β, ν) =

〈∑N
j=1 λ

n
j

〉
obtained by integration (Eq. (14)) of the densi-

ties given above. The task is most easily accomplished by first defining the
following auxiliary function:

Q(r;m, `;α) :=

∞∫
0

dx xre−xL(α)
m (x)L(α)

` (x) (24)

which is easily evaluated using (22) as

Q(r;m, `;α) =
m∑
k=0

∑̀
k′=0

ck(m,α)ck′(`, α)Γ (1 + r + k + k′) . (25)

Note that, by the orthogonality relation of Laguerre polynomials, one has

Q(α;m, `;α) =
(`+ α)!

`!
δm` . (26)

2.2. Moments β = 1

For β = 1, the final result of the integration reads as follows:

τ (L)
n (N, 1, ν) = 2−nτ (L)

n (N, 2, ν) + I2(n) + I3(n) , (27)

where:

I2(n) = − Γ ((N+1)/2)
2Γ ((N+ν)/2)

(κ+N−2)/2∑
m=0

dmQ(n+ ν;N−1, 2m+ 1−κ; ν) , (28)

I3(n) =
Γ ((N+1)/2)
2Γ ((N+ν)/2)

{
(1−κ)

[
2(3−ν)/2

Γ ((ν+1)/2)
Y1(n)−2(1−ν)/2Y2(n)

]

+κ 2(1−ν)/2Y2(n)

}
, (29)

Y1(n) =
N−1∑
m=0

cm(N − 1, ν)2n+(ν+1)/2+mΓ (n+ ν + 1 +m)
n+ (ν + 1)/2 +m

×2F1(n+(ν + 1)/2 +m,n+ν +1 +m;n+(ν +3)/2 +m;−1) , (30)

Y2(n) =
N−1∑
m=0

cm(N − 1, ν)2n+(ν+1)/2+mΓ (n+m+ (ν + 1)/2) . (31)
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In (30), we have used the following hyper geometric function:

2F1(a1, a2; b1; z) :=
∞∑
k=0

(a1)k(a2)k
(b1)k k!

zk . (32)

One can check by direct inspection that τ (L)
0 (N, 1, ν)=N and τ (L)

1 (N, 1, ν)=
N(N + ν) as it should be.

2.3. Moments β = 2

Combining (14) with (17), one easily obtains

τ (L)
n (N, 2, ν) = 2n

N−1∑
m=0

Γ (m+ 1)
Γ (m+ ν + 1)

Q(n+ ν;m,m; ν) . (33)

One can check by direct inspection that τ (L)
0 (N, 2, ν)=N and τ (L)

1 (N, 2, ν)=
2N(N + ν) as it should be.

2.4. Moments β = 4

Similarly, for β = 4 one gets

τ (L)
n (N, 4, ν) = 1

2 τ
(L)
n (2N, 2, 2ν)−

N−1∑
m=0

2N∑
k=0

2m∑
k′=0

χm,k,k′ , (34)

where:

χm,k,k′ = fm(N, ν, n, k, k′)ck(2N, 2ν)ck′(2m, 2ν) , (35)

fm(N, ν, n, k, k′) =
Γ (1 + k + k′ + n+ 2ν)Γ (N + 1)Γ (m+ 1/2)

22ν+1−nΓ (N + ν + 1/2)Γ (m+ ν + 1)
. (36)

One can check by direct inspection that τ (L)
0 (N, 4, ν)=N and τ (L)

1 (N, 4, ν)=
4N(N + ν) as it should be.

2.5. Comparison with numerics

In Fig. 1 we plot the analytical formulae (17), (16) and (18) together
with numerical diagonalization of matrices W from the Laguerre ensemble
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with β = 1, 2, 4 respectively1, obtained in Matlab as follows2:

β = 1 X=randn(N,M); W = X*X’;
β = 2 X=randn(N,M)+i*randn(N,M); W = X*X’;
β = 4 X = randn(N,M)+i*randn(N,M);

Y = randn(N,M)+i*randn(N,M);
A = [X Y; -conj(Y) conj(X)]; W = A*A’;
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Fig. 1. Average spectral density of the Laguerre ensemble for N = 8, ν = 7 and
β = 1, 2, 4 (top to bottom). Numerical diagonalization is given in (red) dots, while
theoretical results are in solid (black).

1 Note that for β = 4 the matrices corresponding to a certain N actually have size
2N×2N and thus have 2N real and positive eigenvalues. Only N of them are distinct
though, and only those must be used when carrying out numerical simulations for
moments.

2 Alternatively, one can use the tridiagonal algorithm by Dumitriu and Edelman [21].
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In Table I below, we compare the analytical results for moments of the
Laguerre ensemble with numerical simulations via the Matlab algorithm
given above.

TABLE I

Comparison between theory and numerics for moments of the Laguerre ensemble
(N = 5, M = 7 → ν = 2) (the numerical results are obtained averaging over
O(105) samples).

β n Theory Numerics
1 1 35 34.994
1 2 455 455.27311
1 3 7665 7660.026
2 1 70 69.981
2 2 1680 1680.238
2 3 50400 50409.428
4 1 140 139.982
4 2 6440 6437.074
4 3 362880 362857.134

3. Jacobi ensemble

3.1. Spectral densities

The eigenvalue densities for the Jacobi Ensemble (x ∈ [−1, 1]) read
[29, 30]3

ρ
(J)
N,1,a,b(x) =

1
N

N/2−1∑
m=0

(g2m)−1 [φ2m(x)ψ2m+1(x)− φ2m+1(x)ψ2m(x)] , (37)

ρ
(J)
N,2,a,b(x) =

wa,b(x)
N

N−1∑
n=0

(ha,bn )−1
[
P (a,b)
n (x)

]2
, (38)

ρ
(J)
N,4,a,b(x) = ρ

(J)

2N,2,2â+1,2b̂+1
(x)−P (2â+1,2b̂+1)

2N (x)
N−1∑
m=0

K
(â,b̂)
2N,mP

(2â+1,2b̂+1)
2m (x) ,

(39)

where

ha,bn =
2a+b+1

2n+ a+ b+ 1
Γ (n+ a+ 1)Γ (n+ b+ 1)

n!Γ (n+ a+ b+ 1)
, (40)

3 For β = 1, N is even. The expression for N odd is slightly more complicated [29].
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g2m = g2m+1 = h2a+1,2b+1
2m , (41)

φ2m(x) = wa,b(x)P
(2a+1,2b+1)
2m (x) , (42)

ψ2m+1(x) = wa+1,b+1(x)P
(2a+1,2b+1)
2m (x) , (43)

φ2m+1(x) = wa,b(x)
[
A2m+1P

(2a+1,2b+1)
2m+1 (x)−B2m−1P

(2a+1,2b+1)
2m−1 (x)

]
, (44)

ψ2m(x) =
1
2

+1∫
−1

dy sign(x− y) φ2m(y) , (45)

K
(a,b)
N,m =

(4m+ 2a+ 2b+ 3) Γ ((N + 2)/2) Γ ((N + 2a+ 2b+ 4)/2)
22a+2b+3 Γ ((N + 2a+ 2)/2) Γ ((N + 2b+ 2)/2)

× Γ (m+ 1/2) Γ (m+ a+ b+ 3/2)
Γ (m+ a+ 3/2) Γ (m+ b+ 3/2)

, (46)

â =
a− 2

2
, (47)

b̂ =
b− 2

2
, (48)

where sign(z) = z/|z| and

An = −n(n+ 2a+ 2b+ 2)
2n+ 2a+ 2b+ 1

,

Bn = −(n+ 2a+ 2)(n+ 2b+ 2)
2n+ 2a+ 2b+ 5

, (B−1 = 0) . (49)

In the formulas above, wa,b(x) = (1 − x)a(1 + x)b is the Jacobi weight
function, and P (a,b)

n is the n-th order Jacobi polynomial with parameters a
and b, defined as:

P (a,b)
n (x) =

n∑
j=0

(
n+ a

j

)(
n+ b

n− j

)(
x− 1

2

)n−j (x+ 1
2

)j
=

1
2n

n∑
j=0

c
(n)
j (a, b)(x− 1)n−j(x+ 1)j , (50)

where we set:

c
(n)
j (a, b) =

Γ (n+ a+ 1)
Γ (j + 1)Γ (n+ a− j + 1)

Γ (n+ b+ 1)
Γ (n− j + 1)Γ (b+ j + 1)

. (51)

We now turn to the problem of computing integer moments of Jacobi matri-
ces. It is easy to derive first the following relations between integer moments
in the shifted-Jacobi and ordinary Jacobi ensembles:
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τ (sJ)
n (N, β, a, b) = 2−n

n∑
k=0

(
n

k

)
(−1)kτ (J)

k (N, β, a, b) , (52)

τ (J)
n (N, β, a, b) =

n∑
k=0

(
n

k

)
(−2)kτ (sJ)

k (N, β, a, b) . (53)

In the following, we will therefore focus on the ordinary Jacobi case.

3.2. Moments β = 1

The n-th moment of the distribution is therefore given by

τ (J)
n (N, 1, a, b) =

N/2−1∑
m=0

(g2m)−1
(
I

(n)
2m,2m+1 − I

(n)
2m+1,2m

)
, (54)

where

I
(n)
j,k =

+1∫
−1

dx φj(x) ψk(x) xn (55)

are computed explicitly in (58) and (63) below. As it is clear from equation
(54), we only need to compute two different kinds of integrals. Let us then
start from the first kind (I(n)

2m,2m+1).

Using (42), (43) and (50), we therefore get (in the following the c(n)
j

coefficients will always depend on the pair (2a+ 1, 2b+ 1), so we shall omit
their explicit dependence on those parameters for the rest of the subsection)

I
(n)
2m,2m+1 =

+1∫
−1

dx φ2m(x) ψ2m+1(x) xn =
1

24m

2m∑
i,j=0

(−1)4m−i−jc(2m)
i c

(2m)
j

×
+1∫
−1

dx (1− x)4m+2a−i−j+1(1 + x)2b+i+j+1 xn

︸ ︷︷ ︸
L(n)(4m+2a−i−j+1,2b+i+j+1)

, (56)

where we have introduced the following integral:

L(n)(w, z) =

+1∫
−1

dx (1− x)w(1 + x)z xn

= 2w+z+1
n∑
k=0

(
n

k

)
(−2)kB(w + k + 1, z + 1) (57)
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introducing Euler’s Beta function B(x, y) = Γ (x)Γ (y)/Γ (x + y). Inserting
this result into equation (56) we obtain

I I
(n)
2m,2m+1 = 22(a+b+1)+1

2m∑
i,j=0

(−1)4m−i−jc(2m)
i c

(2m)
j

×
n∑
k=0

(
n

k

)
(−2)kB (2(2m+ a+ 1) + k − i− j, 2(b+ 1) + i+ j) . (58)

In order to compute the second type of integrals (I(n)
2m+1,2m) in (54) and (55),

we use (44), (45) and (50) to get

I
(n)
2m+1,2m =

1
22m+1

2m∑
i=0

c
(2m)
i

+1∫
−1

dy wa,b(y)(y − 1)2m−i(y + 1)i

×
+1∫
−1

dx sign(x− y) φ2m+1(x) xn

︸ ︷︷ ︸
K(n)

2m+1(y)

. (59)

The integral K(n)
2m+1(y) can be rewritten as follows by exploiting (44)

K(n)
2m+1(y) = A2m+1G(n)

a,b (2m+ 1; y)−B2m−1G(n)
a,b (2m− 1; y) , (60)

where we have

G(n)
a,b (m; y) =

+1∫
−1

dx sign(x− y) wa,b(x) P (2a+1,2b+1)
m (x) xn

=
1

2m

m∑
j=0

(−1)m−jc(m)
j

+1∫
−1

dx sign(x−y)(1−x)a+m−j(1 + x)b+j xn

=2a+b+1
m∑
j=0

(−1)m−jc(m)
j

n∑
k=0

(
n

k

)
(−2)k B̃ 1−y

2
(a+m+ k−j+ 1, b+ j+1) ,

(61)

where B̃y(w, z) = 2 By(w, z)−B(w, z) and By(w, z) =
∫ y
0 dt t

w−1(1− t)z−1

is the incomplete Beta function. Therefore we get
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K(n)
2m+1(y) = 2a+b+1

n∑
k=0

(
n

k

)
(−2)k

×

A2m+1

2m+1∑
j=0

(−1)2m−j+1c
(2m+1)
j B̃ 1−y

2

(
2(m+1)+a+k−j, b+j+1

)

− B2m−1

2m−1∑
j=0

(−1)2m−j−1c
(2m−1)
j B̃ 1−y

2

(
2m+a+k−j, b+j+1

) . (62)

Eventually, inserting this result into (59) and computing the integral in dy,
we obtain

I I
(n)
2m+1,2m =

2a+b

22m

2m∑
i=0

c
(2m)
i

n∑
k=0

(
n

k

)
(−2)k

×

A2m+1

2m+1∑
j=0

(−1)2m−j+1c
(2m+1)
j Ωa,b (2m−i, i; 2(m+1)+a+k−j, b+j+1)

− B2m−1

2m−1∑
j=0

(−1)2m−j−1c
(2m−1)
j Ωa,b (2m−i, i; 2m+a+k−j, b+j+1)

 ,
(63)

where we have

Ωa,b(h, `;w, z) =

+1∫
−1

dx wa,b(x)(x− 1)h(x+ 1)` B̃ 1−x
2

(w, z)

= (−1)h 2a+b+h+`+1
[
w−1 B (1 + b+ `, 1 + a+ h+ w)

× 3F2 (w, 1 + a+ h+ w, 1− z; 1 + w, 2 + a+ b+ h+ `+ w; 1)
− B(w, z)B (1 + a+ h, 1 + b+ `)] . (64)

In (64), we have used the following generalized hyper geometric function:

3F2(a1, a2, a3; b1, b2; z) :=
∞∑
k=0

(a1)k(a2)k(a3)k
(b1)k(b2)k k!

zk . (65)
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3.3. Moments β = 2

We wish now to compute the generic n-th moment of the density in (38),
which reads

τ (J)
n (N, 2, a, b) =

〈
N∑
i=1

xni

〉
= N

+1∫
−1

dx ρ
(J)
N,2,a,b(x) x

n . (66)

By making use of the representation of Jacobi polynomials in (50), the n-th
moment in (66) can be written as follows (throughout all the present sub-
section the c(k)j coefficients will depend on the pair (a, b)):

τ (J)
n (N, 2, a, b) =

N−1∑
k=0

(ha,bk )−1

+1∫
−1

dx wa,b(x)
[
P

(a,b)
k (x)

]2
xn

=
N−1∑
k=0

k∑
i,j=0

c
(k)
i c

(k)
j

22kha,bk
I(n)(k, i, j, a, b) , (67)

where

I(n)(k, i, j, a, b) = (−1)2k−i−j
+1∫
−1

dx (1− x)2k+a−i−j(1 + x)b+i+jxn (68)

and can be computed by changing variables and setting y = (1−x)/2. When
doing so, one obtains

I(n)(k, i, j, a, b) = (−1)2k−i−j22k+a+b+1

1∫
0

dy y2k+a−i−j(1− y)b+i+j(1− 2y)n

(69)
and expanding (1− 2y)n according to the binomial Theorem, one gets

I(n)(k, i, j, a, b) = (−1)2k−i−j22k+a+b+1
n∑
`=0

(−2)`
(
n

`

)

×
1∫

0

dy y2k+a+`−i−j(1− y)b+i+j . (70)
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The integral appearing in the previous equation is of the following kind

1∫
0

dt tx−1(1− t)y−1 = B(x, y) . (71)

Thus we get

I(n)(k, i, j, a, b) = (−1)2k−i−j22k+a+b+1
n∑
`=0

(−2)`
(
n

`

)
×B(2k + a+ `− i− j + 1, b+ i+ j + 1) . (72)

Plugging this result in equation (67), one can easily see that the n-th moment
has the compact expression

τ (J)
n (N, 2, a, b) =

N−1∑
k=0

k∑
i,j=0

n∑
`=0

yk,i,j,`B(2k+a+`−i−j+1, b+i+j+1) , (73)

where

yk,i,j,` =
(−1)2k−i−j+`c(k)i c

(k)
j 2a+b+1+`

ha,bk

(
n

`

)
. (74)

After inserting (73) into (52), we have checked that the special case a = µ,

b = 0 for τ (sJ)
n (N, 2, a, b) indeed agrees with Eq. (16) in [31] and with Eq. (13)

in [32] as it should (see Appendix A for details).

3.4. Moments β = 4

The n-th moment of the density in (39) reads:

τ (J)
n (N, 4, a, b) =

1
2
τ (J)
n

(
2N, 2, 2â+ 1, 2b̂+ 1

)
− 1

2

N−1∑
m=0

ΘN,m , (75)

where:

ΘN,m = K
(2â+1,2b̂+1)
2N,m Y

(n)
2N,2m

(
2â+ 1, 2b̂+ 1

)
, (76)

Y
(n)
k,` (a, b) =

+1∫
−1

dx wa,b(x) P
(a,b)
k (x) P (a,b)

` (x) xn . (77)
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Exploiting the Jacobi polynomial expansion (50) and the binomial Theorem
we get (again, we omit the explicit dependence of the c(k)i coefficients on the
pair (a, b))

Y
(n)
k,` (a, b) =

1
2k+`

k∑
i=0

∑̀
j=0

(−1)k+`−i−jc(k)i c
(`)
j

×
+1∫
−1

dx (1− x)a+k+`−i−j (1 + x)b+i+j xn

= 2a+b+1
k∑
i=0

∑̀
j=0

n∑
s=0

(
n

s

)
(−1)k+`−i−j(−2)sc(k)i c

(`)
j

×B(a+ k + `+ s− i− j + 1, b+ i+ j + 1) . (78)

3.5. Comparison with numerics

In Fig. 2 we plot the analytical formulae (37), (38) and (39) together
with numerical diagonalization of matrices J from the Jacobi ensemble with
β = 1, 2, 4 respectively, obtained in Matlab using the algorithm by Edelman
and Sutton [22].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

ρ
 N

,1
,a

,b

(J
)

(x
)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

ρ
 N

,2
,a

,b

(J
)

(x
)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

ρ
 N

,4
,a

,b

(J
)

(x
)

Fig. 2. Average spectral density of the Jacobi ensemble for N = 6, a = 5, b = 9 and
β = 1, 2, 4 (clockwise from top left ). Numerical diagonalization is given in (blue)
triangles, while theoretical results are in solid (black).

In the following tables, we compare the analytical results for moments
of the Jacobi and shifted-Jacobi ensembles with numerical simulations via
the algorithm by Edelman and Sutton [22].
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TABLE II

Comparison between theory and numerics for moments of the Jacobi ensemble
(N = 6, a = 5, b = 9) (the numerical results are obtained averaging over O(105)
samples).

β n Theory Numerics
1 1 1.1428 1.1454
1 2 1.1536 1.1573
1 3 0.5108 0.5125
2 1 0.9230 0.9259
2 2 1.4872 1.4892
2 3 0.5470 0.5485
4 1 0.6666 0.6674
4 2 1.9300 1.9294
4 3 0.5602 0.5602

TABLE III

Comparison between theory and numerics for moments of the shifted-Jacobi en-
semble (N = 6, a = 5, b = 9) (the numerical results are obtained averaging over
O(105) samples).

β n Theory Numerics
1 1 2.4286 2.4300
1 2 1.2170 1.2169
1 3 0.6902 0.6902
2 1 2.5385 2.5390
2 2 1.4103 1.4102
2 3 0.8932 0.8919
4 1 2.6667 2.6669
4 2 1.6492 1.6493
4 3 1.1605 1.1612

4. Conclusions

In conclusions, we have first collected well-known formulae for the spec-
tral density of Laguerre and Jacobi ensembles of random matrices with or-
thogonal, unitary and symplectic symmetry. We feel that this paper might
serve as a quick reference point for formulae that might be hard to dig out in
the literature. Using these results, we have computed the average of integer
moments, reducing the complexity from a N -fold integration to a single in-
tegral over the spectral density. In all cases, expressions different from ours
and derived through different methods already exist [24, 31, 32] (see also
Appendix A). It would be interesting to prove mathematically the equiv-
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alence of various formulae which are now available for the same objects.
The present paper offers a different and possibly simpler way of deriving
transport moments for all symmetry classes and finite number of open elec-
tronic channels. The obtained results have been checked numerically with
high accuracy, and the corresponding Matlab codes are freely available on
demand.

We gratefully acknowledge useful correspondence with Saugata Ghosh,
Marcel Novaes, Gernot Akemann and Dima Savin. We are indebted to
Akhilesh Pandey and Santosh Kumar for valuable correspondence and for
sending us their preprint [30] before publication. We warmly thank the
Organizers of the workshop in Kraków where this work has been started for
the very inspiring and friendly atmosphere and hospitality.

Appendix A

Electronic transport in open cavities

A cavity of submicron dimensions etched in a semiconductor can be con-
nected to the external world by two leads supporting N1 and N2 electronic
channels. A voltage difference V applied between the two leads lets an
electronic current flow through the cavity, whose intensity presents time-
dependent fluctuations which persist down to zero temperature [34]. These
are associated with the granularity of the electron charge e. Typical phe-
nomena observed in experiments include weak localization [35], universality
in conductance fluctuations [36] and constant Fano factor [37]. According
to the Landauer–Büttiker scattering approach [34, 38, 39], the statistics of
quantum transport observables depend in a rather simple way on the scat-
tering matrix S of the cavity. This is a unitary N0 × N0 matrix (where
N0 = N1 +N2) which relates the wave function coefficients of the incoming
and outgoing electrons in a natural basis:

S =
(

r t′

t r′

)
. (A.1)

The transmission (t, t′) and reflection (r, r′) blocks are submatrices encod-
ing the transmission and reflection coefficients among different channels4.
The eigenvalues of the hermitian transport matrix T = tt† are of primary
importance: for example, the dimensionless conductance and the shot noise
are given respectively by G = Tr(T ) [38] and P = Tr[T (1− T )] [40], while
other transport properties are encoded in higher moments τn = Tr[T n].

4 (t, t′) are respectively of size N1 ×N2 and N2 ×N1, while (r, r′) are of size N2 ×N2

and N1 ×N1.
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When the classical electronic motion inside the cavity can be regarded
as chaotic, Random Matrix Theory has been very successful in describing
the statistics of universal fluctuations in such systems: the scattering matrix
S is assumed to be drawn at random from a suitable ensemble of matrices,
with the overall constraint of unitarity [41, 42, 43]. A maximum entropy
approach (under the assumption of ballistic point contacts [34]) forces the
probability distribution of S to be uniform within the unitary group, i.e. S
belongs to one of Dyson’s Circular Ensembles [27, 44].

The uniformity of S within the unitary group induces the following re-
markably simple j.p.d. of transmission eigenvalues {Ti} of the matrix T
[34, 43, 45]:

P(T )
β (T1, . . . , TN ) ∝

∏
j<k

|Tj − Tk|β
N∏
i=1

T
β
2
(µ+1)−1

i (A.2)

with N = min(N1, N2), µ = |N1 − N2| and β = 1, 2, 4 in the case of pre-
served time-reversal symmetry, broken time-reversal symmetry and spin-flip
symmetry respectively. The j.p.d. (A.2) is precisely of the shifted-Jacobi
form (4) with a = (β/2)(µ+ 1)− 1 and b = 0.

The transmission eigenvalues Ti are thus correlated real random vari-
ables between 0 and 1, whose j.p.d. (A.2) in principle allows for a complete
characterization of statistical properties of experimental observables. For
most recent analytical results, we refer to [30, 31, 32, 33, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55].

In particular, the study of higher moments of the transmission matrix
τ?n = Tr[T n] has recently seen many analytical progresses5 [24, 25, 30, 31,
32, 33, 48, 49, 53]. In particular, we now have two different (but equivalent)
formulae for higher moments for β = 2 and arbitrary N1, N2:

τ?n =
N−1∑
p=0

(2p+ µ+ 1)
p∑

k,`=0

gp(k)gp(`)
µ+ n+ k + `+ 1

, see [31] , (A.3)

τ?n =
n−1∑
p=0

(−1)p

n!

(
n− 1
p

)
(N1 − p)n(N2 − p)n

(N1 +N2 − p)n
, see [32] , (A.4)

where

gp(κ) := (−1)κ
(
p

κ

)(
p+ µ+ κ

µ+ κ

)
. (A.5)

5 In our notation, τ?n ≡ τ
(sJ)
n (N, 2, µ, 0).
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Novaes [33] has also computed the leading O(N) term in the large N1, N2�1
expansion of the moments τ (sJ)

n (∞, 2, µ, 0) (Eq. (A.4)) for the quantum trans-
port problem at β = 2. His formula in our notation reads

τ (sJ)
n (∞, 2, µ, 0) ∼ (N1 +N2)

n∑
p=1

(
n− 1
p− 1

)
(−1)p−1cp−1ξ

p , (A.6)

where cp = 1
p+1

(
2p
p

)
and ξ = N1N2/(N1 + N2)2. In the next appendix, we

will show how this result (for the case µ ∼ O(1)→ ξ = 1/4) can be derived
by integration of the asymptotic spectral density of shifted Jacobi ensemble
with a = b ∼ O(1) when N →∞.

In Fig. 3 we plot the transport moments τn(N1, β, (β/2)(µ + 1) − 1, 0)
for n = 3 and n = 4 as a function of N1, while the number of channels
N2 = N1 +2 is held fixed. All cases yield expressions formally different from
others [24] (see equation (52) and the equations in Subsections 3.2 and 3.4),
but equivalent.
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Fig. 3. Transport moments τn(N1, β, (β/2)(µ + 1) − 1, 0) for n = 3 (circles) and
n = 4 (triangles) as a function of N1. The number of channels N2 = N1 + 2 is held
fixed. The results are for β = 1 (short-dashed, red), β = 2 (long-dashed, blue) and
β = 4 (solid, black).

Appendix B

Large N asymptotics for moments

The general integral formula (14) offers a neat and explicit way to obtain
the large N asymptotic behavior for moments and possibly the full 1/N
expansion as follows. Suppose that the spectral density of the ensemble
under discussion admits the following series expansion:
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ρ(x) = ρ(∞)(x) +
1
N
ρ(1)(x) +

1
N2

ρ(2)(x) + . . . (B.1)

then the corresponding series for moments can be formally obtained as:

τn = N

∫
dxρ(∞)(x)xn +

∫
dxρ(1)(x)xn +

1
N

∫
dxρ(2)(x)xn + . . . . (B.2)

A first check of the validity of the putative formula (B.2) goes as follows.
Novaes [33] has computed the leading O(N) term in the large N1, N2�1
expansion of the moments τ (sJ)

n (∞, 2, µ, 0) for the quantum transport prob-
lem in chaotic cavities with unitary symmetry supporting N1, N2 electronic
channels in the leads (µ = |N1−N2| and N = min(N1, N2)), see Eq. (A.6).
Now, the N → ∞ limit for the spectral density of the ordinary Jacobi en-
semble with a, b ∼ O(1) reads [29]

ρ
(J)
∞,β,a,b(x) =

1
π
√

1− x2
(B.3)

i.e. it is independent of a, b, β. Using (9) we get

ρ
(sJ)
∞,β,a,b(x) =

2
π
√

1− (1− 2x)2
(B.4)

and using (B.2), the O(N) term in the expansion of the n-th moment of the
β = 2 shifted-Jacobi ensemble should read

lim
N→∞

1
N
τ (sJ)
n (N, 2, a, b) =

1∫
0

dx
2xn

π
√

1− (1− 2x)2
=

Γ (n+ 1/2)√
πΓ (1 + n)

. (B.5)

Eq. (B.5) should then be compared with (A.6) for a special value of ξ, namely
the one that guarantees that parameters a, b are finite (i.e. of O(1)) when
N → ∞ (otherwise Eq. (B.3) would not hold). Since a ≡ µ = N1 − N2,
we need to impose that this difference is finite when N1, N2 → ∞. This
immediately leads to ξ = 1/4 and N1 + N2 = 2N . Inserting these values
into (A.6), we indeed find the identity:

2
n∑
p=1

(
n− 1
p− 1

)
(−1)p−1cp−14−p =

Γ (n+ 1/2)√
πΓ (1 + n)

. (B.6)

Therefore, we have proven that a simple one-dimensional integral over the
asymptotic spectral density of the shifted-Jacobi ensemble correctly repro-
duces Novaes’ formula for the asymptotics of transport moment (obtained
by a totally different method) when the difference between the number of
electronic channels in the two leads is of O(1).
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