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We analytically compute the large-deviation probability of a diagonal

matrix element of two cases of random matrices, namely β =
[
H†H

]−1

11

and γ =
[
IN + ρH†H

]−1

11
, where H is a M ×N complex Gaussian matrix

with independent entries andM ≥ N . These diagonal entries are related to
the “signal to interference and noise ratio” (SINR) in multi-antenna com-
munications. They depend not only on the eigenvalues but also on the
corresponding eigenfunction weights, which we are able to evaluate on av-
erage constrained on the value of the SINR. We also show that beyond a
lower and upper critical value of β, γ, the maximum and minimum eigen-
values, respectively, detach from the bulk. Responsible for this detachment
is the fact that the corresponding eigenvalue weight becomes macroscopic
(i.e. O(1)), and hence exerts a strong repulsion to the eigenvalue.
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1. Introduction

Random matrix theory has recently seen a flurry of applications in com-
munications. The random matrix under study may be the matrix of ran-
dom channel amplitudes between transmitting and receiving multi-antenna
arrays, [1, 2] or an array of pseudo-random code vectors used in a multi-user
communications setting in order to scramble the signals from other users
[3, 4].

One metric to characterize the performance of the communications is the
mutual information, which gives the ultimate number of bits per channel use
that can be transmitted without error. The ergodic mean and the fluctua-
tions of this quantity has been analyzed under a wide range of assumptions
∗ Presented at the XXIII Marian Smoluchowski Symposium on Statistical Physics,
“Random Matrices, Statistical Physics and Information Theory”, Kraków, Poland,
September 26–30, 2010.

(1105)



1106 A.L. Moustakas

regarding the channel statistics [2, 5, 6]. For slowly time-varying channels
a better metric for the performance is the so-called outage capacity which
provides an achievable transmission rate given a probability that this rate
cannot be supported from the underlying fading channel [7]. As a result,
a number of works showed that for large antenna numbers the fading statis-
tics become Gaussian [8, 9]. More recently, the tails of the distribution were
also calculated using the Coulomb Gas approach [10].

To obtain the above full advantages from multiple antennas, it is neces-
sary to have an optimal receiver structure, which however is quite complex
to implement in real systems. Instead, low complexity, albeit suboptimal,
linear receivers offer as a practical alternative.

Such receivers include the so-called MMSE (minimum mean square er-
ror) and the zero-forcing (ZF) receivers. The information throughput per-
formance depends on the ability of the linear receiver structure to mitigate
interference. One very useful method to quantify the performance is through
the asymptotic analysis of the signal to interference and noise ratio (SINR)
for the MMSE receiver in the limit of large antenna numbers using tools
from random matrix theory.

As in the case of the mutual information, when the channel is slowly
varying, it is important to evaluate the full probability distribution of the
SINR to obtain the probability of outage for a given target SINR value. This
is important when the number of antennas is not too large, in which case
the fluctuations play an important role.

In a seminal work [11] the authors proved the asymptotic normality of
the SINR for the MMSE and ZF receivers when all transmitters have equal
power. More recently, [12, 13] showed the normality of the MMSE SINR.
Unfortunately and in contrast to the total mutual information, the Gaussian
approximation for the SINR behaves badly unless the number of channels
is quite large. As a result, inspired by the fact that the SINR for the equal
power MIMO ZF receiver has a Gamma distribution[11, 14], several works
were devoted in approximating the SINR statistics with other distributions,
notably the Gamma and generalized Gamma probability densities [15, 16,
17, 18], by matching the first three moments. Nevertheless, this methodol-
ogy, although perhaps providing good agreement under certain conditions, is
ad hoc and does not offer any intuition on the SINR statistics. Finally, it
should be pointed out that the exact distribution of the SINR has been cal-
culated recently in terms of ratios of determinants [19]. Nevertheless, such
an analysis is quite tedious and does not provide any intuition about the
result.

In this paper, we take a different approach. Instead of trying to prove
Gaussian behavior close enaugh to the peak of the distribution of SINR,
we apply the Coulomb Gas methodology, which allows us to calculate the
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distribution of the SINR arbitrarily far from its most probable, ergodic value.
The Coulomb Gas model, which was introduced originally by [20] and more
recently has seen numerous applications [21, 22, 23, 24, 25, 10], treats each
eigenvalue of a randommatrix as a point charge in the presence of an external
potential while repelling the others. To apply this model, we rely on the fact
that the SINR can be written in terms of a diagonal matrix of a random
matrix and hence as a sum over the eigenvalues of the matrix. Nevertheless,
since this sum depends not only on the eigenvalues but also the weights of the
corresponding eigenfunctions on the matrix element, we need to generalize
the Coulomb Gas approach to take into account the effects of the fluctuating
weights. It should also be mentioned that single matrix element distributions
of related quantities have been evaluated elsewhere [26], but in a different
context and without exemplifying the interaction between eigenvalues and
eigenfunctions.

Outline: In the next section we present the channel model and introduce
the concepts of the SINR for the ZF and MMSE receiver. In Section 3
we present our analytical results, while in Section 4 we demonstrate their
validity numerically and we conclude in Section 5.

2. Problem statement

In this section we define the channel model. We consider a wireless
communications system with an N antenna transmitter array and an M
antenna receiver array. It is typically assumed that M ≥ N and the ratio is
defined as α = M/N ≥ 1. The M -dimensional received signal vector y can
be written as

y = Hx + z , (1)

where the vector x represents the transmitted signal with identically dis-
tributed elements and variance E[x x†] = ρIN . z is the noise vector, with
independent complex Gaussian elements ∼ CN (0, 1). The channel matrix
H is assumed to have independent elements ∼ CN (0, 1/N).

The basic communications problem at the receiver is to deduce x from
y, given the knowledge of the channel H. Even though the optimal receiver
structure leads to the maximum throughput per channel use there are several
suboptimal receivers, which are popular because they are linear in their
implementation. The most common ones are the so-called minimum-mean-
square-error (MMSE) and the zero-forcing (ZF) receivers. In both cases the
vector y is multiplied by a matrix P in an effort to mitigate the noise and
interference.
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2.1. MMSE receiver

In this case the matrix P mmse is

P mmse =
[
IM + ρHH†

]−1
H† . (2)

This matrix has the property of minimizing the average square error of the
signal in the presence of the noise z. The output signal can be then expressed
as

x̂ = P mmse y . (3)

The resulting signal-to-interference-and-noise ratio (SINR) for each signal
stream xi for i = 1, . . . , N is given by [3]

γi =
1[(

IN + ρH†H
)−1
]
ii

− 1 . (4)

It will turn out to be convenient to parameterize this quantity by zi = γk/ρ
and re-write the above equation as

1
1 + ρzi

=
[(

IN + ρH†H
)−1

]
ii

(5)

=
N∑
j=1

|uji|2

1 + ρxj
.

In the second line we have expressed the ith diagonal element of the matrix
in the r.h.s. of (5) in terms of the eigenvalues xj and the matrix elements
of the unitary matrix U , which diagonalizes H†H. Since the elements of
H are ∼ CN (0, 1/N), U is Haar-unitary matrix. As a result, the quantities
|uji|2 for fixed i and j = 1, . . . , N are uniformly distributed in (0, 1) with
the constraint

N∑
j=1

|uji|2 = 1 . (6)

2.2. ZF receiver

Similarly the SINR of the zero-forcing (ZF) receiver can be obtained. In
this case the projector matrix P zf is simply the pseudo-inverse of the matrix
H (H+), which of course exists with probability one only when M ≥ N .
As a result, the output vector is

x̂ = P zfy = x + H+z . (7)
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We see that multiplication with H+ on y kills all self-interference of signals,
since all terms involving signals xq, with q 6= i are forced to zero (hence
the name “zero-forcing”). Of course this comes at the cost of increasing the
noise. The corresponding SINR βi can be written as

ρ

βi
=

1
zi

=
[(

H†H
)−1

]
ii

(8)

=
N∑
j=1

|uji|2

xj

with the quantities uji and xj defined as above.
It is worth pointing out that the SINR of both MMSE and ZF cases

above may be written as a sum over a function of eigenvalues weighted by
the corresponding eigenvector weight

N∑
j=1

|uji|2 s(xj) . (9)

Also, it is important to mention that in the limit of large ρ, zmmse coincides
with zzf , i.e. zzf = limρ→∞ zmmse and thus β(ρ) = ρ limρ′→∞ γ(ρ′)/ρ′. As
a result, we will focus on the distribution of the MMSE SINR first, from
which we will be able to derive all results for the ZF SINR by taking the
appropriate limit.

3. Technical analysis

In this section we will go through the basic steps of the calculation of the
probability distribution function (PDF) of the normalized SINR zi, omitting
the index i when necessary. Keeping in mind the statistics of uji and their
constraint (6) we write the PDF of z as

P(z) =
1

N |s′(z)|
Ex,t

δ
Ns(z)− N∑

j=1

s(xj)tj

 , (10)

where the expectation is over the vector x of the H†H eigenvalues and
the random vector t with distribution identical to the quantities N |uji|2,
for fixed i and j = 1, . . . , N . We have used the compact notation s(x) to
indicate both ZF and MMSE cases above. For simplicity we will omit the
dependence of s(z) on z as well as the overall proportionality factor unless
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explicitly mentioned. We may explicitly integrate over t by first expressing
the above δ-function as well as the constraint

N∑
j=1

tj = N (11)

as Fourier integrals. As a result we obtain

P(z) ∝
∫
dk

∫
dλEx

eN(ks+λ)
N∏
j=1

N∫
0

dtje
−(λ+ks(xj))tj


∝
∫
dk

∫
dλEx

eN(ks+λ)
N∏
j=1

[
1− e−N(ks(xj)+λ)

(ks(xj) + λ)

] . (12)

Note that that although the integral over k and λ is along the imagi-
nary line, the saddle-point will lie on the real axis and hence we omit the
imaginary i for simplicity. The expectation over x is performed with the
eigenvalue distribution P (x) given by

P (x) ∝ ∆(x)2
N∏
j=1

xM−Nj e−Nxj ≡ e−N2F (x) (13)

with ∆(x) =
∏
i>j(xi − xj) the Vandermonde determinant and the second

equation being the definition of F (x). When N is large, the eigenvalues
of H†H form a tight density which can be represented as a density p(x)
corresponding to the quantity

p(x) =
1
N

∑
j

δ(x− xj) . (14)

As a result we may rewrite (12) as

P(z) ∝
∫
dk dλ

∫
Dpe−N

2F [p]e−NE0[p] , (15)

where
∫
Dp represents a path integral over non-negative, normalized p(x),

F [p] is the energy functional associated with the probability distribution of
eigenvalues (13) [27, 22, 10] and E0[p] is the functional obtained from the
exponent in (10)
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F [p] =

b∫
a

dxp(x)

x− (α− 1) ln(x)−
b∫
a

dx′p(x′) ln |x− x′|

 (16)

E0[p] = −(ks+ λ)−
b∫
a

dxp(x) ln

[
1− e−N(ks(x)+λ)

ks(x) + λ

]
. (17)

It is crucial to point out that the functional F [p] in (13) is multiplied by N2

while E0[p] is only multiplied by N . Hence the fluctuations of F [p] will be
far smaller than those of E0[p]. As a result, to leading order in N we may
first find the optimal distribution that minimizes F [p]. This distribution is
the celebrated Marcenko–Pastur distribution given by [22, 27, 10]

p0(x) =

√
(x− a)(b− x)

2πx
, (18)

where the limits of the support are

a, b =
(√
α± 1

)2
. (19)

Subsequently, using this p0(x) we may find the optimal values of k and λ
that minimize E0[p0]. This two-tiered approach works, as mentioned before,
because, for large N , the eigenvalue distribution has much smaller fluctu-
ations compared to the fluctuations of the unitary matrix elements |uji|2
and k, λ.

We next analyze the above equations in two separate regimes, depending
on whether the quantity λ + ks(x) is positive. When it is, the exponential
factor inside the logarithm of (17) is negligible, and we may therefore omit it.
This corresponds to the situation when all weights of the eigenvalues are of
similar size, i.e. |uji|2 = O(1/N), or equivalently t(xj) = O(1). The analysis
of this region will be discussed next in Section 3.1. When λ + ks(x) < 0,
we need to take the exponential explicitly into account, which we will do in
Section 3.2. In this case, as we shall see, the average weight of one eigenvalue
becomes macroscopic, i.e. t(x) = O(N).

3.1. Region with λ+ ks(x) > 0

In this case, the exponential inside the logarithm of (17) is exponentially
small in N and therefore may be neglected. As mentioned above, all typical
values of tj are of order of unity, i.e. tj = O(1), with their sum fixed to
N (11). In fact, the integral over p(x) in (17) represents the entropy of the
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random variables t for given p(x) and the mean value of the tj = N |uji|2 is
equal to

t(xj) = N E[|uji|2] =
1

λ+ ks(xj)
. (20)

The saddle-point equations for λ and k are obtained by differentiating
E0[p0] with respect to λ and k, respectively, and setting the derivative to
zero

b∫
a

dx
p0(x)

λ+ ks(x)
= 1 , (21)

b∫
a

dx
p0(x)s(x)
λ+ ks(x)

= s(z) . (22)

By identifying 1/(ks(xj) + λ) as the average value of tj , we immediately
see that the first equation is nothing else but the normalization condition
(11). Similarly, the second equation simply states that

∑
j s(xj)tj = Ns,

i.e. imposes the δ-function constraint in (10). We note that combining the
two equations we get the identity

λ+ ks(z) = 1 . (23)

This, together with e.g. (22) will provide us with the optimal values of
k, λ to plug into (17) and thus evaluate the leading term in the exponent
of the probability distribution of s (respectively z) by evaluating it at the
saddle-point.

We start by making the following convenient change of variables from k
to c through

k = − λ

s(c)
, (24)

which for the MMSE case becomes k = −λ(1 + ρc). Once this variable is
determined, the other, e.g. λ can be obtained from it through (23)

λ =
s(c)

s(c)− s(z)
. (25)

Plugging (24) into (22) we get, after some re-arrangements,

b∫
a

dx
p0(x)
x− c

=
1

z − c
, (26)
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where we have also used the fact that s(z) = 1/(1 + ρz). It is interesting to
point out that this equation is independent of ρ and holds also for the ZF
receiver. Also it represents a balance of forces for a (yet fictitious) charge
located at c: from one side we have the repulsion of the Coulomb sea, while
from the other there is another (fictitious) charge located at the position
dictated by the normalized SINR z. Before proceeding to integrate the l.h.s.
we note that, in order to get a convergent answer, c has to take values outside
the support of p(x), i.e. c /∈ (a, b). We then have

z =
sgn(1 + α− c)

√
(b− c)(a− c) + c+ α− 1

2
. (27)

We see that the region of z for which the above equation has solutions is
|z − α| ≤

√
α. This corresponds to values of c in the regions −∞ < c < a

(for α−
√
α < z < α) and b < c < +∞ (for α < z < α+

√
α). Solving the

above equation for c gives us

c(z) = z

(
1 +

1
z − α

)
. (28)

The values of c(z) for which the solutions above break down are c = a
(z(a) = α−

√
α) and c = b (z(b) = α+

√
α).

We may now calculate the exponent of the PDF for |z−α| ≤
√
α. To do

so, we simply need to plug in the above values of k and λ (obtained directly
from c) into (17) and calculate the corresponding integrals. As discussed
before [22, 27, 10] the value of F [p0] does not depend on z and is therefore
a constant (we have also omitted the dependence of E0 on p0)

E0(z) = − ln
[
z − c
ρ−1 + z

]
+
c+ ρ−1

2

+
1
2

(
sgn(1 + α− c)

√
(b− c)(a− c)−

√
(ρ−1 + a)(ρ−1 + b)

)
+ (α+ 1) ln

[ √
|b− c|+

√
|a− c|√

ρ−1 + b+
√
ρ−1 + a

]

− (α− 1) ln

[ √
a|b− c|+

√
b|a− c|√

a(ρ−1 + b) +
√
b(ρ−1 + a)

]
. (29)

Plugging in the dependence of c(z) we obtain the following simplified for-
mula:
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E0(z) = z − α ln z + ln(ρ−1 + z) +
ρ−1 + 1− α

2

−
√

(ρ−1 + a)(ρ−1 + b)
2

+ ln 4 +
(α+ 1) lnα

2
− (α+ 1) ln

[√
ρ−1 + a+

√
ρ−1 + b

]
+ (α− 1) ln

[√
b(ρ−1 + a) +

√
a(ρ−1 + b)

]
. (30)

This exponent has two interesting properties. First, it is a maximum at the
ergodic value of z, which corresponds to the ergodic average of the SINR.
This corresponds to k = 0, and, following (23) also λ = 1. As a result, (22)
equates s(z) to its ergodic average over the Marcenko–Pastur distribution,
Ep0 [s(x)]. As we shall see, this corresponds to the peak of the Gaussian
distribution of the SINR distribution. The MMSE SINR is then given by

γerg = ρzerg,mmse =

√
(1− (α− 1)ρ)2 + 4αρ+ ρ(α− 1)− 1

2
. (31)

This can be seen by directly maximizing (30) over z. Indeed, expanding (30)
close to zerg we find

E0(z) ≈
(z − zerg)2

2verg
, (32)

where verg,mmse is the variance of the MMSE SINR given by [28]

verg,mmse =
(α− 1)

√
(1− (α− 1)ρ)2 + 4αρ+ ρ(α− 1) + α+ 1

2
√

(1− (α− 1)ρ)2 + 4αρ
. (33)

The corresponding values of βerg and verg for the case of the ZF receiver
can be obtained by taking the limit ρ → ∞ but keeping z fixed, and then
multiplying with ρ to get the SINR βerg

βerg = ρzerg,zf = ρ(α− 1) , (34)
verg,zf = α− 1 . (35)

We see that when α = 1 the Gaussian approximation breaks down [11, 28].
Keeping only the dependence on z in (30), we see that, to leading expo-

nential order,

Pmmse(z) ∝
zM

(ρ−1 + z)N
e−Nz ,

Pmmse(γ) ∝
γM

(1 + γ)N
e−Nγ/ρ . (36)
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This formula is remarkable for two reasons. First, it is surprising that this
simple formula peaks at the ergodic value of zerg in (31). Second, it settles a
year-old conjecture, that the distribution of MMSE SINR should be (approx-
imately) a Gamma distribution. Several papers in the literature [15, 17, 16]
tried to fit the distribution to the Gamma distribution by fitting their mo-
ments. We see that this asymptotic form illustrates that although simple in
form, it is not a Gamma distribution.

By letting ρ→∞ we can recover the distribution of zzf

Pzf (z) ∝ zM−Ne−Nz ,

Pzf (β) ∝ βM−Ne−Nβ/ρ . (37)

It turns out that this result is in fact exact [11, 14].
Finally, we can also evaluate the average weight of each eigenvalue x ∈

[a, b] constrained on the value of z. Using (20), (25) and (28) we obtain

E[t(x|z)] =
1

λ+ ks(x)
=
s(z)− s(c)
s(x)− s(c)

(38)

for |z − α| <
√
α, which is valid for both ZF and MMSE. This result, can

also be obtained by noting that the distribution of t(x|z) is exponential
∼ exp[−(λ+ ks(x))t], as seen in (12).

3.2. Region with λ+ ks(x) ≤ 0

Before moving on, it is worth pointing out that the above behavior is
bound to break down at some value of z. Indeed, assuming λ + ks(x) > 0
and using (21), (22) and the fact that s(x) is a decreasing function of x, we
get the following inequality

s(z) =

b∫
a

dx
p(x)s(x)
λ+ ks(x)

≤ s(a) ,

s(z) =

b∫
a

dx
p(x)s(x)
λ+ ks(x)

≥ s(b) . (39)

Therefore, for z < a and z > b, the assumption λ + ks(x) > 0 and the
resulting equations (21) and (22) have to break down.

To see how, we need to analyze the situation outside the region |z−α| <√
α. We thus need to consider the situation when for some eigenvalue(s)

the exponent in (17) becomes positive, i.e. when λ + ks(x) < 0. For the
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section of the support of p(x) where this occurs, the exponent in (17) will
be positive, so we will need to include an additional term in E0[p], namely

NE0[p] ≈ −(ks(z) + λ)N +N

b∫
a

dxp(x) ln |ks(x) + λ|

+N2

∫
R

dxp(x)(ks(x) + λ) , (40)

where R is the region of the support of p(x) (possibly including only a finite
number of eigenvalues) with λ+ks(x) < 0. This extra term is an additional
potential of strength N2ks(x) exerting a force on the charge density p(x).
Since it is O(N2) we can no longer assume it is small and we have to take
it into account explicitly together with N2F [p] in the determination of the
optimal p(x). First, we need to estimate whether the number of eigenvalues
affected is finite or scales with N . To answer this we start by observing
that for these eigenvalues the corresponding typical value of tj becomes of
O(N). Due tot the constraint

∑
j tj = N (11), there can be at most a

finite number of such eigenvalues with corresponding tj = O(N). We will
initially assume that it is only one such eigenvalue and later on show that
this is consistent. As a result of these considerations we need to treat this
eigenvalue separately from the others. Therefore, we separate the continuous
part of the eigenvalue density and express is as

q(x) =
1

N − 1

N−1∑
j=1

δ(x− xj) (41)

and denote the position of the N eigenvalue (which may be the largest or
smallest depending on whether we are analyzing the case z > α +

√
α or

z < α−
√
α, respectively) by y. The exponent in (15) can be expressed as

− (N − 1)2F [q]−NE+[q] , (42)

where F [q] is the same energy functional as in (15). As a result, the optimal
q(x) is still the Marcenko–Pastur distribution (18). Thus E+[p0] is given by

E+[p, y] = y − (α− 1) ln y − 2

b∫
a

dx p0(x) ln |x− y| − (ks(z) + λ)

+

b∫
a

dx p0(x) ln(ks(x) + λ)−
b∫
a

dxp0(x) ln
[
1− e−N(ks(x)+λ)

]
+

1
N

(
ln |λ+ ks(y)| − ln

[
e−N(ks(y)+λ) − 1

])
. (43)
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This need of explicitly splitting one eigenvalue from the bulk and treating it
in a special way has appeared also in the context of bipartite entanglement
[25, 29]. Since only ks(x) + λ ≥ 0 for x 6= y the last term in the second line
above will only contribute subleading terms and therefore may be neglected.
We now need to find the saddle-point jointly for y, λ and k.

1 =

b∫
a

dx
p0(x)

λ+ ks(x)
+

1
N(λ+ ks(y))

+
e−N(λ+ks(y))

e−N(λ+ks(y)) − 1
, (44)

s(z) =

b∫
a

dx
p0(x)s(x)
λ+ ks(x)

+
s(y)

N(λ+ ks(y))
+
s(y)e−N(λ+ks(y))

e−N(λ+ks(y)) − 1
, (45)

1 = 2

b∫
a

dx
p0(x)
y−x

+
α−1
y

+
kρs(y)2

N(λ+ks(y))
+
kρs(y)2e−N(λ+ks(y))

e−N(λ+ks(y)) − 1
. (46)

From the first equation we conclude that the values of λ+ ks(y) = O(1/N).
Otherwise, if λ+ ks(y) = O(1), the integral in the r.h.s. of (44) would have
to vanish, which is inconsistent with the fact that λ + ks(x) > 0. Thus,
setting λ + ks(y) = −w/N for w still unknown, we find that to leading
order,

k =
1

s(z)− s(y)
(47)

and w is a solution of the equation

b∫
a

dx
p0(x)(s(z)− s(y))

s(x)− s(y)
=

1
w
− 1
ew − 1

. (48)

Putting this together, we finally get the equation for y:

b∫
a

p(x)dx
y − x

= 1− α− 1
y
− 1
y − z

. (49)

This last equation is both surprising and intuitive. It is firstly surprising that
the value of y does not depend on the specific form of the SINR function
s(z) but only on z itself, the normalized SINR. Second, it tells us that the
position of this eigenvalue is determined by external forces exerted on the
other eigenvalues and, in addition, it feels the repulsion of a unit charge
located in the position z. Also it is interesting to note that it feels only half
the repulsion from the Marcenko–Pastur continuous eigenvalue density. The
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other half has been screened away due to the interaction of this eigenvalue
with the matrix elements of the diagonalizing unitary matrix (through λ
and k). It should be pointed out that (49) is valid for both cases z < α−

√
α

and z > α+
√
α, with y ≤ a and y > b, respectively.

In the above analysis we have assumed there is only one eigenvalue that
detaches from the bulk. Let us assume there were r > 1 such eigenvalues.
In that case, they would all have to stick together satisfying λ + ks(yj) =
−wj/N . Otherwise, if say only one y1 satisfied this relation, all others with
yj − y1 = O(1), for j = 2, . . . , r, would necessarily have λ + ks(yj) > 0,
which would not be sufficient to provide the “kick” to get out of the bulk.
However, on the other hand, if these r eigenvalues are within O(1/N) from
each other, their repulsion 1/(yi− yj) will be large (O(N)) and hence would
dominate (46). As a result, only one eigenvalue can be detached from the
bulk.

We may now integrate the l.h.s. of (49) to get√
(a− y)(b− y) + y − α+ 1

2y
= 1− α− 1

y
− 1
y − z

. (50)

Solving for y gives

y = z

(
1 +

1
z − α

)
, |z − α| >

√
α (51)

which is identical with (28), although obtained through a completely dif-
ferent method, and with z here taking different values. One way to jointly
interpret c and y is that they correspond to the location of a “state”, which
when located outside the continuum of nearby states forms a bound state
(y), while when it enters the continuum, it becomes a “resonance”.

We may now plug in the above results into (43) to obtain the exponent
of the PDF in this region of z. The final result is

E+(z) = − ln
[
|z − y|
ρ−1 + z

]
+
y + ρ−1

2
− (α− 1) ln y

+
1
2

(
sgn(y − α)

√
(y − b)(y − a)−

√
(ρ−1 + a)(ρ−1 + b)

)
− (α+1)

(
ln
[√
|y−b|+

√
|y−a|

]
+ln

[√
ρ−1+b+

√
ρ−1+a

])
+ (α− 1)

(
ln
[√

a|b− c|+
√
b|a− c|

]
+ ln

[√
a(ρ−1 + b) +

√
b(ρ−1 + a)

])
. (52)

Inserting (51) into (52) we find that, up to a constant, E+(z) is identical to
E0(z) in (30), thus extending the validity of the latter for all values of z > 0.
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Finally, we evaluate the average eigenvalue weights constrained on the
value of SINR (or equivalently to z), which are the analogues of (38). Using
(47) we find the identical expression as (38)

E[t(x|z)] =
1

λ+ ks(x)
=
s(z)− s(y)
s(x)− s(y)

. (53)

In addition, we may calculate the mean weight of the detached eigenvalue
y. As with the other weights, its distribution is exponential ∼ exp[−t(λ +
ks(y))], (12). We thus find that in this case

E[|uNk|2] =
E[ty(z)]
N

= 1− 1
w

+
1

ew − 1

= 1− z((1 + ρα)(z − α) + ρα)
(1 + ρz)(z − α)2(z − α+ 1)

(54)

for |z − α| >
√
α, where w = −N(λ + ks(y)) appears in (48). We see that

in the limit |z − α| =
√
α, E[ty(z)] = 0 (i.e. = O(1/N)). We plot
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Fig. 1. Left: Weight for ZF. Average weight of the eigenfunction j on the i ele-
ment, E[N |uji|2] for the ZF case, as a function of the corresponding eigenvalue xj ,
constrained on different values of z. The five curves include to the lower critical
(z = α−

√
α), upper critical (z = α+

√
α) and an intermediate (z = α) value of z.

The remaining two curves have z below the lower critical value z = α−
√
α−0.5 and

above the upper critical value z = 2α. In the first two we clearly see the divergence
at the lower and higher edges of the spectrum, corresponding to the fact that beyond
these values the weight of the edges becomes macroscopic O(N). Right: Weight
of xmin. Average weight of the minimum eigenvalue for 0 < z < α −

√
α. Note

that now we plot the macroscopic occupation of the eigenvalue, i.e. E[|umin,k|2].
We plot the case of MMSE for various ρ as well as the case of ZF.



1120 A.L. Moustakas

4. Numerical simulations

To test the applicability of this approach, we have performed Monte
Carlo simulations and have compared our large deviations Coulomb Gas
(CG) approach with Monte Carlo (MC) simulations and the Gaussian ap-
proximation. In Fig. 2 we plot the normalized probability density of the
SINR for small ρ = 1, while in Fig. 3 we plot it for larger ρ = 10. In both
cases we see good agreement.
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Fig. 2. Left: α = 1. Right: α = 2. PDF of MMSE SINR for M = 6, ρ = 1. The
agreement of the Coulomb Gas (CG) curve with Monte Carlo (MC) simulations is
good, even for such small matrices, especially compared to the Gaussian approxi-
mation. Denoted with circles are the values of z at which the “inner” and “outer”
solutions match and we see no discontinuity in the numerics.
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Fig. 3. The same as in the previous figures but for ρ = 10. Here the agreement is
much better.
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5. Conclusion

In this paper we have used a large deviation approach to calculate the
probability density of the “signal to interference and noise ratio” (SINR)
for multi-antenna arrays for two popular receiving algorithms, namely the
MMSE and the ZF algorithms. The approach is formally valid for large N
antenna numbers, but is not restricted to the behavior close to the peak of
the distribution, which has been shown to be asymptotically Gaussian when
the number of antennas is very large. Instead we calculate the probability
of the SINR being arbitrarily away from its ergodic peak. Surprisingly, the
leading term of the exponent of the distribution is very simple, and the
distribution is neither Gamma, nor Beta and certainly not Gaussian. In the
ZF case, we recover the known chi-square result. We also test the MMSE
results numerically and find good agreement even for relatively small antenna
arrays. From a technical point of view, since the SINR of the two algorithms
are related to the diagonal matrix elements of the matrices

[
IN + ρH†H

]−1

and
(
H†H

)−1, the task is to find the distribution of a single diagonal matrix
element. The methodology we applied is based on the so-called Coulomb Gas
model, in which each eigenvalue can be seen as a point charge interacting
with an external potential and repelling each other. In this particular case
however, the eigenvalues interact not only with each other but also with
the weights of their corresponding eigenfunctions in the particular matrix
element. As a by-product of our analysis we are able to calculate the average
weight of each eigenvalue in the particular matrix element, constrained on
the value of the SINR or the matrix element. The interaction between
the eigenfunction weights and the corresponding eigenvalues can be quite
strong and as a result, below and above critical values of z the lowest and
largest eigenvalues detach from the bulk. Nevertheless, it seems that there
is no discontinuity involved in this detachment, at least to leading order. In
hindsight, this is not surprising. A given diagonal matrix element depends
on a number of O(N) random variables of the matrix, which has O(N2)
random variables. In our approach we have expressed this diagonal matrix
in terms of the eigenvalues, which depend on the whole matrix. Somehow,
we expect that the interaction with the eigenvalue weights will “wash” out
this dependence from the full matrix.
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