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Spectral properties of evolution operators corresponding to random
maps and quantized chaotic systems strongly interacting with an envi-
ronment can be described by the ensemble of non-Hermitian random ma-
trices from the real Ginibre ensemble. We analyze evolution operators
Ψ = Ψs . . . Ψ1 representing the composition of s random maps and demon-
strate that their complex eigenvalues are asymptotically described by the
law of Burda et al. obtained for a product of s independent random com-
plex Ginibre matrices. Numerical data support the conjecture that the
same results are applicable to characterize the distribution of eigenvalues
of the s-th power of a random Ginibre matrix. Squared singular values of
Ψ are shown to be described by the Fuss–Catalan distribution of the order
of s. Results obtained for products of random Ginibre matrices are also
capable to describe the s-step evolution operator for a model deterministic
dynamical system — a generalized quantum baker map subjected to strong
interaction with an environment.
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1. Introduction

Under the assumption of classical chaos the corresponding unitary quan-
tum evolution, representing dynamics of an isolated quantum system, can
be described [1, 2] by random unitary matrices of the circular ensembles of
random matrices [3]. If the quantum system is not isolated, but it is cou-
pled to an environment, its time evolution is not unitary. In such a case one
describes the quantum state by a density operator ρ, which is Hermitian,
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ρ = ρ†, positive, ρ ≥ 0, and normalized, Tr ρ = 1. The time evolution
of such a system can be described by master equations [4], or by quan-
tum operations [5], which correspond to a stroboscopic picture and discrete
dynamics.

A quantum operation is described by a superoperator Ψ , which acts on
the space of density operators. Let N denotes the size of a density ma-
trix ρ. Then the superoperator is represented by a matrix Ψ of size N2.
Such a matrix is in general not unitary, but it obeys a quantum analogue
of the Frobenius–Perron theorem [6], so its spectrum is confined to the unit
disk. Spectral properties of superoperators representing interacting quantum
systems were investigated in [7, 8, 9] and also analyzed in an NMR exper-
iment [10]. Similar properties exhibit also non-unitary evolution operators
analyzed earlier in context of quantum dissipative dynamics [11, 12].

Under the condition of classical chaos and strong decoherence the spec-
tral properties of one-step evolution operators of deterministic systems do
coincide with these of random operations [6] and can be described [13] by the
ensemble of non-Hermitian Ginibre matrices. All entries of such a random
matrix are independent Gaussian variables. Since a superoperator describ-
ing one-step evolution operator can be represented as a real matrix [14], we
are going to apply random matrices of the real Ginibre ensemble [15, 16, 17].

The main aim of this work is to study spectra of evolution operators
describing compositions of random quantum operations. Furthermore, we
analyze s-step evolution operators representing quantum systems periodi-
cally interacting with the environment and compare statistical properties of
complex spectra with predictions of the theory of non-Hermitian random
matrices.

This work is organized as follows. In Section 2 we recall necessary def-
initions of relevant ensembles of random matrices and briefly review recent
results concerning statistical properties of their products. Properties of ran-
dom maps and their compositions are analyzed in Section 3. The model
deterministic dynamical system — a variant of the baker map interacting
with an environment is studied in Section 4.

2. Non-Hermitian random matrices and their products

Consider a random square matrix G of size N of the complex Ginibre
ensemble [18], generated according to the probability density

P (G) ∝ exp
(
−TrGG†

)
. (1)

This assumption implies that each entry Gmn of the random matrix is an
independent complex Gaussian variable of a fixed variance σ2 = ξ2/N , where
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ξ is a free parameter which sets the scale. Eigenvectors of a random matrix
G from such an ensemble are distributed according to the Haar measure on
the unitary group, while complex eigenvalues zi are described by the joint
probability distribution

P (z1, . . . , zN ) ∝ exp

(
−
∑
i

|zi|2
)∏
i<j

|zi − zj |2 . (2)

From this result one can evaluate the density of eigenvalues in the complex
plane. The density is rotationally symmetric and is a function of the moduls
r = |z| of an eigenvalue [18, 17],

P (z) =
1
π

Γ (N, |z|2)
Γ (N)

, (3)

where Γ (s, x) denotes the incomplete Gamma function,

Γ (s, x) =

∞∫
x

ts−1 exp(−t)dt .

In the asymptotic limit of large matrix size N the level density becomes
constant inside the disk of radius R = ξ, and decays exponentially outside
the disk. This fact, known as the circular law of Girko [19], is conveniently
formulated under the normalization σ2 = 1/N so that ξ = 1, for which the
spectrum of a random Ginibre matrix of a large dimension covers uniformly
the unit disk.

Several recent applications including multiplicative diffusion processes [20],
macroeconomic time series [21], lattice gauge field theories [22] and chiral
ensembles of random matrices [23, 24] increased interest in statistical prop-
erties of products of non-Hermitian random matrices [25]. Let Y denote a
product of s independent square random matrices of size N from the com-
plex Ginibre ensemble, Y = G1G2 · · ·Gs. The density of the spectrum of Y
is rotationally invariant in the complex plane [26],

P (z) =
1
sπ
ξ−2/s|z|−2+(2/s) for |z| ≤ ξ . (4)

Here ξ2 = ξ21ξ
2
2 . . . ξ

2
s denotes the product of scale parameters of each of the

random matrices. For simplicity we shall assume that all s random matrices
are characterized by the same variance, so that ξ = ξs1. The radial density
of the eigenvalues reads

P (r) =
2
s
ξ−2/sr−1+(2/s) for r ≤ ξ . (5)
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Based on the exact results for the level density for the case s = 1 of a
single random matrix [27, 17, 28] it was suggested by Burda et al. [29]
to describe the finite size effects for the spectral density of a product of s
random matrices by the dollowing ansatz, which involves the complementary
error function erfc(x) = 1√

2π

∫∞
x exp(−t2/2)dt,

PN (r) ≡ P (r)
1
2

erfc
(
q(r − ξ)

√
N
)
. (6)

Here q is an adjustable parameter, which does not depend on the di-
mension N , and the above form was reported [29, 30] to describe well the
data obtained numerically by diagonalization of products of random Ginibre
matrices.

Another way to describe a non-Hermitian operator A is to study its
singular values. Their squares are equal to the eigenvalues of the positive
matrix AA†. To set the scale it is convenient to renormalize such a matrix
and define

W =
AA†

TrAA†
(7)

such that TrW = 1.
Let {λi}, i = 1, . . . , N denote the non-negative eigenvalues of W . The

normalization implies that their sum is equal to unity, so if we use a rescaled
variable, xi = Nλi, its mean value is equal to unity, 〈x〉 = 1.

If the matrix A is a random square Gaussian matrix from the Ginibre
ensemble the level density P (x) describing the Wishart matrix W given
in (7) is asymptotically (for a large matrix dimension N) described by the
Marchenko–Pastur distribution [31],

FC1(x) =
1

2π

√
4
x
− 1 for 0 ≤ x ≤ 4 . (8)

If A is obtained as a product of s independent square random Ginibre ma-
trices, A = G1G2 · · ·Gs, the level density of the Wishart-like matrix W is
given by the Fuss–Catalan distribution of order s [32, 33]. The name of this
distribution is related to the fact that its moments are equal to the Fuss–
Catalan numbers, often studied in combinatorics [34]. An explicit form of
the FC distribution of order two,

FC2(x) =
3
√

2
√

3
12π

[
3
√

2
(
27 + 3

√
81− 12x

) 2
3 − 6 3

√
x
]

x
2
3

(
27 + 3

√
81− 12x

) 1
3

, (9)

valid for x ∈ [0, 27/4], was derived first by Penson and Solomon [35] in
context of construction of generalized coherent states. More recently this
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formula was used in [36, 37] to describe singular values of random quantum
states, the construction of which involves the product of two random matri-
ces. Treating the sequence of Fuss–Catalan numbers as given, one can solve
the Hausdorff moment problem and find the corresponding probability dis-
tributions FCs(x). They can be written down explicitly [38] and represented
as a combination of the hypergeometric functions [39] of the type sFs−1 of
the same argument. For instance, the Fuss–Catalan distribution of order
three reads

FC3(x) =
1√

2πx3/4 3F2

(
− 1

12
,
1
4
,

7
12

;
1
2
,
3
4

;
27
256

x

)
− 1

4πx1/2 3F2

(
1
6
,
1
2
,
5
6

;
3
4
,
5
4

;
27
256

x

)
− 1

32
√

2πx1/4 3F2

(
5
12
,
3
4
,
13
12

;
5
4
,
3
2

;
27
256

x

)
. (10)

The support of the Fuss–Catalan distribution FCs(x) of order s is formed by
an interval [0, (s+ 1)s+1/ss] [32, 36]. Although this distribution was shown
first to describe asymptotic distribution of squared singular values of the
product of s independent Ginibre matrices, A = G1G2 · · ·Gs, the same law
describes asymptotically the distribution of squared singular values of the
s-th power of a square Ginibre matrix, A = Gs, [40].

Analyzing discrete time evolution of Hermitian density matrices in terms
of quantum maps one copes with evolution operators which can be repre-
sented by a real matrix [5]. In particular, superoperators associated with
random quantum maps [6] can be described [13] by real random matrices
of the Ginibre ensemble. These matrices can be formally defined by the
distribution (1) applied in the space of real matrices, so the argument of the
exponent can be written as TrAAT . To generate a random matrix pertain-
ing to this ensemble one takes N2 independent random Gaussian variables
of the same variance and forms out of them a non-symmetric square matrix.

Statistical properties of the real Ginibre ensemble are more complicated
to analyze [15, 16] than in the complex case. For instance, for the real
Ginibre ensemble the joint probability distribution of eigenvalues depends
explicitly on their imaginary parts, so the level density is not rotationally
invariant. In fact, there exists an accumulation of eigenvalues along the
real axis, which is compensated by the repulsion of complex eigenvalues in
vicinity of the real axis [15, 17]. However, the number of real eigenvalues of a
real random Ginibre matrix of size N scales as

√
N , so that the non-uniform

features of the spectrum can be neglected in the asymptotic limit N →∞.
Also the distribution of singular values of products of s real Ginibre matrices
can be described [37] by Fuss–Catalan distribution of order s, originally
applied [32] for products of complex Ginibre matrices.
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3. Random operations and their compositions

A quantum operation is a linear map, ρ → ρ′ = Ψ(ρ), which maps the
set of the density matrices into itself, so it preserves positivity and trace of
the input state ρ. Any quantum operation acting on a d-dimensional state
can be described by a unitary evolution U applied to an extended system
followed by the partial trace over the environment E ,

Ψ(ρ) = TrE
(
U(ρ⊗ |ν〉〈ν|)U †

)
. (11)

Here |ν〉 ∈ HM denotes the initially pure state of the environment, which is
assumed to be M dimensional, so the unitary matrix U of size Md acts on
the composite Hilbert space Hd ⊗HM .

If we reshape a density matrix ρ of size N into a vector of length d2, a
quantum operation can be represented by a d2 × d2 matrix called superop-
erator. It is convenient to represent a density operator ρ of size N by its
Bloch vector,

ρ =
d2−1∑
i=0

ai γ
i . (12)

Here γi denotes the set of d2 − 1 generators of the group SU(d), which
satisfy relations Tr

(
γiγj

)
= δij , while γ0 = 1/

√
N . As any density matrix

is Hermitian, ρ = ρ†, the components of the Bloch vector are real, ai ∈ R for
i = 0, . . . , d2 − 1. Thus the action of a quantum operation can be described
as an affine transformation on the Bloch vector ~a representing the quantum
state, ~a′ = C~a + ~κ, where C is a non-Hermitian distortion matrix of order
d2 − 1, while ~κ is a translation vector of length d2 − 1. Using the Bloch
vector representation one writes the superoperator Ψ as a real matrix,

Ψ =
[

1 0
~κ C

]
. (13)

The spectrum of the non-symmetric matrix C belongs to the complex plane.
Since the quantum operation Ψ preserves the trace of the density matrix,
TrΨ(ρ) = Tr(ρ) = 1, the spectrum of the superoperator belongs to the unit
disk.

Assuming that the matrix U ∈ U(Md) in (11) is taken randomly with
respect to the Haar measure one obtains a random quantum operation [6].
In such a case the spectrum of the associated one-step evolution operator
Ψ was shown to consist of a single eigenvalue equal to unity, corresponding
to the unique invariant state, and the remaining part localized in the disk
of radius R = 1/

√
M centered at the origin of the complex plane [13]. This

characterization becomes exact for a large system size d. Since the matrix C
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is real, the spectrum of Ψ is symmetric with respect to the real axis. As in
the case of the real Ginibre ensemble [15, 16, 17] there exists a clustering of
eigenvalues along the real axis, but this effect vanishes in the limit d→∞.

The number M , which determines the size of the disk of complex eigen-
values, equal to the dimension of the auxiliary subsystem E , can be thus
considered as a control parameter of the model describing the interaction of
the principal system with the environment. Technically, M determines the
rank of the Hermitian dynamical matrix [5], which describes the quantum
operation.

3.1. Spectral density of a random superoperator

We analyzed spectra of evolution operators corresponding to composi-
tions of random maps. Let Ψ = Ψs · · ·Ψ2 ◦ Ψ1, where all s random maps Ψj
are assumed to be independent. Figure 1 shows the spectra of such operators
for s = 1, 2 and s = 3 for maps acting on a quantum system of size d = 20.
To show the structure of the spectrum we magnified the scale accordingly,
letting the leading eigenvalue z1 = 1 to remain outside the plot. According
to the prediction of the Ginibre ensemble for s = 1 the distribution of the
spectrum is close to be uniform in the disk of radius R = 1/

√
M (apart of

the clustering of eigenvalues along the real axis), while its structure changes
for larger s.

Fig. 1. Superimposed spectra of 25 superoperators C of dimension d2−1 associated
with random maps acting on density operators of dimension d = 20 and obtained by
an interaction with an environment of size M = 20. The superoperators represent
(a) single random maps, s = 1; the composition of (b) s = 2 and (c) s = 3 random
maps. The disk of radius Rs = 1/

√
Ms (note the rescaling of both axes) denotes

the support predicted for the ensemble of random Ginibre matrices.

Consider first the simplest case, s = 2, in which two random opera-
tions (11) act successively. Assume that the first random operation Ψ1 is
due to the interaction with the environment E1 of dimension M1, while the
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second operation Ψ2 describes the interaction with the environment E2 of
dimension M2. The resulting dynamics takes place in a tri-partite system
described in the Hilbert space H = Hp⊗H1⊗H2. The first label p refers to
the principal system of dimension d, while the other subsystems are labeled
by the number of the environment E1 and E2.

After both operations the output state of the system, ρ′′ = Ψ2(ρ′) =
Ψ2[Ψ1(ρ)] can be obtained by a three-subsystem unitary evolution,

U = V2V1 = (Up2 ⊗1 11)(Up1 ⊗2 12) , (14)

followed by the partial trace over the collective environment E12 of dimension
M = M1M2. Note that the resulting unitary U does not have a product
structure, as the symbols ⊗ represent the tensor product with respect to
two different splittings of the Hilbert space, H = Hp1 ⊗2 H2 = Hp2 ⊗1 H1.

Fig. 2. Radial density of complex eigenvalues of superoperators associated with (a)
a single random map, s = 1 and a composition of (b) s = 2 and (c) s = 3 random
maps. Numerical data were obtained from a sample of 1000 superoperators of
dimension d2− 1 with d = 20. The dimensions of all auxiliary subspaces are equal,
M = 20. Solid lines represent predictions (5) for radial density for products of s
Ginibre matrices with the correction (6) due to the finite size effects. Best fit gives
the following values of the fitting parameter, (a) q ≈ 6 for s = 1, (b) q ≈ 7 for
s = 2, (c) q ≈ 68 for s = 3. Dashed vertical line represents the radius Rs of the
disk, which determines the support of the essential spectrum in the limit d→∞.
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It is natural to expect that in the case of two random operations, Ψ =
Ψ2 ◦ Ψ1, the resulting effect will be similar as the one caused by a single
interaction with the combined environment E12 of dimension M = M1M2.
This statement is equivalent to an assumption that the effect of the action of
the resulting unitary U of the structure (14) is statistically indistinguishable
from the effect due to a global random unitary matrix Up12 ∈ U(dM1M2)
followed by the partial trace over E12. Our numerical results confirm that
this approximation works fine, as it implies that the subleading eigenvalues
of the superoperator Ψ live in the disk of radius R = 1/

√
M = 1/

√
M1M2.

The same reasoning shows that in the case of a composition of s random
operations, in which all dimensions of the environments are equal, M1 =
M2 = · · · = Ms = M , the essential spectrum of the resulting superoperator
is asymptotically confined in the disk of radius Rs = Rs1 = 1/

√
M s. These

predictions describe well the spectra of the evolution operators associated
with the compositions of two and three random maps and presented in Fig. 1
in panels (b) and (c), respectively.

The radial distribution of complex eigenvalues collected of 1000 super-
imposed spectra are presented in densities in Fig. 2. Numerical results can
be described by the law (5) obtained in [26] for a product of s independent
random complex Ginibre matrices. To take into account the finite size effects
we used the ansatz (6) and fitted the parameter q.

3.2. Singular values of random superoperator

The distribution of squared singular values of a superoperator Ψ associ-
ated with a single random map or the composition of s of them was analyzed
numerically. The data obtained presented in Fig. 3 show a fair agreement
with the Fuss–Catalan distribution of order s, which describes properties of
a product of s complex Ginibre matrices [32].

3.3. Average entropies

To characterize the eigenvalue distribution P (λ) of the positive ma-
trix ΨΨ †/TrΨΨ † one studies the Shannon entropy of the spectrum, S =
−
∑d2−1

i=1 λi lnλi. We put aside the leading eigenvalue λ1 = 1 and renor-
malize the remaining d2 − 1 eigenvalues so that their sum is set to unity.
The mean entropy computed numerically for a sample of 1000 superoper-
ators Ψ representing random maps with parameters d = M = 20 reads
〈S〉Ψ ≈ −0.505. This value agrees with the asymptotic prediction for the
Wishart matrices, 〈S〉1 = −1

2 implied by the Marchenko–Pastur distribu-
tion (8). A similar agreement is obtained in the case s = 2, for which
the average entropy implied by the Fuss–Catalan distribution of order two
(9), 〈S〉2 = −5

6 ≈ −0.833 [36], while the numerical data give the average
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Fig. 3. Density of normalized squared singular values, xi = (d2−1)λi, of superoper-
ators corresponding to (a) a single random map, s = 1; a composition of (b) s = 2
and (c) s = 3 random maps obtained for d = 20 and M = 20. Numerical data
collected from a sample of 1000 random maps are compared with the corresponding
Fuss–Catalan distributions ((8), (9), (10)) represented by solid curves.

entropy 〈S〉Ψ ≈ −0.841. Numerical results for s = 3 provide the value
〈S〉Ψ ≈ −1.093, whereas the Fuss–Catalan distribution FC3(x) leads to
〈S〉3 = −13

12 ≈ −1.083.

4. Generalized quantum baker map
and s-step evolution operators

To investigate statistical properties of evolution operators associated
with deterministic quantum systems interacting with an environment we
shall concentrate on a model dynamical system, the classical analogues of
which is known to be chaotic. Following the work of Balazs and Voros [41]
we consider the unitary operator describing the one-step evolution of the
quantum baker map,

B = F †d

[
Fd/2 0

0 Fd/2

]
. (15)

Here Fd denotes the Fourier matrix of size d, namely [Fd]jk =
exp(ijk/2πd)/

√
d and it is assumed that the dimension d of the Hilbert

space Hd is even.
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The standard quantum baker map B may be generalized, if in the def-
inition of the unitary operator (15) the Fourier matrix Fd is replaced by a
two-parameter matrix F φ1,φ2

d ,[
F φ1,φ2

d

]
jk

=
1√
d

exp
[
i
(j + φ1)(k + φ2)

2πd

]
, (16)

see Appendix D in [42]. The choice of both phases in [0, 2π) does not influ-
ence the classical limit, equal to the classical baker map. Thus combining
Eq. (16) and (15) one obtains a two-parameter family of unitary quantum
model dynamical systems, which we denote by Bφ1,φ2 .

A certain variant of a non-unitary baker map introduced by Saraceno
and Vallejos is capable to describe a dissipative quantum system [43]. Here
we are going to investigate yet another model of non-unitary quantum baker
map introduced in [7, 44], which is deterministic, conserves the probability,
and is capable to describe projective measurements or a coupling with an
external subsystem. Such a non-unitary dynamics can be represented as a
quantum map and written in its Kraus form [5],

ρ′ = Φ(ρ) =
M∑
j=1

XjρX
†
j . (17)

For any trace preserving operation the set of M Kraus operators satisfies
the identity resolution,

∑M
j=1X

†
jXj = 1.

The parameter M is equal to the size of the environment coupled to the
principal system of the baker map. Alternatively, M can be interpreted as
the number of different outcomes of a measurement process. It is a free
parameter of the model, which describes the degree of the decoherence in
the system introduced by the non-unitary map (17).

The model of the classical baker map is chaotic and its dynamics can be
characterized by the dynamical entropy of Kolmogorov and Sinai HKS equal
to ln 2 [45]. To increase the degree of chaos one can simply take L iterations
of the classical system, for which the dynamical entropy reads L ln 2. This
corresponds, in the quantum model, to taking the L-th power of the unitary
evolution B given by (15), or its generalized version Bφ1,φ2 which involves
(16). Increasing the parameter L one increases the degree of chaos in the
classical model, and thus obtains unitary quantum operators the properties
of which are well described [46] by the Haar random matrices of the circular
unitary ensemble.
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In our model system we take the L-step unitary dynamics of the baker
map, BL, followed by the non-unitary interaction with the environment of
dimension M . In other words, the non-unitary map Φ given by (17) acts
only every L steps of the unitary evolution. The structure of the complete
evolution operator is presented schematically in Fig. 4.

Fig. 4. Sketch of the deterministic dynamical system — the generalized quantum
baker map ΦM,L — analyzed in this work: L steps of the unitary dynamics followed
by an interaction with anM -dimensional environment E described by the quantum
operation Φ1.

Thus the stochastic quantum baker map describing the non-unitary evo-
lution of the generalized quantum baker map [7, 44] reads

ΦM,L(ρ) =
M∑
j=1

Pj

[
BLρ(B†)L

]
P †j . (18)

It consists of M Kraus operators Pj , which act on the unitarily rotated
state BLρ(B†)L. It is assumed that the ratio K = d/M is integer, so one
can decompose the Hilbert space Hd into the direct sum of M mutually
orthogonal subspaces H(j), j = 1, . . . ,M , of dimension K each. Then the
Kraus operator Xj = PjB

L is a projector operator onto a K-dimensional
subspace H(j), so the sum

∑M
j=1X

†
jXj =

∑M
j=1Xj is equal to identity, as

required. Thus the parameter M in the non-unitary quantum baker map
studied in this section has a similar meaning that M parameterizing the
random maps: it describes the degree of the interaction of the principal
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system with the environment. Additionally, for each choice of the system
parameters (L,M) we may choose an pair of phases (φ1, φ2) which enter
(16) and define the quantum model. To obtain a better statistics we shall
superimpose spectra of superoperators obtained for fixed values of (L,M)
and various phases (φ1, φ2).

Figure 5 presents exemplary spectra of superoperators Φs of the gener-
alized quantum baker map for s = 1, 2, 3 obtained for fixed values of L = 20
and M = 10 and 60 pairs of phases (φ1, φ2). To display the structure of the
bulk of the spectrum the scale increases with the power s, so the leading
eigenvalue z1 = 1 is located outside the figure. Apart of a few real eigen-
values, located for outside the circle of radius Rs = M−s/2, the remaining
eigenvalues are located close to the disk predicted for products of random
matrices in the asymptotic limit d → ∞. The spectra are symmetric with
respect to the real axis and exhibit the clustering of eigenvalues along the
real axis combined with the repulsion of eigenvalues in the vicinity of this
axis. These effects, typical to the ensemble of real Ginibre matrices [15, 16],
vanish in the asymptotic limit, in which properties of products of complex
and real random matrices tend to coincide.

Fig. 5. Superimposed spectra of 60 superoperators of the generalized quantum
baker map acting on density operators of dimension d = 40 and characterized by
parameters L = 20 and M = 10. The superoperators represent (a) single baker
map (18), s = 1; the s-step propagator (ΦM,L)s for (b) s = 2 and (c) s = 3 time
steps. The disk of radius Rs = 1/

√
Ms (note the rescaling of both axes) denotes

the support predicted for the ensemble of random Ginibre matrices.

Figure 6 shows the radial density distribution P (r) for complex eigen-
values of superoperators of the generalized baker map Φs for s = 1, 2, 3.
The dynamical parameters of the model are fixed, d = 40, L = 20 and
M = 10, while to accumulate a necessary statistics we superimposed data of
100 superoperators obtained for different values of the phases (φ1, φ2). Note
that already for s = 1 the spectral properties of the superoperator Φ can be
described by the ensemble of random Ginibre matrices.
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Fig. 6. Radial density of complex eigenvalues of superoperators associated with
(a) one-step evolution operator for the baker map, s = 1 and the s-step propagators
for (b) s = 2 and (c) s = 3. Numerical data were obtained from a sample of 100
superoperators of the generalized quantum baker map acting on density operators
of dimension d = 40 and characterized by parameters L = 20 and M = 10. Solid
lines represent predictions (5) for radial density for products of s Ginibre matrices
with the correction (6) due to finite size effects. Best fit gives the following values
of the fitting parameter, (a) q ≈ 1.5 for s = 1, (b) q ≈ 1.5 for s = 2, (c) q ≈ 3.5 for
s = 3. Dashed vertical line represent the radius Rs of the disk, which determines
the support of the essential spectrum in the limit d→∞.

To analyze properties of superoperators associated with s-step prop-
agator of the generalized baker map, we analyzed also statistical prop-
erties of squared singular values of Φs equal to eigenvalues of a positive
operator Φs(Φ†)s. Using the Kraus decomposition of a superoperator [5],
Φ =

∑M
i=1Xi ⊗ X̄i we find that ΦΦ† =

∑M
i,j=1XiX

†
j ⊗ X̄iX

T
j . Since in

our model each Kraus operator is a projector rotated by the same unitary
matrix, Xi = PiU , the unitaries cancel out. The projections operators are
mutually orthogonal, PiPj = δijPj , so the above expression reduces to a sin-
gle sum, ΦΦ† =

∑M
j=1 Pj⊗Pj . Any operator Pi projects onto the subspace of

dimension K = d/M so the operator ΦΦ† = P , where P is a projector on a
space of dimension N ′ = M(d/M)2 = d2/M . Hence its spectrum consists of
N ′ eigenvalues equal to unity and remaining d2(1− 1/M) eigenvalues equal
to zero — see Fig 7(a).
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Consider now the case s = 2, in which we analyze the spectrum of
Φ2(Φ†)2. This operator can be written as ΦPΦ† = (ΦP )(ΦP )†. Hence the
singular values of Φ2 are equal to the singular values of a truncated matrix
ΦP . Thus the generic, non-zero eigenvalues of W2 = Φ2(Φ†)2/Tr[Φ2(Φ†)2]
will be described by the Marchenko–Pastur distribution — see Fig. 7(b).
In a similar way, the singular values of Φs are equal to the singular values
of a truncated matrix Φs−1P . Therefore, its squared singular values are de-
scribed by the Fuss–Catalan distribution of order s′ = s− 1. Although the
distributions FCs(x) are known to describe the asymptotic distribution of
squared singular values of a product of complex Ginibre matrices, they de-
scribe also statistical properties of (s−1)-step propagators of the generalized
baker map.

Fig. 7. Density of normalized positive squared singular values, xi = (d2/M − 1)λi,
of superoperators corresponding to (a) one step evolution operator of the baker
map, s = 1; the s-step propagators (ΦM,L)s for (b) s = 2, (c) s = 3, and (d)
s = 4 time steps (with the delta peak at x = 0 removed). Numerical data were
obtained from a sample of 70 superoperators of the generalized quantum baker map
acting on density operators of dimension d = 40 and characterized by parameters
L = 20 and M = 10. Densities are compared with the corresponding Fuss–Catalan
distributions of order s′ = s− 1, Eqs. (8), (9), (10), represented by solid curves.
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5. Concluding remarks

We analyzed complex spectra of superoperators associated to composi-
tions of s random maps. Statistical properties of the eigenvalues can be
described by products of random matrices from the Ginibre ensemble. Due
to the fact that a quantum map Ψ preserves hermicity of a quantum state
ρ, the superoperator Ψ can be described [13] by an ensemble of real Gini-
bre matrices, for which a clustering of the eigenvalues along the real axis
occurs [15]. However, for large system sizes these finite-size effects can be
neglected and the density of eigenvalues can be compared with predictions
obtained for products of complex Ginibre matrices. In particular, the radial
density P (r) of complex eigenvalues of the superoperator associated with
the composition s random maps can be described by the algebraic law of
Burda et al. [26, 29], while the distribution of the squared singular values
of the superoperator (i.e. the eigenvalues of the positive matrix ΨΨ †) are
described by the Fuss–Catalan distributions of order s [32, 36, 37, 38].

Our numerical results support the conjecture that the distribution of
eigenvalues of a product of s independent random Ginibre matrices, G1G2 . . .
Gs, obtained in [29, 30], describe also the spectrum of s-th power Gs of a
given random Ginibre matrix G. This observation encouraged us to compare
statistical properties of s-step propagators of non-unitary quantum dynam-
ical systems with the predictions of random matrices. Under the condition
of strong classical chaos and sufficiently large coupling with the environ-
ment the corresponding one-step evolution operators can be described by
the ensemble of real Ginibre matrices [13].

Investigating a generalized version of a model dynamical system — the
quantum baker map interacting with an environment — we demonstrate that
statistical properties of complex eigenvalues of s-step evolution operators as-
sociated with such deterministic dynamical systems agree with predictions
obtained for products of random Ginibre matrices. For the dynamical sys-
tem investigated the operator ΦΦ† is a projection operator with spectrum
containing {0, 1}, so it cannot be described by random matrices. However,
for a larger number s of the time steps, the squared singular values of Φs
can be described by the Fuss–Catalan distribution of order s′ = s− 1 char-
acteristic to the s′-th power of random matrices.

Thus products of random non-Hermitian matrices, used to describe ma-
trix valued diffusion [20] or random density operators [36, 37], can also be ap-
plied to characterize statistical properties of multi-step evolution operators
corresponding to generic quantum dynamical systems strongly interacting
with an environment.
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