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We briefly review the solution of three ensembles of non-Hermitian ran-
dom matrices generalizing the Wishart–Laguerre (also called chiral) ensem-
bles. These generalizations are realized as Gaussian two-matrix models,
where the complex eigenvalues of the product of the two independent rect-
angular matrices are sought, with the matrix elements of both matrices
being either real, complex or quaternion real. We also present the more
general case depending on a non-Hermiticity parameter, that allows us to
interpolate between the corresponding three Hermitian Wishart ensembles
with real eigenvalues and the maximally non-Hermitian case. All three
symmetry classes are explicitly solved for finite matrix size N ×M for all
complex eigenvalue correlations functions (and real or mixed correlations
for real matrix elements). These are given in terms of the corresponding
kernels built from orthogonal or skew-orthogonal Laguerre polynomials in
the complex plane. We then present the corresponding three Bessel kernels
in the complex plane in the microscopic large-N scaling limit at the origin,
both at weak and strong non-Hermiticity with M −N ≥ 0 fixed.
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1. Introduction and motivation

The Wishart ensemble was the first ensemble of random matrices, in-
troduced in the study of randomized rectangular times series matrices C in
order to study the spectral properties of its symmetric and positive covari-
ance matrix CTC. Later the Wigner–Dyson ensembles were formulated as
models for randomized Hamiltonians H of heavy nuclei to explain some of
the spectral properties of the matrixH which is Hermitian (or real symmetric
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or quaternion self dual). Its non-Hermitian generalizations were introduced
and studied immediately after by Ginibre [1], but not so for the Wishart
ensembles which had to wait a few decades.

In order to construct such a generalization it is useful to compare to
the Ginibre ensembles and to think of them as a two-matrix problem. By
dropping the Hermiticity constraint an independent anti-Hermitian matrix
A is added to the Hermitian matrix H, and the now complex eigenvalues of
the sum H +A of the two are studied. How can one repeat this for Wishart
matrices, where the matrix C is already without symmetry? Again one can
introduce a second independent random matrix D, and study this time the
complex spectrum of the product DC, where D is no longer the transpose
(or Hermitian conjugate) of the first matrix, C† 6= D, but has the same
rectangular dimension.

Interestingly the solution of this two-matrix problem did not grow out
of statistical applications, where the problem has appeared in terms of so-
called time lagged, asymmetric covariance matrices e.g. in [2, 3, 4]. Non-
Hermitian Wishart ensembles also appeared naturally as the described two-
matrix problem in the study of the Dirac operator spectrum of Quantum
Chromodynamics (QCD) with chemical potential µ. Here the ensemble with
complex (β = 2) [5], quaternion real (β = 4) [6], and real (β = 1) [7, 8] ma-
trix elements were first introduced and solved for finite and infinite matrix
dimensions by Osborn, the author and his coworkers, respectively. In partic-
ular, this includes the generalization of the Bessel kernels in the microscopic
origin scaling limit into the complex plane for all three ensembles. We refer
to [9] for the most recent review on the topic of random matrix applications
to QCD. Because the solution of these three ensembles can be expressed
in terms of Laguerre polynomials in the complex plane, and because these
ensembles display chiral symmetry (see e.g. [9]) they are also called non-
Hermitian (or complex) Laguerre or chiral ensembles. The link to statistical
applications of non-Hermitian Wishart ensembles was reemphasized more
recently in [10]. Here and independently in [11] the spectral density gen-
eralizing the Marchenko–Pastur distribution into the complex plane was
computed. In [11] the product of having also more than two rectangular
matrices was considered.

The two-matrix models constructed and solved for applications to QCD
are much more general, for two reasons. First, they depend on a non-
Hermiticity parameter (the chemical potential µ) that allows to smoothly
deform the Hermitian Wishart (–Laguerre or chiral) ensembles into the max-
imally non-Hermitian Wishart ensembles of two independent matrices de-
scribed above. In the Ginibre ensembles these deformations also exist and
are called elliptic, or Ginibre–Girko ensembles. The parameter µ allows to
study deformations of the kernels known to be universal from the Hermi-
tian setting. Second, more source terms were added to these parameter
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dependent two-matrix models, by inserting an arbitrary but fixed number
of characteristic polynomials (as additional determinants of the Dirac oper-
ator) into the measure. All complex eigenvalue correlation functions were
computed in this more general setting in [5,12] for β = 2, in [6,13] for β = 4
and in [14, 15] for β = 1. We also mention that the β = 1 symmetry class
at maximal non-Hermiticity appears in the superconducting phase of QCD
with two colours [16]. In this short presentation we will focus on the first
aspect, the dependence on the non-Hermiticity parameter and recall the full
solution in terms of (skew) orthogonal polynomials in the complex plane.
The additional characteristic polynomials can then be easily implemented
by modifying the corresponding kernels (see e.g. in [12, 14]).

Finally, we would like to mention some related developments in non-
Hermitian random matrices. First of all non-Hermitian generalizations of
Wishart ensembles were first considered as one-matrix models [17,18] where
the non-Hermiticity is provided by a constant matrix shift. These models
are much more difficult to be solved in general, and only the microscopic
density for β = 2 was determined in [19].

Instead of considering the complex eigenvalues of the product of two ma-
trices, in [20] those of the ratio of two matrices were studied, which relate to
a Cauchy distribution. When generalizing from one to two Wishart matrices,
one can also consider the positive Hermitian (real symmetric) combination
(DC)†DC, as was done in for instance in [21], including more matrices.
Again this generalizes the Marchenko–Pastur density, this times for real
eigenvalues, finding generating functions relevant in combinatorics. More
generally speaking, spectral properties of the product of quadratic random
matrices — Hermitian or non-Hermitian — have been studied by several au-
thors in the literature, and we refer to [22] as well as to the contribution [23]
to these proceedings and references therein. The three Ginibre ensembles,
and the three non-Hermitian Wishart ensembles reviewed here are not the
only possible non-Hermitian random matrices one can consider. For an or-
dering principle we refer to [24, 25] which include these 6 classes out of 33
non-Hermitian ones. For recent reviews on non-Hermitian random matrices
we refer to [26,27].

This review is organized as follows. In Sect. 2 we recall the definition
of generalized non-Hermitian Wishart ensembles, discuss their relation to
standard Wishart ensembles and give their complex eigenvalues representa-
tions. Sect. 3 gives a list of the three sets of (skew) orthogonal Laguerre
polynomials in the complex plane and their kernels that allows to compute
all complex (and real) eigenvalue correlation functions. The large-N limit is
sketched in Sect. 4, starting with the elliptic law for the Dirac eigenvalues
and then listing the three Bessel kernels in the microscopic origin limit at
weak and strong non-Hermiticity. A short discussion on universality follows
in Sect. 5.
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2. Complex eigenvalue representation of the partition function

We begin by recalling the definition of the standard Wishart ensembles
we wish to generalize. Its partition function is given by

Z
(β)
N, ν ∼

∫
dC exp

[
−N

2
Tr
(
C†C

)]
, (2.1)

where C is a rectangular matrix of size N × (N + ν) with real (β = 1),
complex (β = 2) or quaternion real (β = 4) matrix element without further
symmetry. When going to a real eigenvalue basis for these ensembles there
are two choices1. Either we can consider the N positive eigenvalues λi of
the positive Hermitian matrix C†C, which we will call Wishart eigenvalues
(or Wishart picture). Or we can consider the 2N + ν eigenvalues xi of

the Dirac matrix /D =
(

0N C
C† 0N+ν

)
which we call Dirac eigenvalues (or

Dirac picture). When comparing the two characteristic equations,

det
[
λ− C†C

]
=

N∏
i=1

(λ−λi) , vs. det[λ− /D] = λν
N∏
i=1

(
λ2 − x2

i

)
, (2.2)

it is clear that we have ν zero- and 2N non-zero Dirac eigenvalues that come
in ± pairs. The simple substitution λi = x2

i will lead us from one picture
to the other for the non-zero eigenvalues. When computing the standard
Jacobian for the diagonalization we obtain the partition function in terms
of eigenvalues as follows

Z
(β)
N, ν ∼

∞∫
0

N∏
i=1

dλiλ
β
2
(ν+1)−1

i e−Nλi |∆N ({λj})|β

∼
∞∫
−∞

N∏
i=1

dxi|xi|β(ν+1)−1e−Nx
2
i
∣∣∆N

({
x2
j

})∣∣β . (2.3)

It is given in both the Wishart and Dirac picture, and we have defined the
Vandermonde determinant as

∆N ({λj}) ≡
∏

N≥k>l≥1

(λk − λl) = det
1≤k,l≤N

[
λl−1
k

]
. (2.4)

1 We note in passing that on the level of matrix elements Eq. (2.1) is identical to the
Ginibre ensembles for ν = 0. The difference is that there the complex eigenvalues of
the matrix C are studied.



Non-Hermitian Extensions of Wishart Random Matrix Ensembles 905

Let us now turn to the non-Hermitian generalization. As sketched in
the introduction we consider a Gaussian two-matrix model and compute the
spectral properties of the non-Hermitian matrix DC

Z(β)
N, ν ∼

∫
dCdD exp

[
−N

2
Tr
(
C†C +D†D

)]
. (2.5)

Both C andD† are rectangular matrices of sizeN×(N+ν) with real (β = 1),
complex (β = 2) or quaternion real (β = 4) matrix elements without further
symmetry. Instead of the N complex eigenvalues vi of the product matrix
DC we may again consider the spectrum of the non-Hermitan Dirac matrix

/D =
(

0N C
D 0N+ν

)
instead. Here the ensemble (β = 1) has a special

feature. The characteristic equation of the real asymmetric matrix DC
remains real. Therefore, the solutions of det[λ − DC] =

∏N
i=1(λ − vi) are

either real, or occur in complex conjugate pairs. For the non-zero complex
Dirac eigenvalues zi we thus get 3 different possibilities listed in Table I.

TABLE I

Non-zero complex eigenvalues for real matrix elements β = 1.

Wishart picture Dirac picture
(a) vj > 0 real ±zj ∈ R, z2

j = vj
(b) vj < 0 real ±zj ∈ iR, z2

j = vj

(c) vj , v
∗
j complex conjugate pair ±zj ,±z∗j ∈ C, 2 pairs z2 (∗)

j = v
(∗)
j

In the following we will solve a more general non-Hermitian extension of
the Wishart ensembles than Eq. (2.5). We add a non-Hermiticity parameter
µ ∈ [0, 1] that allows to interpolate between the Wishart ensemble Eq. (2.1)
for µ = 0 and its generalization Eq. (2.5) for µ = 1 which we call maximally
non-Hermitian. The partition function is defined as

Z(β)
N, ν(µ; {mf}) ∼

∫
dCdD exp

[
−Nη+ Tr

(
C†C +DD†

)]
× exp

[
−Nη−Tr

(
DC + C†D†

)] Nf∏
f=1

det[12N+νmf + /D] , (2.6)

η± ≡
1± µ2

4µ2
. (2.7)

In the second line we have added a product of characteristic polynomials
to the weight function, these are called Nf quark flavors in the language
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of QCD. All complex (and real for β = 1) eigenvalue correlation functions
as well as the partition functions are known in the presence of these terms,
see [5, 12, 6, 13, 7, 14, 15, 28]. For simplicity we will mainly restrict ourselves
to the so-called quenched case Nf = 0 in the following, although Nf 6= 0
is particularly interesting for the QCD application as it may lead to a non-
positive overall weight, the so-called sign problem. For more discussion we
refer to these references, as well as to [9].

The fact that the ensembles Eq. (2.6) indeed extrapolate between the
maximally non-Hermitian and Hermitian Wishart ensembles can be seen as
follows. The change of variables

C ≡ Φ + iµΨ , D ≡ Φ† + iµΨ † (2.8)

leads to uncoupled Gaussian weights in the matrices Φ and Ψ (see e.g. [5]).
For µ = 1 this change of variables is trivial and we are back to Eq. (2.5).
Aspects of this simpler model at µ = 1 were also treated in [7, 16, 11, 10].
For µ = 0, D = C†, and so /D becomes Hermitian and independent of Ψ
which thus decouples, to give the standard Wishart ensembles Eq. (2.1) in
terms of matrix Φ. For completeness and later use we also state the elliptic
extension of the Ginibre ensembles corresponding to Eq. (2.6) (at Nf = 0)

Z(β)
N,Gin(µ) ∼

∫
dJ exp

[
−Na

{
η+ Tr

(
JJ†

)
− η−Tr

(
J2 + J† 2

)}]
,(2.9)

where J 6= J† is anN×N non-Hermitian matrix. In [29] we have a = (1+v2)
and τ = (1− v2)/(1 + v2).

Let us now turn to the complex eigenvalue representation of Eq. (2.6),
defining the joint probability distribution

Z(β)
N, ν(µ) ≡

∫
C

N∏
j=1

d2zjP(β)
N, ν({z}) . (2.10)

Here we present the Wishart picture only. For the complex and quaternion
real case we obtain

Z(β=2)
N, ν (µ) =

∫
C

N∏
j=1

d2zjw
(β=2)
ν (zj)|∆N ({z})|2 , (2.11)

Z(β=4)
N, ν (µ) =

∫
C

N∏
j=1

d2zjw
(β=4)
ν (zj)

(
zj − z∗j

)
∆2N ({z, z∗}) , (2.12)

where we have defined the weight function

w(β)
ν (z) ≡ |z|

β
2
νKβ ν/2 (2Nη+|z|) exp [Nη−(z + z∗)] . (2.13)
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The appearance of the Bessel-K function can be understood as follows, just
considering scalar variables. While the sum of two random variables (the real
and imaginary part) is again Gaussian — this corresponds to the Ginibre
case — here we consider the product of two Gaussian random variables,
which is distributed with respect to Bessel-K0, as one can easily convince
oneself.

For more details of the derivation of the Jacobians we refer to [5, 6].
Note that for β = 4 the Jacobian is different from |∆N ({z})|4 as one would
expect for a standard Dyson-gas [27]. For an interpretation in terms of
charged particles we refer to [30]. Very recently an alternative derivation of
the Jacobian for β = 2 has been presented in [10].

In the third and most difficult ensemble β = 1 with rectangular real
matrices one has, in principle, to sum over all possible combinations of com-
plex conjugate and real eigenvalues (and purely imaginary ones in the Dirac
picture) [8]. We only quote the result for the partition function of [14] where
a factorized form was shown, reading as follows

Z(β=1)
N=2n+χν(µ) =

∫
R

dyχ hχ(y)
2n∏
k=1

∫
C

d 2zk

n∏
j=1

Fν(z2j−1, z2j) ∆χ+2n(y, {z}) .

(2.14)
The anti-symmetric weight function is defined as

Fν(z1, z2) ≡ igν(z1, z2)(Θ(=m z1)−Θ(=m z2)) δ2(z2 − z∗1)
+1

2hν(z1)hν(z2)δ(=m z1)δ(=m z2)sgn(<e z2 −<e z1) . (2.15)

It is given in terms of the following two weights for real and complex eigen-
values respectively

hν(x) ≡ 2|x|ν/2Kν/2(2Nη+|x|) exp[2Nη−x] , (2.16)

gν(z1, z2) ≡ 2|z1z2|ν/2 exp[2Nη−(z1 + z2)]

∞∫
0

dt

t
e−4N2η2

+t(z
2
1+z22)− 1

4t

×Kν/2

(
8N2η2

+tz1z2
)
erfc

(
2Nη+

√
t|z2 − z1|

)
.

These two weights are related by

lim
=mz→0

gν(z, z∗) = hν(<e z)2 . (2.17)

While both contain parts of the weight function Eq. (2.13) with β = 1 there,
in particular the weight for complex eigenvalues is more complicated here.
In Eq. (2.14) valid for both even and odd N = 2n + χ, n ∈ N the notation
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indexed by χ means that for even (odd) N with χ = 0 (1) the additional
integration over the real eigenvalue y is absent (present). The fact that an
absolute value around the Vandermonde determinant is absent here is due to
the ordering enforced by the weight F in terms of the sign- and Θ-functions.
For details on the computation of the Jacobian we refer to [8, 28].

3. Correlation functions at finite N : (skew) orthogonal Laguerre
polynomials in the complex plane

We now turn to the computation of complex (and real) eigenvalue cor-
relations functions. The k-point density correlation functions are defined
as

R
(β)
N (z1, . . . , zk) ≡

N !
(N − k)!

1

Z(β)
N, ν(µ)

∫
C

N∏
j=k+1

d2zjP(β)
N, ν({z}) . (3.1)

The map to the density correlations of Dirac eigenvalues (/D) is then given
by

R

“
β, /D

”
N (z1, . . . , zk) = 22k

k∏
j=1

|zj |2 R(β)
N

(
z2
1 , . . . , z

2
k

)
. (3.2)

For all three ensembles these can be solved in terms of a kernel defined in
term of Laguerre polynomials in the complex plane as we will show now.
Analogous results hold for the Ginibre ensembles with β = 2, 4 and 1 in
terms of Hermite polynomials in the complex plane as shown in [29, 31, 32],
respectively. The case β = 1 is again special as the k-point function will
consist of a sum of all possibilities of real and complex conjugate eigenvalue
pairs of a total number k (see e.g. [8]). Other correlation functions can be
defined and computed in these ensembles as well, such as gap probabilities
where we refer to [33] for more details.

For β = 2 the k-point correlation functions can be solved in terms of the
kernel of orthogonal polynomials, in complete analogy to the Hermitian case

R
(β=2)
N (z1, . . . , zk) =

k∏
l=1

w(β=2)
ν (zl) det

1≤i,j≤k

[
K(β=2)
N (zi, zj)

]
. (3.3)

For the weight Eq. (2.13) is given through the orthonormalized Laguerre
polynomials in the complex plane [5, 12]

K(β=2)
N (z, u) =

N−1∑
k=0

(
η−
η+

)2k Nν+2k!
π(1 + µ2)ν(k + ν)!

Lνk

(
Nz

4µ2η−

)
Lνk

(
Nu∗

4µ2η−

)
.

(3.4)
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The Laguerre polynomials satisfy the following general orthogonality relation∫
C

dz2|z|νKν (a|z|) exp
[
b
2(z + z∗)

]
Lνj (cz)Lνk (cz∗) = h

(2)
j δjk , (3.5)

for a > b > 0 with c ≡ (a2 − b2)/(2b). The squared norms read

h
(2)
j =

π(j + ν)!
a j!

(a
b

)2j
(

2a
a2 − b2

)ν+1

. (3.6)

A short proof for this relation stated in [5] can be found in Proposition
1 in [34] (see also Appendix A of [6] for an earlier proof). The simplest
example for a correlation function is the spectral density

R
(β=2)
N (z) = w(β=2)

ν (z) K(β=2)
N (z, z∗) , (3.7)

with the kernel from Eq. (3.4), see Fig. 1. At maximal non-Hermiticity µ = 1
it reduces to an incomplete Bessel-I function times the Bessel-K from the
weight [33]

R
(β=2)
N (z1)

∣∣∣
µ=1

= Kν(N |z|)
N−1∑
l=0

N2

π(l + ν)!l!

(
N |z|

2

)2l+ν

. (3.8)

For more details about correlations functions including Nf characteristic
polynomials we refer to [5, 12].

Fig. 1. The Dirac spectral density R
(β=2, /D)

N (z) for β = 2 from Eq. (3.7) for
N = 10, µ = 0.7 and ν = 0 (left), and ν = 1 (right). The extra repulsion from the
origin through the zero-eigenvalue ν = 1 is clearly visible. In the large-N limit the
detailed structure at the origin will only be visible on a microscopic scale.
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For β = 4 the k-point correlation functions are given by

R
(β=4)
N (z1, . . . , zk) =

k∏
l=1

w(β=4)
ν (zl)(z∗l − zl) Pfi,j=1,...,2k

[
K(β=4)
N (ui, uj)

]
,

(3.9)
where the arguments of the antisymmetric kernel

K(β=4)
N (z1, z∗2) ≡

N−1∑
k=0

1

h
(4)
k

(
q
(β=4)
2k+1 (z1)q

(β=4)
2k (z∗2)− q

(β=4)
2k+1 (z∗2)q

(β=4)
2k (z1)

)
(3.10)

run through the set of 2k variables {uj} = {z1, z∗1 , . . . , zk, z∗k}, and the Pfaf-
fian of an antisymmetric matric of size 2k is given by the square root of
the determinant of the matrix. The polynomials inside the kernel are given
by [6]

q
(β=4)
2k+1 (z) = −(2k + 1)!

(
4µ2η−
N

)2k+1

L2ν
2k+1

(
Nz

4µ2η−

)
,

q
(β=4)
2k (z) =

(
8µ2η+

N

)2k k∑
j=0

(
η−
η+

)2j k! (k + ν)!(2j)!
22jj! (j + ν)!

L2ν
2j

(
Nz

4µ2η−

)
, (3.11)

with squared norms

h
(4)
k = 8πµ4(2k + 1)! (2k + 2ν + 1)!

(1 + µ2)4k+2ν

N4k+2ν+4
. (3.12)

They enjoy the following skew orthogonality conditions〈
q
(4)
2k+1|q

(4)
2l

〉
4

= −
〈
q
(4)
2l |q

(4)
2k+1

〉
4

= h
(4)
k δkl ,〈

q
(4)
2k+1|q

(4)
2l+1

〉
4

=
〈
q
(4)
2l |q

(4)
2k

〉
4

= 0 , (3.13)

with respect to the following skew-product

〈h|g〉β=4 ≡
∫
d2z w(β=4)

ν (z) (z∗ − z)[h(z)g(z)∗ − h(z)∗g(z)] . (3.14)

Hence they are called skew orthogonal Laguerre polynomials in the complex
plane. Again we give the simplest example, the spectral density plotted in
Fig. 2

R
(β=4)
N (z) = w(β=4)

ν (z)(z∗ − z)K(β=4)
N (z, z∗) , (3.15)

obtained by inserting the kernel Eq. (3.10). At maximal non-Hermiticity it
reduces to [6]
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R
(β=4)
N (z)

∣∣∣
µ=1

= |z|2νK2ν(N |z|)(z∗ − z)
N2ν+2

π22ν+3

×
N−1∑
k=0

k∑
j=0

k!(k + ν)!
(
z2k+1z∗ 2j − z2jz∗ 2k+1

)
(2k + 2ν + 1)!(2k + 1)!24jj!(j + ν)!

. (3.16)

Fig. 2. The Dirac spectral density R
(β=4, /D)

N (z) for β = 4 from Eq. (3.15) for
N = 20, µ = 0.7 and ν = 0 (left) and ν = 1 (right). In order to see a smoother
plateau we have increased N here. The extra repulsion from the origin for ν = 1
is less pronounced here compared to β = 2.

Because of the prefactor the density vanishes identically along the real
line, or after mapping to Dirac eigenvalues along the real and imaginary axis.
For results for the correlation functions, including Nf pairwise degenerate
and non-degenerate flavors, we refer to [6] and [13] respectively.

For β = 1 we will only give the results for the k-point correlation func-
tions for even N = 2n. They are given by [8]

R
(β=1)
N (z1, . . . , zk) = Pf

[
KN (zi, zj) −GN (zi, zj)
GN (zj , zi) −WN (zi, zj)

]
1≤i,j≤k

. (3.17)

In addition to the antisymmetric weight Eq. (2.15) we have introduced the
following two functions of two complex variables

GN (z1, z2) = −
∫
C

d2zK(β=1)
N (z1, z)Fν(z, z2) ,

WN (z1, z2) = −Fν(z1, z2) +
∫
C

d2z

∫
C

d2z′Fν(z1, z)K(β=1)
N (z, z′)Fν(z′, z2) .

(3.18)
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These are given in terms of the integrals of the antisymmetric kernel [7]

K(β=1)
N (z1, z2) =

η−N
ν

4π(8µ2η+)ν+1

N−2∑
j=0

(
η−
η+

)2j (j + 1)!
(j + ν)!

×
{
Lνj+1

(
Nz2

8µ2η−

)
Lνj

(
Nz1

8µ2η−

)
− (z1 ↔ z2)

}
. (3.19)

For odd N the corresponding results can be obtained, for example, by the
limiting procedure proposed in [35], or by following [36].

The above kernel can be expressed in terms of the following skew orthog-
onal polynomials [14]

q
(β=1)
2k (z) = +Cν2k(z),

q
(β=1)
2k+1 (z) = −Cν2k+1(z) +N−2

(
1 + µ2

)2 (2k)(2k + ν)Cν2k−1(z) + c′Cν2k(z) ,
(3.20)

giving the skew-orthogonal Laguerre polynomials up to an arbitrary constant
c′. Here we have defined

Cνk (z) ≡
(

8µ2η−
N

)k
k!Lνk

(
Nz

8µ2η−

)
. (3.21)

The corresponding skew-product is defined as

〈f |g〉β=1 = −〈g|f〉β=1 ≡
∫
d 2z1 d

2z2 Fν(z1, z2) det
[
f(z1) g(z1)
f(z2) g(z2)

]
,

(3.22)
for two functions f(z) and g(z) that are integrable with respect to the weight
functions contained in Fν(z1, z2) Eq. (2.15). Our skew-orthogonal polyno-
mials defined above then satisfy〈

q
(1)
2k |q

(1)
2l+1

〉
1

= −
〈
q
(1)
2l+1|q

(1)
2k+1

〉
1

= h
(1)
k δkl ,〈

q
(1)
2k |q

(1)
2l

〉
1

=
〈
q
(1)
2k+1|q

(1)
2l+1

〉
1

= 0 ∀k, l ≥ 0 , (3.23)

where the h(1)
k > 0 are their positive (squared skew) norms

h
(1)
k ≡ 8π

(
4µ2
)
(2k)! (2k + ν)!

(
8µ2η+/N

)4k+ν+1
. (3.24)

The kernel is then reading

K(β=1)
N=2n(z1, z2) =

n−1∑
k=0

1

h
(1)
k

(
q
(1)
2k+1(z1)q

(1)
2k (z2)− q(1)

2k+1(z2)q
(1)
2k (z1)

)
, (3.25)

leading to Eq. (3.19).



Non-Hermitian Extensions of Wishart Random Matrix Ensembles 913

As already mentioned the k-point function in Eq. (3.1) is the sum of all
possible combinations of complex and real eigenvalues, starting from only
complex to only real eigenvalues. For example, for the spectral density
plotted in Fig. 3 we have [8]

R
(1)
N (z) =

∫
C

d2z′Kβ=1
N (z′, z)F (z, z′) ≡ R(1)

N,C(z) + δ(y)R(1)
N,R(x) . (3.26)

Here we explicitly give the result obtained after inserting the kernel (3.19)
and integrating with respect to the two different weights, Eq. (2.16). De-
noting z = x+ iy we get in terms of the kernel from Eq. (3.19)

R
(1)
N,C(z) = −2i(N |z|)νe2Nη−xsgn(y)K(1)

N (z, z∗)2

∞∫
0

dt

t
e−2N2η2

+t(x2−y2)− 1
4t

×K ν
2

(
2N2η2

+t
(
x2 + y2

))
erfc

(
2Nη+

√
t|y|
)
, (3.27)

R
(1)
N,R(x) = 4Nν

∞∫
−∞

dx′sgn(x− x′) |xx′|
ν
2 eNη−(x+x′)K ν

2
(Nη+|x|)

×K ν
2
(Nη+|x′|)K(1)

N (x, x′) . (3.28)

Fig. 3. For β = 1 we show two Dirac spectral densities: R
(β=1, /D)

N,C (z) for the

complex eigenvalues, and R(β=1, /D)

N,(i)R (z = x) (iy) for the real (or purely imaginary)
eigenvalues from Eqs. (3.27) and (3.28). The parameter values are the same as
for β = 4 in Fig. 2. It is clearly visible that the density of complex eigenvalues is
repelled from the real and imaginary axis as for β = 4, with an apparently different
profile though.
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At maximal non-Hermiticity the kernel Eq. (3.19) considerably simpli-
fies [7]

K(1)
N (z, z∗)

∣∣∣
µ=1

=
1
4π

(
N

4

)ν+1

(z∗ − z)
N−2∑
l=0

1
l! (l + ν)!

(
N |z|

2

)2l

. (3.29)

Finally, in the map to the Dirac picture one has to distinguish between
substituting complex or real eigenvalues. For the densities we have

R
(1 /D)

N,C (z) = 4|z|2R(1)
N,C

(
z2
)
, (3.30)

R
(1, /D)
N,R (x) = 2|x|R(1)

N,R
(
x2
)
, (3.31)

and analogous relations hold for higher k-point functions.

4. The large-N limit: 3 classes of complex Bessel kernels

In this section we will review aspects of the large-N limit for non-
Hermitian Wishart random matrices. Because the eigenvalues live in the
complex plane we have more possibilities in taking the large-N limit, de-
pending on the location in the spectrum. In order to illustrate where such
regions are located in the complex plane, we first display the so-called macro-
scopic (or global) limit of the spectral density. As one can see from plotting
the density at finite-N for all three β = 1, 2, 4 in the Dirac picture in Figs. 1
to 3, the global spectral density follows the elliptic law [37] as their Ginibre
counterparts. On top of being constant on an ellipse, various inner and outer
edges exist when zooming into particular regions. This is in contrast to the
real density of Wishart matrices where one can only distinguish the (soft)
edge, the bulk and the origin (or hard edge) region.

In addition to the location of the spectrum, two different large-N lim-
its have to be distinguished for complex eigenvalues, that of strong and
weak non-Hermiticity [38]. While in the former the eigenvalues fill a two-
dimensional support, in the latter they only locally extend into the complex
plane. The weakly non-Hermitian limit turns out to be a one-parameter
deformation both of the Hermitian and the strongly non-Hermitian limit.
This makes it an ideal object to study the question of universality.

In the following we will focus on the microscopic limit at the origin,
as this is a special feature of Wishart ensembles that their corresponding
Ginibre counterparts cannot offer.

We begin once more by recalling the results for the macroscopic spectral
density in Hermitian Wishart ensembles. Here two cases have to be distin-
guished. Taking the large-N limit with ν=O(N), such that c≡N/(N+ν)<1
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one obtains the Marchenko–Pastur distribution [39] for the positive Wishart
eigenvalues for all three values of β

ρ(β,MP)(λ) =
1

2πcλ

√
(λ− cX−)(cX+ − λ) , X± ≡

√
c−1/2 ± 1 (4.1)

on λ ∈ [cX−, cX+] and zero outside. For asymptotically square matrices
with ν = O(1) at large-N (leading to c = 1) it reduces to

ρ(β,MP)(λ) =
1
2π

√
4
λ
− 1 ⇒ ρ(β,/D)(λ) = 2|λ|ρ(β,MP)

(
λ2
)

=
1
π

√
4− λ2

(4.2)
which is just the semi-circle after mapping to the Dirac picture. While in the
Wishart picture we have a square root singularity at the origin, the density
in the Dirac picture is regular at the origin.

The same phenomenon happens in the complex plane. The semi-circle
density becomes replaced by the elliptic law, a constant density of an el-
lipse [37], which we state for the elliptic Ginibre ensemble Eq. (2.9) (see
e.g. [29]) in variables z = x+ iy

ρ(Gin)(z) =

(
1 + v2

)2
4πv2

for
x2

4
(
1 + v2

)2 +
y2

4v2

(
1 + v2

)2 ≤ 1 , (4.3)

and zero outside. Away from the origin the mean spectral density of our
three non-Hermitian Wishart ensembles is constant on an ellipse in the Dirac
picture, just as its non-chiral counter parts. This can be seen in Figs. 1–
3 where we plot the corresponding spectral densities after mapping to the
Dirac picture according to Eq. (3.30) (and Eq. (3.31) for β = 1).

When mapping back to the Wishart picture using Eq. (3.30) we obtain
a linear decay inside the support, as was observed in [10,11]

ρ

“
β, /D

”
(z) ∼ const. ⇒ ρ(β)(z) ∼ const.

|z|
. (4.4)

Likewise the behavior at the origin that was found to be constant for ν > 0
and logarithmically divergent ∼ log |z| for ν = 0 in the Wishart picture [10]
gets bent to zero in the Dirac picture using the map Eq. (3.30), as can bee
seen in the figures for all three β and the values of ν = 0, 1.

In addition, in [10, 11] the limit ν = O(N), for finite q ≡ ν/N > 0 was
performed for β = 2 at µ = 1, leading to the density

ρ(β=2)(z) =
1

4π
√
|z|2 + q2

, (4.5)
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on the support which we give in the Wishart picture here. This is the gen-
eralization of the Marchenko–Pastur distribution Eq. (4.1) into the complex
plane.

Let us now turn to the microscopic large-N limit. As can be seen from the
figures several regions could be investigated by zooming into the outer edges
or inner edges along the axes. However, in the following we will restrict
ourselves to the microscopic origin limit, as this limit is particular to the
Wishart ensembles.

We begin with the microscopic origin limit at strong non-Hermiticity
(S). Because strong and maximal non-Hermiticity at µ = 1 are related by a
simple rescaling of the complex eigenvalues, z → 2η+z (see e.g. [29, 8], we
restrict ourselves only to the latter. This limit is defined such that the non-
Hermiticity parameter µ is not scaled with N , only the complex eigenvalues
get rescaled

ρ

“
β, /D

”
S (ξ) ≡ lim

N→∞

1
N
R

“
β, /D

”
N

(
z = ξ/

√
N
)
, lim

N→∞

√
Nz = ξ fixed ,

(4.6)
and all higher order correlation functions are rescaled accordingly.

For β = 2 we obtain easily from Eq. (3.8) [12]

ρ
(2, /D)
S (ξ) =

2
π
|ξ|2Kν

(
|ξ|2
)
Iν
(
|ξ|2
) |ξ|→∞−→ 1

π
. (4.7)

It only depends on the rescaled modulus |ξ| and is thus rotationally invariant.
We also give the asymptotic value of the microscopic density that matches
the constant value of the macroscopic density in the Dirac picture.

For β = 4 we have from Eq. (3.16) after a non-trivial calculation [6]

ρ

“
4, /D

”
S (ξ) =

|ξ|2

4π
(
ξ∗ 2 − ξ2

)
K2ν

(
|ξ|2
)

×
1∫

0

du
I2ν(u|ξ|2)√

1− u2
sinh

(√
1− u2

2
(
ξ2 − ξ∗ 2

))
. (4.8)

Compared to β = 2 the density is no longer rotationally invariant, reflecting
the repulsion of the complex eigenvalues from real and imaginary axes.

For β = 1 we obtain two densities from Eqs. (3.27) and (3.28), for the
complex eigenvalues and the eigenvalues on the real and imaginary axis [8]

ρ

“
1, /D

”
C,S (ξ) = sgn

(
=m

(
ξ2
))

(−i)
(
ξ2 − ξ∗ 2

) 8
π
|ξ|2Iν

(
2|ξ|2

)
×
∞∫
0

dt

t
e−(ξ

4+ξ∗ 4)t− 1
4t K ν

2

(
2|ξ|4t

)
erfc

(
2
√
t |=m

(
ξ2
)
|
)
,(4.9)
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ρ

“
1, /D

”
(i)R S (ξ) =

1
π
|ξ|K ν

2
(|ξ|2)

 ∞∫
0

dx′ |ξ2 − x′| K ν
2
(|x′|) Iν

(
2ξ
√
x′
)

+

0∫
−∞

dx′ |ξ2 − x′| K ν
2
(|x′|) Jν

(
2ξ
√
|x′|
) , (4.10)

where in the second equation ξ ∈ R (or ξ ∈ iR which is identical here).
Once again, the density in the complex plane is not rotationally invariant,
and vanishes along the real and imaginary axis.

We now turn to the microscopic origin limit at weak non-Hermiticity (W)
introduced for the Ginibre–Girko ensembles Eq. (2.9) in [38]. It is defined by
both rescaling µ with N , as well as the complex eigenvalues (with a different
power compared to the strong limit above)

ρ

“
β, /D

”
W (ξ) ≡ lim

N→∞

1
N2

R

“
β, /D

”
N (z = ξ/N) , (4.11)

with
lim
N→∞

Nz = ξ , lim
N→∞

2N2µ2 = α2 (4.12)

fixed. All higher order correlation functions are rescaled accordingly.
For β = 2 we get [5]

ρ
(2, /D)
W (ξ) =

1
2πα2

|ξ|2Kν

(
|ξ|2

4α2

)
e
ξ2+ξ∗ 2

8α2

1∫
0

dt t e−2α2t2Jν(tξ)Jν(tξ∗)

α→0−→ δ(=mξ)1
2
(Jν(ξ)2 − Jν−1(ξ)Jν+1(ξ)) . (4.13)

It agrees with the density obtain from the non-Hermitian one-matrix
model [19]. In the second line we indicate that in the Hermitian limit the
density reduces to the known universal Bessel density times a delta function
in the imaginary part. In the opposite limit α → ∞ the density at strong
non-Hermiticity given in Eq. (4.7) can be recovered, and we refer to [12] for
more details.

For β = 4 the weak non-Hermiticity limit yields [6]

ρ

“
4, /D

”
W (ξ) =

|ξ|2

32α4
(ξ∗ 2 − ξ2)K2ν

(
|ξ|2

2α2

)
e
(ξ2+ξ∗ 2)

4α2

1∫
0

ds

1∫
0

dt√
t
e−2s(1+t)α2

×
[
J2ν

(
2
√
stξ
)
J2ν

(
2
√
sξ∗
)
− J2ν

(
2
√
sξ
)
J2ν

(
2
√
stξ∗

) ]
.

(4.14)
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Once again, in the Hermitian limit α→ 0 the prefactor in front of the integral
reduces to a delta function in =m(ξ), and the integral matches the known
universal Bessel kernel for β = 4 (which also has a simpler representation
expressed in terms of the β = 2 density plus a single integral).

Finally, we give the weak origin limit for β = 1 which was obtained most
recently. The complication arises from the fact that for the real eigenvalues
both at µ = 0 in the real Wishart ensemble and at µ 6= 0 for our non-
Hermitian extension the large-N limit of the kernel and the integration in
Eq. (3.28) do not commute. For more details we refer to [15, 28] and only
quote the answer valid for ξ ∈ R and ξ ∈ iR

ρ

“
1, /D

”
(i)R,W(ξ) =

2|ξ|hw(ξ2)
[sgnξ2]

ν
2


(−i)ν

0∫
−∞

dy +

ξ2∫
0

2dy
[sgnξ2]

ν
2

Kw

(
ξ2, y

)
hw(y)

− 1
32
√
π

[
− 1√

2α
e−2α2

Jν(ξ) +
2(
√

2α)ν

Γ
(
ν+1
2

) 1∫
0

ds e−2α2s2sν+2

×
(
ξ

2
E−(s) Jν+1(sξ)− 2α2s (E+(s)− E−(s)) Jν(sξ)

)]}
,

(4.15)

where we have defined the kernel in the weak limit

K(1)
W (ξ, ξ∗) ≡

1∫
0

ds s2

29πα2
e−4α2s2 (ξJν+1(sξ)Jν(sξ∗)− ξ∗Jν+1(sξ∗)Jν(sξ)) ,

(4.16)
the rescaled real weight function

hw

(
ξ2
)
≡ 2
ξν
eξ

2/16α2
2K ν

2

(
|ξ|2

16α2

)
, (4.17)

and the exponential integral

E∓(s) ≡
∞∫
1

dt t
ν
2
∓ 1

2 e−2α2s2t . (4.18)

The weak density of complex eigenvalues presents no such difficulties [8]
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ρ

“
1, /D

”
C,W (ξ) = −16i|ξ|2sgn

(
=m ξ2

)
e

1
8α2 (ξ2+ξ∗ 2)K(1)

W (ξ, ξ∗)

×
∞∫
0

dt

t
e−

t
28α4 (ξ4+ξ∗ 4)− 1

4tK ν
2

(
t

27α4
|ξ|4
)
erfc

( √
t

8α2
|=m

(
ξ2
)
|
)
. (4.19)

In the Hermitian limit α → 0 the density of complex eigenvalues as
well as the density along the imaginary axis vanishes. Only the density of
real eigenvalues will build up the known density of real eigenvalues in the
Hermitian Wishart ensemble for β = 1 [8].

5. Conclusions

In this short article we have reviewed the solution of three non-Hermitian
extensions of Wishart ensembles of random matrices with real, complex or
quaternion real elements. In all three cases the eigenvalue correlation func-
tions are expressed in terms of the kernel of (skew) orthogonal Laguerre
polynomials in the complex plane, depending on a non-Hermiticity parame-
ter that allows to interpolate betweenWishart and maximally non-Hermitian
Wishart ensembles, for finite and infinite-N . At the origin these ensembles
are very well understood, and we gave the corresponding three Bessel kernels
in the complex plane at strong and weak non-Hermiticity. At the various
inner and outer edges we expect the behavior of the corresponding Ginibre
ensembles (see e.g. in [26]), and the ensembles we considered here to be
the same and thus universal. This was shown for example in [34] for the
generalized Airy kernel at the soft edge along the real line, or in [10] in
the rotationally invariant case (regime II (iii)) at the outer edge, both for
β = 2. The latter behavior was also found for the outer edge density of
random contractions [26].

At present, a deeper guiding principle to prove universality for non-
Hermitian random matrices with a larger class of weight functions, such as
quasiharmonic potentials [27] is lacking. A first step towards universality
could be to show that different Gaussian models lead to the same answer as
mentioned above, or as it was shown in yet another example for the Bessel
kernel in the weak limit at β = 2 Eq. (4.13), starting from a Gaussian one- or
two-matrix model in [19] and [5], respectively. We hope that these first steps
will ultimately lead to a deeper understanding of the issue of universality.

I would like to thank all my co-workers for collaborations on this sub-
ject, as well as the organizers of this workshop for the very stimulating
atmosphere.
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