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1. Introduction and the main results

1.1. Introduction
1.1.1. Products of random matrices

The problem ofmultiplication of random matrices received a considerable
measure of attention from the random matrix theory (RMT) community
recently [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. In this matter, one is interested in
studying the statistical properties (in particular, the average distribution of
the eigenvalues) of the product

P ≡ A1A2 . . .AL (1)

of L ≥ 1 random matrices Al, l = 1, 2, . . . , L. In the basic version of the
problem, all these matrices are assumed to be statistically independent, to
which condition we too will adhere.

In order for these matrices to be multiplicable, the dimensions of each Al

have most generally to be of the form of Nl ×Nl+1, where N1, N2, . . . , NL,
NL+1 are integers. Then, P has sizes N1 × NL+1; if this matrix is to have
eigenvalues, it must obviously be square, i.e. NL+1 = N1.

Moreover, in RMT one typically considers the thermodynamic limit in
which the matrices are infinitely large, but their dimensions have the same
order of magnitude, i.e. their ratios stay finite; here, we decide to define
these ratios w.r.t. NL+1,

Nl →∞ , with Rl ≡ Nl

NL+1
= finite , for l = 1, 2, . . . , L, L+ 1 . (2)

(Obviously, RL+1 = 1; if we additionally take NL+1 = N1, then there also
is R1 = 1.) In this limit, all finite-size corrections are lost, such as universal
oscillations of the spectrum at its edges.

1.1.2. Products of square Girko–Ginibre random matrices

To date, there have been almost no results on multiplication of random
matrices, which would allow for determining the complex eigenvalue den-
sity of the product. The exceptions are the papers [10, 19] on products of
square Gaussian matrices and also somewhat related works on block matri-
ces with rectangular blocks which as we shall see below are related to the
problem of multiplication of two rectangular matrices. These papers were
concentrated on microscopic properties of the L = 2 case of block matri-
ces with complex entries [14], quaternion entries [15], real entries [16, 17],
and for the product version (1) in [18]. The general L case, and only in
the thermodynamic limit (2), has been appropriated only for square terms
(i.e. N1 = N2 = . . . = NL+1 ≡ N) in [19]. In this last work, the authors
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considered each Al to consists of complex entries whose real and imaginary
parts are all IID Gaussian random variables with zero mean and variance
σ2
l /2N ; in other words, such a random matrix model, called the Girko–

Ginibre ensemble [20, 21,22], has the probability measure,

dµ (Al) ∝ e
− N

σ2
l

Tr
“
A†lAl

”
DAl , (3)

where the flat measure DAl ≡
∏N
a,b=1 d(Re[Al]ab)d(Im[Al]ab), and the nor-

malization constant has been omitted. Using the method of planar diagrams
and Dyson–Schwinger’s equations, which is the same technique we will em-
ploy here in Section 2 and pedagogically describe in Appendix A, one may
derive (A) that on average, the eigenvalues of a Girko–Ginibre matrix are
scattered within a centered circle of radius σl with the uniform density,

ρAl
(λ, λ) =


1
πσ2

l

, for |λ| ≤ σl ,
0 , for |λ| > σl .

(4)

Employing non-Hermitian planar diagrammatics again, yet in a more
demanding situation, the authors of [19] (see their equation (5)) discovered
that the eigenvalues of the product P (1) of such Girko–Ginibre matrices
also fill a centered circle, of radius

σ ≡ σ1σ2 . . . σL , (5)

with the average density given by a surprisingly simple expression,

ρP

(
λ, λ

)
=

 1
Lπσ2

∣∣∣∣λσ
∣∣∣∣−2(1− 1

L)
, for |λ| ≤ σ ,

0 , for |λ| > σ .

(6)

Remarkably, this formula remains valid even if the constituent matrices are
not identically distributed, just with the assumptions of independence and
Gaussianity retained, i.e. they may come from different Gaussian ensembles,
such as GUE, GOE, or the so-called Gaussian elliptic ensembles. Moreover,
it has been conjectured [19] that (6) holds for an even wider class of matri-
ces, such as ones having independent entries fulfilling the Pastur–Lindeberg
condition — in this sense, the result (6) is universal. One unexpected im-
plication of this universality is that a product of random matrices whose
spectra do not necessarily display rotational symmetry has the eigenvalue
distribution on the complex plane which does possess rotational symmetry
(i.e. the average density depends only on |λ|).
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1.1.3. Non-Hermitian random matrix models

Exploration of products of matrix models brings us almost inevitably
into the realm of non-Hermitian random matrices. The most pronounced
difference between them and their Hermitian cousins is that their eigen-
values are generically complex, while Hermitian spectra must be real. In
the thermodynamic limit, the eigenvalues of non-Hermitian ensembles cover
two-dimensional domains on the complex plane, contrary to one-dimensional
cuts in the Hermitian case.

Much of the RMT machinery — such as the saddle-point method, or-
thogonal polynomials, the Efetov’s supersymmetric technique, or the dia-
grammatic expansion and the free random variables calculus (see for exam-
ple [23,24,25,26,27,28,29,30,31,32,33,34,35,36] for reviews; these last two
techniques are used in this paper) — has been developed in the Hermitian
context, and tailored for real spectra. The necessity of dealing with complex
spectra demands enhancements of these methods. In Appendix A we present
a self-contained crash course on how the planar diagrammatics can be ap-
plied to find average spectra of non-Hermitian random ensembles [37,38,39].

Leaving thus all the details for later, let us just mention now that as the
information about the average spectrum of a Hermitian matrix model H is
encoded in the spectral density ρH(λ) (A.1) — which is a function of a real
variable, or equivalently in the Green’s function GH(z) (A.3) — which is a
holomorphic function everywhere except the cuts where the eigenvalues lie,
or equivalently in the so-called M -transform, MH(z) ≡ zGH(z) − 1 (A.7),
so for a non-Hermitian matrix X, one exploits an analogous set of concepts,
namely, the spectral density ρX(λ, λ) (A.18) — which is now a function
of a complex argument, denoted here by λ and λ as independent variables
(this is the object appearing in (4) and (6)), the non-holomorphic Green’s
function, GX(z, z) (A.20), as well as the non-holomorphic M -transform,
MX(z, z) ≡ zGX(z, z) − 1 (A.24). Presentation in appendix A of the dia-
grammatic method augmented to handle non-Hermitian products is one of
the motivations of this article.

1.1.4. Singular values and free random variables

Besides eigenvalues, another important characteristics of a matrix model
P is given by its singular values, which are defined as the square roots of
the (real) eigenvalues of the Hermitian matrix

Q ≡ P †P . (7)

We will investigate the singular values in Section 3, using and thereby pro-
moting an approach called the free random variables (FRV) calculus. We
sketch its fundamental implications in Appendix B. The idea will be to
rewrite Q, through cyclic permutations of the constituent matrices, as a
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product of certain Hermitian ensembles. Now, for a Hermitian product
of independent (more precisely, free (B.7) — this is a generalized notion
of statistical independence, suited for matrix probability theory) Hermi-
tian matrices — FRV provides a multiplication algorithm: Given two Her-
mitian random matrices, H1 and H2 whose product is still Hermitian,
and which are mutually free, one begins from finding their N -transforms
(B.20), defined as the functional inverses of the respective M -transforms,
NH1,2(MH1,2(z)) = MH1,2(NH1,2(z)) = z. Then, a basic FRV theorem
claims that the N -transform of the product H1H2 is in fact the product of
the two N -transforms, up to a simple prefactor, NH1H2(z) = (z/(z + 1))
NH1(z)NH2(z) (B.21). Inverting functionally the result, one obtains the
M -transform, and thus the entire spectral information about H1H2.

1.2. The main results
1.2.1. The aim of the paper

In this paper, our objective is to generalize the work of [19] by calculat-
ing both the eigenvalues and singular values of a product (1) of rectangular
matrices with complex entries being IID Gaussian random variables. More
precisely, for our L random matrices Al we will now allow arbitrary rectan-
gularity ratios Rl (2), while the assumption of the real and imaginary parts
of all the matrix elements of each Al being IID Gaussian random numbers
will be realized by taking the following probability measures,

dµ (Al) ∝ e
−
√
NlNl+1

σ2
l

Tr
“
A†lAl

”
DAl . (8)

It is almost identical to (3), with the exception of the scaling of the variance,
whose inverse has generically to be chosen of the same order of magnitude
as the dimensions of the matrices in question — in order to yield in the ther-
modynamic limit a meaningful density of the eigenvalues — but otherwise it
can be arbitrary; here, we decide for the factor of

√
NlNl+1. We will assume

NL+1 = N1 (i.e. R1 = 1) when considering the eigenvalues of P (9), but for
the singular values (i.e. the square roots of the eigenvalues of Q (11)), this
requirement could be dropped.

1.2.2. The main results of the paper

The first main result of our calculation, which we accomplish in Section 2
by means of non-Hermitian planar diagrammatics, is the following simple
equation for the non-holomorphic M -transform of P

L∏
l=1

(
MP (z, z)

Rl
+ 1
)

=
|z|2
σ2

. (9)
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As already announced, the full information about the mean distribution of
the eigenvalues of P can be retrieved in a straightforward way from this
M -transform (A.24), (A.21). We see that (9) is a polynomial equation of
the order of L. Moreover, since the RHS is a function of |z|2 only, so will
the non-holomorphic M -transform be,

MP (z, z) = MP

(|z|2) . (10)

Consequently, the spectral density will display rotational symmetry, in con-
cord with the square case (6). Finally, remark that the linear scale of the
distribution is still given by σ (5), i.e. z appears only as the combination
z/σ.

The second main contribution of the article, worked out in Section 3
with aid of the FRV multiplication law, is an equation obeyed by the (usual,
Hermitian) M -transform of Q (7), yielding thus (A.7), (A.6) the singular
values squared of the product P ,

√
R1

MQ(z) + 1
MQ(z)

L∏
l=1

(
MQ(z)
Rl

+ 1
)

=
z

σ2
. (11)

This is a polynomial equation of the order of (L+ 1). This equation for the
product of square matrices has been derived in [12,13], while for rectangular
ones, without our knowledge, in [40] in the context of wireless telecommu-
nication; we thus present our derivation of the latter result as well.

As straightforward consequences of the main equations (9) and (11), we
unravel the nature of the singularities of the mean spectral densities of P and
Q at zero. We show that their behaviors at the origin are solely determined
by the number s of the rectangularity ratios (2) equal to 1, i.e.

s ≡ # {l = 1, 2, . . . , L : Nl = NL+1} = 1, 2, . . . , L , (12)

and are given by

ρP

(
λ, λ

) ∼ |λ|−2(1− 1
s ), as λ→ 0 , (13)

and
ρQ(λ) ∼ λ− s

s+1 , as λ→ 0 . (14)

Remark that when all the constituent matrices are square, s = L, then (13)
precisely reproduces the density in the entire domain of the spectrum (6),
not only close to the origin.

Let us close with the following observation: (11) happens to be remark-
ably similar to (9): Setting R1 = 1, which is a must if we wish to simultane-
ously compute both the eigenvalues (9) and singular values (11), one notices
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that it is sufficient to replace on the l.h.s. MP (z, z) byMQ(z), and multiply
by (MQ(z) + 1)/MQ(z), while on the r.h.s. to replace |z|2 by z — in order
to proceed from (9) to (11).

This unexpected striking relationship has led us to propose the follow-
ing conjecture: If X is any non-Hermitian random matrix model whose
mean spectrum possesses rotational symmetry, i.e. equivalently, whose non-
holomorphic M -transform depends only on |z|2 (10), MX(z, z) = MX(|z|2)
— then, introducing the rotationally-symmetric non-holomorphic N -trans-
form as the functional inverse

MX (NX(z)) = z , (15)

its relation to the (usual)N -transform of the Hermitian matrix X†X reads

NX†X(z) =
z + 1
z

NX(z) . (16)

One may intuitively expect the existence of such a link, because a rotatio-
nally-symmetric spectral distribution is effectively one-dimensional, depend-
ing only on the absolute value squared of its complex argument — and the
eigenvalues of X†X are precisely the absolute values squared of the eigen-
values ofX. From the practical point of view, typically, one of the two sides
of (16) will be much easier to appropriate analytically, thus providing the
other one for free. We postpone verification of this hypothesis for future
work.

1.2.3. The plan of the paper

The material in the article is divided into three levels of depth:

• Experts in the field may remain just with the above Section 1.2.2,
which summarizes all of the results we have obtained in this work.

• Intermediate-level readers may want moreover to consult Sections 2
and 3, in which we compute the mean spectral densities of the product
P (1) of rectangular Gaussian matrices (8), as well as of Q ≡ P †P
(7), respectively.

• Students are given furthermore Appendices A and B, which introduce
in a detailed and self-contained way non-Hermitian planar diagram-
matics and free random variables calculus, respectively.

Section 4 concludes the paper and discusses some possible applications of
its discoveries.
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2. The eigenvalues of a product of rectangular Gaussian
random matrices

2.1. Derivation

In this subsection, we present a derivation of the first main finding
of this article, (9), i.e. an L-th order polynomial equation for the non-
holomorphicM -transform— an object containing the full information about
the mean spectrum of the (complex) eigenvalues (A.24), (A.21) — of the
(non-Hermitian) product P (1) of rectangular (2) — with the necessary
constraint NL+1 = N1 — Gaussian random matrices (8). To this end,
we employ an efficient technique of summing planar diagrams, called the
Dyson–Schwinger’s equations, extended to the non-Hermitian sector, and
specifically suited to working with products of random matrices (a reader
not familiar with the subject is strongly advised to consult Appendix A for
a didactic overview).

2.1.1. The linearization of the product

If one aims at computing the matrix-valued Green’s function (A.29) for a
product P (1) of random ensembles by means of planar diagrammatics, one
notices that the problem becomes non-linear w.r.t. the constituent matrices.
Opportunely, it is possible to linearize it by making use of the following
trick: One trades the N1 × N1 matrix P for the Ntot. × Ntot. — where
Ntot. ≡ N1 +N2 + . . .+NL — matrix

P̃ ≡


0 A1 0 . . . 0
0 0 A2 . . . 0
...

...
...

. . .
...

0 0 0 . . . AL−1

AL 0 0 . . . 0

 , (17)

with an L×L block structure, where the 0s represent matrices of various ap-
propriate dimensions entirely filled with zeros (we will also use the notation
of 0N for the N ×N zero matrix).

Now, the non-holomorphic M -transforms of P and P̃ are related in a
simple way,

MeP (w,w) =
LN1

Ntot.
MP

(
wL, wL

)
. (18)

We present the proof in Appendix A. In other words, solving the spectral
problem for P̃ (17) is equivalent to solving the original model P (1). The
former is already linear w.r.t. the constituent matrices, and permits the
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Dyson–Schwinger’s approach to calculating MeP (w,w), from which the de-
sired MP (z, z) is obtained with help of (18), albeit for a price of enlarging
the size of the random matrix from N1 to Ntot..

2.1.2. The Dyson–Schwinger’s equations

As demonstrated in Appendix A, the first step in writing the Dyson–
Schwinger’s equations is to know the propagators of the random matrix in
question, namely, P̃ , or more precisely, its duplicated version (A.25),

P̃
D

=

(
P̃ 0

0 P̃
†

)
. (19)

It is a 2Ntot. × 2Ntot. matrix, but we will think of it as having four blocks
(as distinguished in (19)), each being an L×L block matrix (see (17)). We
will denote the L × L block indices in these four blocks by lm (upper left
corner), lm (upper right), lm (lower left), lm (lower right), each one covering
the range 1, 2, . . . , L (compare (A.36)); for example,

[
P̃

D
]
21

= A†1. All the
other featured matrices will inherit this structure, for instance,

GD =

(
Gww Gww

Gww Gww

)

=



[
GD
]
11

[
GD
]
12

. . .
[
GD
]
1L

[
GD
]
11

[
GD
]
12

. . .
[
GD
]
1L[

GD
]
21

[
GD
]
22

. . .
[
GD
]
2L

[
GD
]
21

[
GD
]
22

. . .
[
GD
]
2L

...
...

. . .
...

...
...

. . .
...[

GD
]

L1

[
GD
]

L2
. . .

[
GD
]

LL

[
GD
]

L1

[
GD
]

L2
. . .

[
GD
]

LL[
GD
]
11

[
GD
]
12

. . .
[
GD
]
1L

[
GD
]
11

[
GD
]
12

. . .
[
GD
]
1L[

GD
]
21

[
GD
]
22

. . .
[
GD
]
2L

[
GD
]
21

[
GD
]
22

. . .
[
GD
]
2L

...
...

. . .
...

...
...

. . .
...[

GD
]

L1

[
GD
]

L2
. . .

[
GD
]

LL

[
GD
]

L1

[
GD
]

L2
. . .

[
GD
]

LL



,

(20)

and similarly for WD and ΣD. (We use w instead of z to comply with the
notation in (18), as well as disregard for simplicity all the subscripts and the
symbols of dependence on w,w.)
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We are interested in computing the non-holomorphic Green’s function of
P̃ (A.30), i.e.

GeP (w,w) =
1

Ntot.
TrGww =

1
Ntot.

L∑
l=1

Tr
[
GD
]
ll

=
1

Ntot.

L∑
l=1

NlGll , (21)

where it is useful to define the normalized traces

Gll ≡ 1
Nl

Tr
[
GD
]
ll
, Gll ≡

1
Nl

Tr
[
GD
]
ll
,

Gll ≡
1
Nl

Tr
[
GD
]
ll
, Gll ≡

1
Nl

Tr
[
GD
]
ll
. (22)

Hence, we should find the Glls.
The 2-point correlation functions of the ensembles Al are readily visible

from their probability measures (8),

〈
[Al]ab

[
A†m

]
cd

〉
=

σ2
l√

NlNl+1

δlmδadδbc , (23)

with all the rest equal to zero. In terms of P̃
D
, (23) means that the only

non-zero propagators are〈[
P̃

D
]
12

[
P̃

D
]
21

〉
=

σ2
1√

N1N2
1N1 ⊗ 1N2 ,〈[

P̃
D
]
23

[
P̃

D
]
32

〉
=

σ2
2√

N2N3
1N2 ⊗ 1N3 ,

...〈[
P̃

D
]
L1

[
P̃

D
]
1L

〉
=

σ2
L√

NLN1
1NL ⊗ 1N1 , (24)

where the tensor notation is a shortcut for what could be alternatively
achieved using a double-index notation,〈[

P̃
D
]
(l,a),(l+1,A)

[
P̃

D
]
(l+1,B),(l,b)

〉
=

σ2
l√

NlNl+1

δabδAB , (25)

where l = 1, 2, . . . , L (and we use a cyclic identification convention here,
L+ 1 = 1), a, b = 1, 2, . . . , Nl, and A,B = 1, 2, . . . , Nl+1.
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Thus, we are now in position to write down the two Dyson–Schwinger’s
equations for P̃

D
. The first one, being in fact the definition of the self-

energy matrix, is independent of the propagators and identical to (A.38)
and (A.12),

GD =
(
WD −ΣD

)−1
. (26)

The second one is pictorially presented above formula (A.13), and the struc-
ture of the propagators (24) implies that the only non-zero blocks of the
self-energy matrix read

[
ΣD
]
ll

=
σ2
l√

NlNl+1

Tr
[
GD
]
l+1,l+1

1Nl = σ2
l

√
Nl+1

Nl
Gl+1,l+1︸ ︷︷ ︸

≡αl

1Nl , (27)

[
ΣD
]
ll

=
σ2
l−1√

Nl−1Nl

Tr
[
GD
]
l−1,l−1

1Nl = σ2
l−1

√
Nl−1

Nl
Gl−1,l−1︸ ︷︷ ︸

≡βl

1Nl , (28)

for all l = 1, 2, . . . , L, with the cyclic convention 0 = L, where the normalized
traces (22) have been used.

Results (27), (28) mean that the four blocks of the matrix (WD −ΣD)
are diagonal,

WD −ΣD

=

0BBBBBBBBBBBBBB@

w1N1 0 . . . 0 −α11N1 0 . . . 0
0 w1N2 . . . 0 0 −α21N2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . w1NL 0 0 . . . −αL1NL

−β11N1 0 . . . 0 w1N1 0 . . . 0
0 −β21N2 . . . 0 0 w1N2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . −βL1NL 0 0 . . . w1NL

1CCCCCCCCCCCCCCA
.

(29)

Such a matrix can be straightforwardly inverted: its four blocks remain
diagonal, and read:
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(
WD −ΣD

)−1
,

=

0BBBBBBBBBBBBBB@

wγ11N1 0 . . . 0 α1γ11N1 0 . . . 0
0 wγ21N2 . . . 0 0 α2γ21N2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . wγL1NL 0 0 . . . αLγL1NL

β1γ11N1 0 . . . 0 wγ11N1 0 . . . 0
0 β2γ21N2 . . . 0 0 wγ21N2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . βLγL1NL 0 0 . . . wγL1NL

1CCCCCCCCCCCCCCA
,

(30)

where for short, for all l = 1, 2, . . . , L,

1
γl
≡ |w|2 − αlβl = |w|2 − (σl−1σl)

2

√
Nl−1Nl+1

Nl
Gl+1,l+1 Gl−1,l−1 . (31)

Substituting (30), which is an implication of the second Dyson–Schwinger’s
equation, to the first one (26), we discover that the only non-zero blocks of
the duplicated Green’s function (20) are, for all l = 1, 2, . . . , L,[

GD
]
ll

= wγl1Nl ,
[
GD
]
ll

= αlγl1Nl ,[
GD
]
ll

= βlγl1Nl ,
[
GD
]
ll

= wγl1Nl . (32)

Taking the normalized traces of both sides of every equality in (32), this
leads to the final set of equations,

Gll = wγl , Gll = αlγl , Gll = βlγl , Gll = wγl . (33)

To summarize, the structure of equations (33) is the following: The
fourth one, as a general caveat, is the conjugate of the first one, so it is
redundant. The second and third ones read

Gll = σ2
l

√
Nl+1

Nl
Gl+1,l+1 γl , (34)

Gll = σ2
l−1

√
Nl−1

Nl
Gl−1,l−1 γl . (35)

We see that (31), (34) and (35) form a closed set of 3L equations for 3L
unknowns, Gll, Gll and γl — these we will now (2.1.3) attempt to unfold.
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Once solved, in particular, when the γls are found, the first expression in
(33) yields Gll, i.e. as a consequence (21), the non-holomorphic Green’s
function of P̃ , and subsequently, the non-holomorphic M -transforms of P̃
(A.24), as well as of P (in the argument wL) (18),

GeP (w,w) = w
1

Ntot.

L∑
l=1

Nlγl , i.e. MeP (w,w) =
1

Ntot.

L∑
l=1

Nlµl ,

i.e. MP

(
wL, wL

)
=

1
L

L∑
l=1

Rlµl , (36)

where we have traded the γls for a more convenient set of variables,

µl ≡ |w|2γl − 1 , (37)

and recall that the rectangularity ratios Rl = Nl/N1 (2).

2.1.3. Solving the Dyson–Schwinger’s equations

Let us start from an observation that if we knew the γls, then equations
(34) and (35) would comprise a set of decoupled recurrence relations for Gll
and Gll, respectively. Assume this is the case, and iterate these recurrences
down to l = 1,

Gll = G11

1
(σ1σ2 . . . σl−1)2

1√
Rl

1
γ1γ2 . . . γl−1

, (38)

Gll = G11 (σ1σ2 . . . σl−1)2
1√
Rl
γ2 . . . γl . (39)

Actually, (38) and (39) hold true for all l = 1, 2, . . . , L (and not only
l ≥ 2), where the l = 1 case is obtained by applying the cyclic convention
0 = L. This cyclic boundary constraint for (38) is

(σ1σ2 . . . σL)2 (γ1γ2 . . . γL)G11 = G11 (40)

(and analogously for (39), with G11 replaced by G11). One possibility now is
that G11 = 0. This implies in turn (38) that for all l, Gll = 0, i.e. furthermore
(31), γl = 1/|w|2, or (37), µl = 0, and therefore (36), MP (z, z) = 0. This is
thus the trivial holomorphic solution, valid outside of the mean eigenvalues’
domain. We are however interested in the eigenvalues, i.e. in the non-
holomorphic solution, so let us take G11 6= 0 henceforth. The single equation
(40) reduces then to

γ1γ2 . . . γL =
1
σ2

, i.e. (µ1 + 1) (µ2 + 1) . . . (µL + 1) =

∣∣wL∣∣2
σ2

, (41)

with σ defined in (5).
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Substitute now (38) and (39) into (31), and go to the variables µl —
after some simplifications, (31) acquires the form, for all l = 1, 2, . . . , L,

µl =
|w|2G11G11

µ1 + 1
1
Rl

. (42)

Take it first for l = 1,

µ1 =
|w|2G11G11

µ1 + 1
, (43)

where we have used R1 = 1, and replace the r.h.s. of (43) appearing in (42)
by its l.h.s. — obtaining thereby all the µls, for l = 2, 3, . . . , L, as simply
related to µ1,

µl =
µ1

Rl
. (44)

Hence, if we manage to compute µ1, then all the µls will be known as well;
this is done by plugging (44) into (41), which then becomes a polynomial
equation of order L for µ1,

(µ1 + 1)
(
µ1

R2
+ 1
)
. . .

(
µ1

RL
+ 1
)

=

∣∣wL∣∣2
σ2

. (45)

This completes the solution of the fundamental set of equations (31), (34),
(35).

As mentioned, the knowledge of all the µls yields the desired non-holomorphic
M -transform of P ; indeed, substituting (44) into (36), we simply get

MP

(
wL, wL

)
= µ1 . (46)

In other words, it remains to change the complex argument from w to z = wL

in order to see that MP (z, z) obeys the L-th order polynomial equation(
MP (z, z)

R1
+ 1
)(

MP (z, z)
R2

+ 1
)
. . .

(
MP (z, z)
RL

+ 1
)

=
|z|2
σ2

, (47)

which is precisely the first main result of our article, (9).
The last point is to determine the domain of validity of the non-holomor-

phic solution (47), i.e. the domain where on average the eigenvalues of
P lie. We know (A.23) that on the boundary of this domain, the non-
holomorphic and holomorphic solutions must agree; plugging thus the latter
(MP (z, z) = 0) into (47), we obtain the equation of this borderline,

|z| = σ . (48)

It means that the eigenvalues of P are scattered on average within a centered
circle of radius σ, with the density stemming from (47) by virtue of (A.24),
(A.21).
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2.2. Comments
2.2.1. Example: L = 2

Since our main equation (47) is polynomial of the order of L, in the
special case of L = 2 it will be easily solvable. Indeed, the non-holomorphic
M -transform reads

MP (z, z) =
1
2

(
−1−R+

√
(1−R)2 + 4R

|z|2
σ2

)
, (49)

where we call R ≡ R2 = N2/N1 (the only non-trivial rectangularity ratio
here), and where we have picked one solution out of the two roots of the
quadratic equation (47) in such a way that it satisfies MP (z, z)||z|=σ = 0,
i.e. the matching condition with the holomorphic solution on the borderline
(48). As a result, we immediately arrive at the non-holomorphic Green’s
function (A.24),

GP (z, z) =
1
2z

(
1−R+

√
(1−R)2 + 4R

|z|2
σ2

)
. (50)

The average density of the eigenvalues stems from (50) by taking the
derivative w.r.t. z (A.21), however, one has to be cautious in the vicinity
of zero in order to properly take into account the zero modes. Let us first
expand (50) near z = 0 for the purpose of making its behavior clearly visible,

GP (z, z) ∼ f

z
+ regular terms, where f ≡

{
1−R , for R < 1 ,
0 , for R ≥ 1 .

(51)
Applying the derivative (1/π)∂z to this singular term produces the complex
Dirac’s delta at the origin, fδ(2)(z, z) (see the discussion after (A.53)). Away
from z = 0, however, this term is irrelevant, and only the square root in (50)
contributes to the density — i.e. altogether,

ρP (z, z) =


1
πσ2

Rr
(1−R)2+4R

|z|2
σ2

+ fδ(2)(z, z) , for |z| ≤ σ ,

0 , for |z| > σ .
(52)

As for any L, this function (52) possesses rotational symmetry. One
may check that it is correctly normalized,

∫ σ
0 dr2πrρP (z, z)||z|=r = 1, the

delta function playing a vital role in this agreement. Setting R = 1 gives
ρP (z, z) = 1/(2πσ|z|), for |z| ≤ σ, in concord with the finding (6) of [19].
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2.2.2. The singular behavior of the mean spectral density at zero

Let us now examine one property of the mean spectral density of P ,
namely, its behavior at the origin of the complex plane. We will show that
the density is singular there, and that the rate of this explosion is governed
by the number s = 1, 2, . . . , L (12) of the rectangularity ratios Rl equal to 1.

Indeed, we begin from recasting the main formula (47) in the language of
the non-holomorphic Green’s function (A.24), and explicitly distinguishing
the terms with Rl = 1 from those with Rl 6= 1,

zsGP (z, z)s
∏

l∈{1,...,L}:
Rl 6=1

(
zGP (z, z)

Rl
+ 1− 1

Rl

)
=
|z|2
σ2

. (53)

Consider now how (53) behaves in the limit of z → 0. Let us suppose
that as z → 0, so also zGP (z, z) → 0; we will justify this assumption
a posteriori. Consequently, the entire product over l such that Rl 6= 1 in
(53) tends to a non-zero constant, and therefore, the singular behavior of
the non-holomorphic Green’s function reads

zsGP (z, z)s ∼ zz , i.e.

GP (z, z) ∼ z
1
s
−1z

1
s , as z → 0 . (54)

(We confirm that our previous assumption holds, zGP (z, z) ∼ |z|2/s.) Tak-
ing the derivative w.r.t. z of both sides of (54), the singular behavior of the
density (A.21) is finally found,

ρP (z, z) ∼ |z|−2(1− 1
s ) , as z → 0 , (55)

as anticipated in (13). (Actually, for s = 1, and only for this value, there is
no singularity, ρP (z, z)→ const.)

2.2.3. The behavior of the mean spectral density at the borderline

Let us also focus for a while on the behavior of the density ρP (z, z) at
the opposite end of the spectrum, namely, at the centered circle of radius σ,
constituting the borderline of the average eigenvalues’ domain. It has there
a finite value of

ρP (z, z)
∣∣|z|=σ =

1
πσ2

Rh , where
1
Rh
≡

L∑
l=1

1
Rl

. (56)

(Note that it complies with (52) and (6).) To see this, recall that for the
rotationally-symmetric non-holomorphicM -transform,MP (z, z)=MP (|z|2),
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the density is related to it as ρP (z, z) = (1/π)∂|z|2MP (|z|2). Taking now
the derivative w.r.t. MP (z, z) of both sides of our main equation (47), and
setting MP (z, z) = 0 (i.e. the value at the boundary), we readily arrive
at (56).

Therefore, in the considered thermodynamic limit (2) the density has
a jump from the value (56) to zero as one crosses the frontier |z| = σ.
However, for finite sizes of the random matrices in question, this step gets
smoothed out. Indeed, it has been proven for two non-Hermitian models
with rotationally-symmetric mean spectrum — the Girko–Ginibre ensemble
[41, 42] (see also [43]) and P with L = 2 and arbitrary R2 [18] — that the
appropriate modification for finite matrix dimensions N (in our case, by
N we denote the order of magnitude of the dimensions of the matrices, say
N ≡ N1) consists of multiplying the radial part of the mean spectral density,

ρrad.(r) ≡ 2πrρ(z, z)
∣∣|z|=r , (57)

by a simple form-factor,

ρeff.(r) ≡ ρrad.(r)1
2 erfc

(
q(r − 1)

√
N
)
, (58)

where erfc(x) ≡ (2/
√
π)
∫∞
x dt exp(−t2) is the complementary error function,

while q has been expressed by the parameters of the model.
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Fig. 1. Numerical verification of the theoretical formula (52) for (the radial part
(57) of) the mean spectral density ρP (z, z) of the product P of L = 2 rectangular
Gaussian random matrices, as well as the finite-size correction (58). A numerical
histogram (the black line) versus the theoretical prediction (52), supplemented
with the finite-size smoothing (58) (the red plot), for N1 = 100 and N2 = 200
(i.e. R = R2 = 2), and for 105 Monte Carlo iterations (i.e. the histogram is made
of 107) eigenvalues. The adjustable parameter q (58) is fitted to be q ≈ 1.14.



956 Z. Burda et al.

Imitating this idea, we propose that the same form-factor correctly de-
scribes the finite-N smooth crossover from within the eigenvalues’ circle to
its outside also for our model P with arbitrary L and the rectangularity ra-
tios. We do not attempt here to calculate q, only treat it as a free parameter
whose value is to be adjusted by fitting to Monte Carlo data. We numerically
verify this hypothesis (58) in the next paragraph.

2.2.4. Numerical confirmation

We have tested the main equation (47), as well as the finite-size ansatz
(58), quite extensively, obtaining excellent confirmation in all the considered
situations, see figures 1, 2, 3, 4 and 5.
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Fig. 2. An analogous graph to Fig. 1, this time with N1 = 100 and N2 = 150 (i.e.
R = 1.5). We find q ≈ 1.08 here.
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Fig. 3. An analysis of the finite-size effects: Numerical histograms for N1 = 50,
N2 = 100 (black), N1 = 100, N2 = 200 (dashed red), N1 = 200, N2 = 400
(dotted blue), i.e. with the same rectangularity ratio R = 2, but increasing matrix
dimensions. We observe how these plots approach the green line of the theoretical
formula (52) for the density in the thermodynamic limit.
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Fig. 4. Numerical histograms for the matrix sizes of N1 =100, N2 =200 (i.e. R = 2;
black) and N1 = 200, N2 = 100 (i.e. R = 1/2; gray (red)). Due to the presence of
the zero modes (not displayed in the picture), the latter is half of the former.
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Fig. 5. Analogous graphs to Fig. 3, but for L = 3 (up) and L = 4 (down).
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3. The singular values of a product of rectangular Gaussian
random matrices

3.1. Derivation

This subsection is devoted to deriving the second main formula of this
article, (11), i.e. an (L + 1)-th order polynomial equation obeyed by the
M -transform, a quantity equivalent to the average density of the eigenval-
ues, of the Hermitian matrix Q ≡ P †P (7), with P the product (1) of
rectangular (2) Gaussian random matrices (8). The underlying idea will be
to rewrite Q as a product of some Hermitian matrices, to which the FRV
(Appendix B) multiplication law (B.21) will be harnessed.

Let us commence from defining, for any l = 1, 2, . . . , L, a square Nl+1 ×
Nl+1 matrix

Ql ≡ (A1A2 . . .Al−1Al)
† (A1A2 . . .Al−1Al)

= A†lA
†
l−1 . . .A

†
2A
†
1A1A2 . . .Al−1Al , (59)

being a generalization of Q which includes only the first l random matrices,
as well as a square Nl×Nl matrix, which differs fromQl only by the position
of the last matrix in the string, i.e. Al, which is now placed as the first
matrix in the string,

Q̃l ≡ AlA
†
lA
†
l−1 . . .A

†
2A
†
1A1A2 . . .Al−1 =

(
AlA

†
l

)
Ql−1 . (60)

We are interested in the eigenvalues of the Hermitian matrix Q = QL.
The orders of the terms in the two above products (59), (60) are related

to each other by a cyclic shift, therefore, for any integer n ≥ 1, there will be
TrQn

l = Tr Q̃
n

l . Hence, the M -transforms (A.8) of the two above random
matrices are related by

MQl
(z)=

∑
n≥1

1
zn

1
Nl+1

〈TrQn
l 〉=

Nl

Nl+1

∑
n≥1

1
zn

1
Nl

〈
Tr Q̃

n

l

〉
=

Rl
Rl+1

MeQl
(z) .

(61)
Inverting (61) functionally, we obtain a relationship between the respective
N -transforms (B.20),

NQl
(z) = NeQl

(
Rl+1

Rl
z

)
. (62)

The reason for introducing the auxiliary matrix Q̃l (60) is that it is a
product of two free matrices, AlA

†
l and Ql−1. Using the FRV multiplication

law (B.21), we can thus write, for all l = 2, 3, . . . , L,

NeQl
(z) =

z

z + 1
N

AlA
†
l
(z)NQl−1

(z) . (63)
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From these two equations (62), (63), we now eliminate the N -transform
of the auxiliary Q̃l, leaving us with the following recurrence relation for the
N -transform of Ql,

NQl
(z) =

z

z + Rl
Rl+1

N
AlA

†
l

(
Rl+1

Rl
z

)
NQl−1

(
Rl+1

Rl
z

)
,

for l = 2, 3, . . . , L , (64)

with the initial condition,

NQ1
(z) = NeQ1

(
R2

R1
z

)
= N

A1A†1

(
R2

R1
z

)
, (65)

which stems from (62) and the fact that Q̃1 = A1A
†
1. The solution of this

recurrence (64), (65) is then readily found to be

NQL
(z) =

zL−1

(z +R2) (z +R3) . . . (z +RL)

×N
A1A†1

(
z

R1

)
N

A2A†2

(
z

R2

)
. . . N

ALA†L

(
z

RL

)
. (66)

It remains now to find the N -transforms of the random matrices AlA
†
l .

They are examples of the so-called Wishart ensembles, and the problem of
computing their N -transforms, with the precise normalization of the proba-
bility measures of the Als which we are employing (8), has first been solved
in [44]: Expressions (1.8), (2.8), (2.13), (2.14) of this article yield the Green’s
function of AlA

†
l , which immediately leads to the pertinent N -transform,

N
AlA

†
l
(z) = σ2

l

(z + 1)
(√

Nl
Nl+1

z +
√

Nl+1

Nl

)
z

. (67)

Substituting (67) into (66), one finally arrives at the desired formula for the
N -transform of Q = QL,

NQ(z) = σ2
√
R1

1
z

(z + 1)
(
z

R1
+ 1
)(

z

R2
+ 1
)
. . .

(
z

RL
+ 1
)
, (68)

with σ defined in (5). In other words, the correspondingM -transformMQ(z)
satisfies the following polynomial equation of order (L+ 1),√

R1
1

MQ(z)
(MQ(z) + 1)

(
MQ(z)
R1

+ 1
)(

MQ(z)
R2

+ 1
)

. . .

(
MQ(z)
RL

+ 1
)

=
z

σ2
, (69)
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or in the case of NL+1 = N1 (i.e. R1 = 1, required when one wishes for P
to have eigenvalues too),

1
MQ(z)

(MQ(z) + 1)2
(
MQ(z)
R2

+ 1
)
. . .

(
MQ(z)
RL

+ 1
)

=
z

σ2
. (70)

This completes our derivation of (11).

3.2. Comments
3.2.1. The singular behavior of the mean spectral density at zero

Following an analogous line of reasoning as in Section 2.2.2, we may
unravel the singular behavior at zero of the mean spectral density of Q
stemming from the main formula (69). Again, we rewrite this equation in
terms of the (usual, holomorphic) Green’s function (A.7), and separate the
terms with Rl = 1 (the number of such rectangularity ratios is called s (12))
from those with Rl 6= 1,

1
zGQ(z)− 1

zs+1GQ(z)s+1
∏

l∈{1,...,L}:
Rl 6=1

(
zGQ(z)
Rl

+ 1− 1
Rl

)
=

z

σ2
. (71)

In the limit z → 0, the relevant terms in (71) will thus read

zs+1GQ(z)s+1 ∼ z , i.e. GQ(z) ∼ z− s
s+1 , as z → 0 , (72)

which immediately leads to the aforementioned result (14).
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Fig. 6. Numerical verification of the theoretical formula (69) for the mean spectral
density ρQ(λ) of the random matrix Q = P †P (7). Everywhere NL+1 = N1 = 50.
The number of Monte Carlo iterations is 20,000, i.e. all the histograms are gen-
erated from 106 eigenvalues. Here L = 2, and the matrix sizes are chosen to be
N1 = 50, N2 = 150.
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3.2.2. Numerical confirmation

We have performed several numerical tests of the main formula (69), in
all cases obtaining astonishing agreement, see Figs. 6, 7 and 8.
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Fig. 7. The same as Fig. 6, but with L = 3, and the matrix sizes are N1 = 50,
N2 = 100, N3 = 150.
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Fig. 8. The same as Fig. 6, but with L = 4, and the matrix sizes are N1 = 50,
N2 = 100, N3 = 150, N4 = 200.

4. Conclusions

4.1. Summary

The main contribution of this article is given by the two equations (9) and
(11) for the M -transforms, i.e. objects conveniently encoding the average
spectral densities, of the product P = A1A2 . . .AL (1) of an arbitrary
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number L of independent rectangular (2) Gaussian random matrices (8),
as well as of the matrix Q = P †P (7), whose eigenvalues are the squared
singular values of P , respectively. Both these equations are polynomial, and
have orders L and (L + 1), respectively, so in general they may be solved
only numerically; however, some properties of the mean spectral densities
can still be retrieved analytically, such as their singular behavior at zero
(13), (14).

Furthermore, (9) and (11) are very similar to each other — the fact which
directed us to put forward a conjecture (16) that the same resemblance is
a feature shared by all non-Hermitian ensembles X possessing rotationally-
symmetric average distribution of the eigenvalues. For such models, the
non-holomorphic M -transform MX(z, z) (A.24) is a function of the real
argument |z|2 (10), thereby allowing functional inversion, and hence, a def-
inition of the rotationally-symmetric non-holomorphic N -transform (15) —
even though for general non-Hermitian random matrices a construction of
a non-holomorphic N -transform remains thus far unknown. This new N -
transform is then conjectured to be in a simple relationship (16) to the
(usual) N -transform of the Hermitian ensemble X†X. In a typical situa-
tion, the latter will be solvable much more easily than the former, owing to
the plethora of tools devised in the Hermitian world, albeit the opposite may
be true as well. This is indeed the case here — our derivation of (9), based
on non-Hermitian planar diagrammatics and Dyson–Schwinger’s equations,
is much more involved than a simple application of the FRV multiplication
rule leading to (11) — and consequently, the hypothesis (16) would provide
a means of avoiding the complicated diagrammatics. To the best of our
knowledge, this would be the first use of the free random variables calcu-
lus to computing the mean spectral density of a non-Hermitian product of
random matrices.

We have also suggested a model for a finite-size behavior of the density
of P near the borderline of the eigenvalues’ domain (58), taking after the
work of [41, 42, 43]. It performs outstandingly well when checked against
numerical simulations.

4.2. Possible applications

Let us now succinctly sketch some possible applications of these results
to wireless telecommunication, quantum entanglement and finances.

4.2.1. Wireless telecommunication

Information theory for wireless telecommunication has been intensively
developed in the past decade, after it had been realized that the informa-
tion rate can be increased by an introduction of multiple antenna channels,
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known as the multiple-input, multiple-output (MIMO) transmission links.
The MIMO capacity for Gaussian channels has been calculated in the pi-
oneering work [45], triggering large activity in the field. Immediately, it
became clear that an appropriate language and methods to address this
type of problems are provided by random matrix theory (consult [6] for a
review).

The MIMO capacity reads [45],

Capacity C =
〈

log2 Det
(
1Nrec. +

SNR
Ntr.

ACA†
)〉

, (73)

where Nrec. is the number of receivers, Ntr. of transmitters, and SNR the
signal-to-noise ratio. The output signals ~y are calculated from the input ~x
as

~y =
√

SNR
Ntr.

A~x+ ~η , (74)

where A is the response matrix for a given frequency, ~η is a standardized
multivariate white noise, whileC is a covariance matrix for the input signals,
i.e. [C]ab ≡ 〈xaxb〉.

In the simplest case, one assumes that the input signals are uncorrelated,
i.e. C = 1Ntr. , and thatA is a random matrix built of IID centered Gaussian
entries. This corresponds to a random situation, when one has no informa-
tion about the signal propagation. Then, the asymptotic (Ntr. →∞) mutual
information per channel can be derived to be µ =

∫
dλρQ(λ) log(1+SNRλ),

where ρQ(λ) is the limiting mean eigenvalue density of the Wishart matrix
Q = A†A [6].

The model considered in our paper can be applied to a more complex case
of signals traveling over L consecutive MIMO links [40]: It is first sent from
N1 transmitters via a MIMO link to N2 receivers, which then re-transmit
it via a new MIMO link to the subsequent N3 receivers, etc. Clearly, the
capacity will depend on these numbers of intermediate re-transmitters; in
particular, if any of the Nls is small, the capacity will be reduced. The
output now reads

~y =
√

SNR
N1

AL . . .A2A1~x+ ~η , (75)

and therefore, the effective propagation is given by the matrix P = AL . . .
A2A1, whereas the mutual information per channel by µL =

∫
dλρQ(λ)

log(1 + SNRλ), with Q = P †P . Now, it is precisely our second main result
(11) which can be exploited to find the relevant density ρQ(λ).
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Let us finally just mention that one could imagine a more general sit-
uation, where MIMO links form a directed network — each directed link
lm representing a single MIMO channel between Nl transmitters and Nm

receivers. (The discussed case (75) corresponds to a linear graph, 1→ 2→
. . .→ L.)

4.2.2. Quantum entanglement

A complex directed network of MIMO links is somewhat similar to the
structures appearing in the context of quantum entanglement. There, one
considers graphs whose edges describe bi-partite maximally entangled states,
while vertices — the couplings between subsystems residing at the same
vertex [46]. In the simplest case of a graph consisting of a single link, it is
just a bi-partite entangled state. The corresponding density matrix for a bi-
partite subsystem is given by Q = A†A, where A is a rectangular N1 ×N2

matrix defining a pure state, |ψ〉 =
∑N1

a=1

∑N2
b=1[A]ab|αa〉 ⊗ |βb〉, being a

combination of the basis states in the subsystem, |αa〉 and |βb〉 (see for
instance [47]). One can easily find that linear graphs with additional loops
at the end vertices correspond. The density matrix for the subsystem sitting
in the end vertex is given by Q = P †P , where P = A1A2 . . .AL [46]. If all
the subsystems are of the same size, the average spectral distributions of Q
are known [12,13] as the Fuss–Catalan family [48]; they can be obtained from
(11) by setting all the Rls to 1. However, if the subsystems have different
sizes, one needs to apply our general formula (11).

4.2.3. Finances

Another area of applications is financial engineering. Products of rect-
angular random matrices may be used in calculations of lagged correlation
functions, which play very important roles in risk management and portfolio
theory. This issue will be discussed in a forthcoming publication.

We would like to thank Romuald A. Janik, Bartłomiej Wacław and
Karol Życzkowski for interesting discussions. This work was partially sup-
ported by the Polish Ministry of Science and Higher Education Grants:
No. N N202 229137 (2009–2012) and “Iuventus Plus” No. 0148/H03/2010/70.
A.J. acknowledges the support of Clico Ltd., Oleandry 2, 30-063 Kraków,
Poland, while completing parts of this paper.
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Appendix A

The diagrammatic approach to solving matrix models

Hermitian random matrices
The Green’s function and M-transform

The most basic question one asks in RMT about an N ×N — where we
take the thermodynamic limit of N →∞ — Hermitian random matrix H,
endowed with some probability measure dµ(H), is to compute the average
distribution of its (real) eigenvalues λ1, λ2, . . . , λN , defined as

ρH(λ) ≡ 1
N

N∑
a=1

〈δ (λ− λa)〉 , (A.1)

where the average map 〈. . .〉 ≡ ∫ (. . .)dµ(H), while δ(λ) denotes the real
Dirac’s delta function.

However, it proves more convenient to work with another equivalent
object — the Green’s function (a.k.a. resolvent). First, one introduces the
N ×N Green’s function matrix,

GH(z) ≡ 〈(Z −H)−1
〉
, where Z ≡ z1N , (A.2)

where z is a complex argument, and 1N represents the N ×N unit matrix.
Then, the Green’s function is defined as its normalized trace,

GH(z) ≡ 1
N

TrGH(z) =
1
N

N∑
a=1

〈
1

z − λa

〉
. (A.3)

As clearly seen in this definition, GH(z) is, for any finite N , a meromorphic
function, with poles located at the average spectrum. When N tends to
infinity, these poles coalesce into continuous intervals on the real axis, and
GH(z) turns into a function holomorphic everywhere on the complex plane
excluding the cuts formed by these intervals. Knowing the mean density of
the eigenvalues in these cuts allows one to reproduce the Green’s function,

GH(z) =
∫

cuts

dλρH(λ)
1

z − λ (A.4)

(in other words, the Green’s function is the Stjeltes’ transform of the den-
sity), and conversely, a standard representation of the real Dirac’s delta,

δ(λ) = − 1
π

lim
ε→0+

Im
1

λ+ iε
(A.5)
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implies that the mean spectral density is recovered when one approaches
with the argument of the Green’s function the eigenvalues’ cuts along the
imaginary direction,

ρH(λ) = − 1
π

lim
ε→0+

ImGH(λ+ iε) . (A.6)

We thus see that (A.1) and (A.3) carry identical information.
Instead of the Green’s function, one often prefers yet another quantity,

the M -transform, simply related to the former,

MH(z) ≡ zGH(z)− 1 . (A.7)

Its meaning is deduced from considering its large-z expansion — being holo-
morphic everywhere except the cuts on the real line, it permits a power-series
expansion around z =∞,

MH(z) =
∑
n≥1

MH,n

zn
, where MH,n ≡ 1

N
Tr 〈Hn〉 =

∫
cuts

dλρH(λ)λn .

(A.8)
The coefficients are precisely the moments of the probability distribution in
question, and so,MH(z) is also known as the moments’ generating function.

The Green’s function for the GUE from planar diagrams

There are multiple techniques developed for the purpose of calculating
the Green’s function of a Hermitian random matrix H, and we will now
briefly describe the method of representing it as a sum of planar fat diagrams,
which is then performed using the so-called Dyson–Schwinger’s equations.
We will not aim at a comprehensive presentation, but only show how the
approach works on a simplest example of a Hermitian model — the Gaussian
Unitary Ensemble (GUE), with standard deviation σ,

dµ (H) ∝ e−
N

2σ2 Tr H2

DH . (A.9)

(It means that the real elements on the diagonal are IID with the same
variance σ2/N , while the real and imaginary parts of the entries below the
diagonal are IID with the variance σ2/2N .)

One begins from expanding the Green’s function matrix (A.2) into the
power-series around infinite z,

GH(z) = Z−1 +
〈
Z−1HZ−1HZ−1

〉
+
〈
Z−1HZ−1HZ−1HZ−1HZ−1

〉
+ . . . , (A.10)
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where we have preserved only even moments, as the probability measure
(A.9) is even, as well as kept the order of the Z−1s and Hs intact, even
though they commute. Since Z is independent of H, and can thus be taken
outside of the average, one is left at every order with an expectation of the
form 〈[H]a1a2 [H]a3a4 . . . [H]a2n−1a2n〉. Owing to Wick’s theorem, any such
n-point correlation function can be expressed — by making all the possible
contractions — through the 2-point correlation function (propagator), which
for the GUE measure (A.9) reads

〈[H]ab[H]cd〉 =
σ2

N
δadδbc . (A.11)

Consequently, the structure of this series (A.10) lends itself to a graphical
representation, in which every factor of [Z−1]ab is depicted as a straight line
connecting the matrix indices a and b, while every propagator 〈[H]ab[H]cd〉
as a double arc connecting two pairs of indices, ab and cd,

a b
=

[
Z−1

]
ab

= 1
z δab,

a b c d

= 〈[H]ab[H]cd〉 = σ2

N δadδbc.

The first three orders of (A.10) are thus drawn as:

a b
G

[GH(z)]ab

=
a b

+
a c1 c2 c3 c4 b

〈[H]c1c2 [H]c3c4〉

+

+
a c1 c2 c3 c4 c5 c6 c7 c8 b

〈[H]c1c2 [H]c3c4 [H]c5c6 [H]c7c8〉

+

+
a c1 c2 c3 c4 c5 c6 c7 c8 b

〈[H]c1c2 [H]c3c4 [H]c5c6 [H]c7c8〉

+
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+
a c1 c2 c3 c4 c5 c6 c7 c8 b

〈[H]c1c2 [H]c3c4 [H]c5c6 [H]c7c8〉

non-planar

+ . . ..

(There is summation over all the internal indices.) At the first order, we just
have one horizontal line corresponding to [Z−1]ab; at the second one, there
are three Z−1s (i.e. three horizontal lines) and one propagator (i.e. one
double arc); while the third order contributes five Z−1s (i.e. five horizon-
tal lines), and a 4-point correlation function, which permits three possible
contractions, giving rise to three rainbow diagrams, down to products of two
propagators (i.e. two double arcs), etc.

Clearly, complete evaluation of [GH(z)]ab, for any finite matrix size N ,
would require summing up the numerical values stemming from all such
connected rainbow diagrams with external indices a and b. This is where
the thermodynamic limit of N → ∞ comes into play — as is well-known
since the work of ’t Hooft [49], in this limit, only planar graphs contribute
to the Green’s function, while all the non-planar ones are suppressed with
the factor of 1/N2h, where h is the genus of the surface on which a given
diagram can be drawn without crossing of lines. For instance, the last graph
pictured above can only be drawn without a crossing on a torus (genus 1),
so it may be safely neglected at large N .

Now, all the planar diagrams can be summed up by exploiting a certain
technique known from quantum field theory, which we will now sketch. First,
one considers a subset of the rainbow diagrams, referred to as one-line-
irreducible (1LI) ones, that cannot be split into two disconnected pieces by
cutting a single horizontal line. Let ΣH(z), called the self-energy matrix (it
is an N ×N matrix), denote their generating function,

Σ = + + . . ..

One now perceives that any planar rainbow diagram can be constructed
by putting together horizontal lines and 1LI graphs, i.e. a relationship
between the full and 1LI generating functions pictorially reads
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G = + Σ +

+ Σ Σ + . . .,

i.e.

GH(z) = Z−1 +Z−1ΣH(z)Z−1 +Z−1ΣH(z)Z−1ΣH(z)Z−1 + . . .

= (Z −ΣH(z))−1 . (A.12)

This is the first Dyson–Schwinger’s equation. Remark that it looks very
similar to (A.10), (A.2), except for the now-absent averaging; thus, we may
say that the self-energy matrix represents an effective matrixH which allows
one to remove the averaging operation from (A.10), (A.2).

Another observation is that if one takes an arbitrary planar rainbow
diagram and adds an external double arc to it, one obtains a 1LI graph;
and conversely, any 1LI graph has a form of a double arc encircling some
diagram. Hence, the generating functions in question satisfy

a b
Σ =

a c1 c2 b
G

which is

[ΣH(z)]ab =
N∑

c1,c2=1

[GH(z)]c1c2〈[H]ac1 [H]c2b〉=σ2

(
1
N

TrGH(z)
)
δab ,

i.e. ΣH(z) = σ2GH(z)1N . (A.13)

This is the second Dyson–Schwinger’s equation. Since it reveals that the
self-energy matrix is proportional to the unit matrix, one may take the
normalized trace of (A.13) and rewrite it as

ΣH(z) = σ2GH(z) , (A.14)

where, analogously to (A.3), the self-energy,

ΣH(z) ≡ 1
N

TrΣH(z) . (A.15)
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Finally, substituting ΣH(z) from the second Dyson–Schwinger’s equa-
tion (A.13) into the first one (A.12), and applying the normalized trace to
both sides — yields a quadratic equation for the Green’s function of the
GUE ensemble (A.9),

GH(z)
(
z − σ2GH(z)

)
= 1 ,

i.e. GH(z) =
1

2σ2

(
z −√z − 2σ

√
z + 2σ

)
, (A.16)

where we have selected the correct solution out of the two by referring to
the condition GH(z) ∼ 1/z, for z → ∞ (equivalent to the normalization
of the density,

∫
cuts dλρH(λ) = 1, see (A.4)); also, the square roots are

in the principal branches. The average eigenvalue density is found from
this Green’s function using (A.6), and is the famous Wigner’s semi-circle
distribution,

ρH(λ) =


1

2πσ2

√
4σ2 − λ2 , for λ ∈ [−2σ, 2σ] ,

0 , for λ ∈ R \ [−2σ, 2σ] .
(A.17)

On this pedagogical example, we have shown how planar diagrammatics
and Dyson–Schwinger’s equations can be used to solve Hermitian matrix
models in the thermodynamic limit. Let us now see whether non-Hermitian
ensembles could be appropriated along similar lines.

Non-Hermitian random matrices
The non-holomorphic Green’s function and M-transform

The chief difference between Hermitian and non-Hermitian random ma-
trices is that the eigenvalues λ1, λ2, . . . , λN of the latter (call it X) are
complex — in the thermodynamic limit of N →∞ merging into some two-
dimensional domains D on the complex plane — with their average distri-
bution given by the complex Dirac’s delta,

ρX

(
λ, λ

) ≡ 1
N

N∑
a=1

〈
δ(2)

(
λ− λa, λ− λa

)〉
. (A.18)

Thus, the concepts developed in Section A and relying on the reality of the
eigenvalues, the Green’s function and M -transform, lose their meaning.

The bottom line is that the complex Dirac’s delta has distinct properties
from its real counterpart. For instance, its useful representation will now be

δ(2)
(
λ, λ

)
=

1
π

lim
ε→0

ε2

(|λ|2 + ε2)2
=

1
π

∂

∂λ
lim
ε→0

λ

|λ|2 + ε2
, (A.19)
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as contrasted with (A.5). Mimicking this form, one is led to define the
non-holomorphic Green’s function as

GX(z, z) ≡ lim
ε→0

lim
N→∞

1
N

N∑
a=1

〈
z − λa

|z − λa|2 + ε2

〉

= lim
ε→0

lim
N→∞

1
N

Tr

〈
z1N −X†

(z1N −X)
(
z1N −X†

)
+ ε21N

〉
(A.20)

(we have ambiguously written here the matrix inversion as a fraction — we
assume henceforth A/B ≡ AB−1, i.e. multiplication by the inverse matrix
from the right), since then the density (A.18) is just proportional to its
derivative w.r.t. z,

ρX(z, z) =
1
π

∂

∂z
GX(z, z) , for z ∈ D . (A.21)

Notice the order of the limits in (A.20) — for finiteN , one could immediately
set the regulator ε to zero everywhere except a finite set of points λa, and
the non-holomorphic Green’s function would reduce to the usual one (A.3);
only for infinite N and inside the eigenvalues’ domains D, the limit ε → 0
yields a non-trivial object, carrying information about the mean eigenvalue
density. Outside D, one is always left with the usual Green’s function (A.3),

GX(z, z) = GX(z) , for z /∈ D , (A.22)

which however does not tell this time anything about the eigenvalues. Ac-
tually, this formula holds on the boundary of D as well,

GX(z, z) = GX(z) , for z ∈ ∂D , (A.23)

which we will see to be precisely the equation fulfilled by the coordinates of
the boundary of D.

Similarly as in the Hermitian case, one finds it useful to consider a related
quantity, named the non-holomorphicM -transform, and defined analogously
to (A.7),

MX(z, z) ≡ zGX(z, z)− 1 . (A.24)

Again, outside of D it simplifies to the usual M -transform MX(z), which is
however obviously incapable of capturing the distribution of the eigenvalues
of X.
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Important as it is, an essential hindrance in an effective usage of the
non-holomorphic Green’s function (A.20) is the quadratic (in X) structure
of its denominator. As a response to that, the following linearization trick
has been proposed: Introduce a 2N × 2N matrix

GD
X(z, z) ≡ lim

ε→0
lim
N→∞

〈(
ZD
ε −XD

)−1
〉
, (A.25)

where

ZD
ε ≡

(
z1N iε1N
iε1N z1N

)
, XD ≡

(
X 0N
0N X†

)
. (A.26)

The superscript “D” comes from duplication. Considering the four N × N
blocks of this matrix, distinguished by the superscripts zz, zz, zz and zz
(and omitting the symbols of the functional dependence on z, z, which we
will often do in similar expressions),

GD
X ≡

(
Gzz

X Gzz
X

Gzz
X Gzz

X

)
, (A.27)

as well as its normalized block-trace,

bTr
(
A B
C D

)
≡
(

TrA TrB
TrC TrD

)
, (A.28)

i.e. a 2 × 2 matrix, referred to as the matrix-valued Green’s function, con-
sisting of the normalized traces of the four blocks,

GX ≡ 1
N

bTrGD
X =

(
1
N TrGzz

X
1
N TrGzz

X
1
N TrGzz

X
1
N TrGzz

X

)
≡
( GzzX GzzX

GzzX GzzX

)
, (A.29)

one recognizes that the upper left corner of the matrix-valued Green’s func-
tion is exactly equal to the non-holomorphic Green’s function (A.20),

GzzX (z, z) = GX(z, z) . (A.30)

In this way, the relevant non-holomorphic Green’s function has been encoded
as a part of another object, having linear structure in X, and looking very
similar to the usual Green’s function (compare (A.25) with (A.2)), the price
to pay for that being duplication of the matrices. This will enable us to
use techniques such as planar diagrammatics to compute the matrix-valued
Green’s function of a non-Hermitian ensemble X in a manner parallel to
how one does it in the Hermitian sector (A); see below (A).
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Let us close with the following remark: We have seen that the zz-
component of the matrix-valued Green’s function is equal to the non-holo-
morphic Green’s function (A.30), and thus, inside D reproduces the mean
eigenvalue density (A.21), while outside D reduces to the usual Green’s func-
tion (A.22). The zz-component is just its complex conjugate, GzzX = GzzX ,
so it carries no additional information. One might wonder about the off-
diagonal elements,

GzzX (z, z) = lim
ε→0

lim
N→∞

1
N

Tr

〈
−iε(

z1N −X†
)

(z1N −X) + ε21N

〉
, (A.31)

GzzX (z, z) = lim
ε→0

lim
N→∞

1
N

Tr

〈
−iε

(z1N −X)
(
z1N −X†

)
+ ε21N

〉
. (A.32)

Since they are equal to each other and purely imaginary, iGzzX (z, z)= iGzzX (z, z)
∈ R, it is convenient to consider their negated product, which is a non-
negative real number,

CX(z, z) ≡ −GzzX (z, z)GzzX (z, z) ∈ R+ ∪ {0} . (A.33)

Clearly, it vanishes outside of the domains of the eigenvalues D, as the
regulator may be safely zeroed there,

CX(z, z) = 0 , for z /∈ D , (A.34)

whereas inside D, it acquires non-trivial (strictly positive) values. Conse-
quently, it contains all the information about the boundary of D — if one
finds CX(z, z) inside D, and subsequently sets it to 0 (A.34), one obtains an
equation obeyed by the coordinates (x, y), where z ≡ x + iy, of ∂D. (Note
that this is equivalent to (A.23).) This being our primary usage of CX(z, z),
let us nevertheless mention that it has yet another content — it describes
certain statistical features of the left and right eigenvectors of X [50].

The non-holomorphic Green’sfunction for the Girko–Ginibre ensemble from
planar diagrams

Since the matrix-valued and usual Green’s functions have analogous
forms, the difference being the duplicated structure in the latter case, planar
diagrammatics and the Dyson–Schwinger’s equations will work in a similar
way. Instead of giving a general introduction, let us present the method on
a simplest example — the Girko–Ginibre matrix model A (with standard
deviation σ), defined in (3).
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The propagators are immediately read off from this measure (3),

〈
[A]ab

[
A†
]
cd

〉
=
〈[
A†
]
ab

[A]cd
〉

=
σ2

N
δadδbc ,

〈[A]ab[A]cd〉 =
〈[
A†
]
ab

[
A†
]
cd

〉
= 0 . (A.35)

However, in order to employ the diagrammatic tools, one should know the
propagators of the duplicated matrix AD (A.25). Denoting the indices in its
four N ×N blocks by ab, ab, ab, ab, respectively, mimicking the labeling of
zz, zz, zz, zz in (A.27), one sees that the only non-zero propagators read

〈[
AD
]
ab

[
AD
]
cd

〉
=
σ2

N
δadδbc ,

〈[
AD
]
ab

[
AD
]
cd

〉
=
σ2

N
δadδbc . (A.36)

This is all there is required in order to write down the Dyson–Schwinger’s
equations. The self-energy matrix will be duplicated,

ΣD ≡
(
Σzz Σzz

Σzz Σzz

)
(A.37)

(for simplicity, we remove the subscript “A” in this paragraph). The first
Dyson–Schwinger’s equation will clearly have an identical form to (A.12),

GD =
(
ZD −ΣD

)−1
, (A.38)

where ZD ≡ ZD
ε=0 (A.26) — the regulator ε may henceforth be set to zero;

we will see that the Dyson–Schwinger’s equations by themselves take care of
properly regulating the result inside the mean eigenvalues’ domains D. The
second Dyson–Schwinger’s equation will also pictorially look like before (see
the diagrammatic equation above (A.13)), but the present structure of the
propagators (A.36) implies that the four blocks of that formula now read

[
ΣD
]
ab

=
N∑

c1,c2=1

[
GD
]
c1c2

〈[
AD
]
ac1

[
AD
]
c2b

〉
= σ2

(
1
N

TrGzz

)
δab = σ2Gzzδab , (A.39)

[
ΣD
]
ab

= σ2Gzzδab , (A.40)[
ΣD
]
ab

=
[
ΣD
]
ab

= 0 , (A.41)
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i.e. altogether,

ΣD =
(

0N σ2Gzz1N
σ2Gzz1N 0N

)
. (A.42)

Substituting the expression (A.42) for the duplicated self-energy matrix
into (A.38), and taking the normalized block-trace (A.28) of both sides, we
arrive at the 2 × 2 matrix equation for the elements of the matrix-valued
Green’s function of the Girko–Ginibre ensemble (3),( Gzz Gzz

Gzz Gzz
)

=
(

z −σ2Gzz
−σ2Gzz z

)−1

=
1

|z|2 − σ4GzzGzz
(

z σ2Gzz
σ2Gzz z

)
, (A.43)

where in the last step we have explicitly inverted the matrix. Let us first look
at the negated product of the two off-diagonal equations of (A.43), which
yields an equation for C ≡ CA(z, z) (A.33),

C =
σ4C

(|z|2 + σ4C)2 . (A.44)

It has one solution C = 0, corresponding to the outside of D, and called the
holomorphic solution, as well as a non-trivial one, describing the inside of
D, named the non-holomorphic solution, and given by

CA(z, z) =
1
σ2

(
1− |z|

2

σ2

)
, (A.45)

where we have picked the positive root out of the two. As mentioned (see the
discussion below (A.34)), setting this quantity to zero yields the equation of
the borderline of D — since the holomorphic and non-holomorphic solutions
must coincide on ∂D,

|z| = σ , (A.46)

i.e. the average eigenvalues of the Girko–Ginibre model fill the centered cir-
cle of radius σ. Let us now proceed to the one diagonal equation (stemming
from the upper left corner) of (A.43),

Gzz =
z

|z|2 + σ4C =


z

σ2
, for |z| ≤ σ ,

1
z
, for |z| > σ .

(A.47)
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We explicitly see that outside of the eigenvalues’ disk, it is trivial, equal to
the usual Green’s function (the holomorphic solution), which for the Girko–
Ginibre ensemble is just 1/z. However, inside the disk, it provides the non-
holomorphic Green’s function (A.30) of the model,

GA(z, z) =
z

σ2
, (A.48)

and subsequently (A.21), the mean eigenvalue density (4).
The Girko–Ginibre model is therefore solved in the thermodynamic limit

by means of planar diagrammatics on a duplicated level, outlining a pattern
to follow when dealing with more complicated non-Hermitian random ma-
trices.

Non-Hermitian planar diagrammatics for products of random matrices

As explained in Section 2.1.1, if one wants to apply the method of planar
diagrams to a model being a product of random matrices, the linearization
(17) is necessary. In this paragraph, we will prove the main result of this
procedure, (18).

Since the L-th power of (17) is an L×L block-diagonal matrix (total size
of course Ntot.×Ntot.), with the entries being all the cyclic permutations of
the product (1),

P̃
L

=



A1A2 . . .AL−1AL 0 . . . 0

0 A2A3 . . .ALA1 . . . 0

...
...

. . .
...

0 0 . . . ALA1. . .AL−2AL−1


,

(A.49)
and because all these permutations have identical non-zero eigenvalues, plus
a number (distinct for all these matrices) of zero modes — therefore, P̃

L

has the same eigenvalues as P , name them λ1, λ2, . . . , λN1 , each one L-fold
degenerate (so in total LN1), plus (Ntot.−LN1) additional zero modes (some
of the λas may be zero as well). This implies that the content of the Ntot.

eigenvalues of P̃ is the following: LN1 eigenvalues L
√
λ1,

L
√
λ2, . . . , L

√
λN1

(each one with L-fold degeneracy), where we keep in mind that the L-th root
is an L-valued function, plus (Ntot.−LN1) additional zero modes. Thus, we
may translate this description into a mathematical expression (A.18),
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ρeP (w,w)

=
1

Ntot.

(
L

N1∑
a=1

〈
δ(2)
(
w− L

√
λa, w− L

√
λa

)〉
+(Ntot.−LN1) δ(2)(w,w)

)

=
LN1

Ntot.

(
1
N1

N1∑
a=1

〈
δ(2)
(
w− L

√
λa, w− L

√
λa

)〉)
+
(

1− LN1

Ntot.

)
δ(2)(w,w) .

(A.50)

Further, we recognize that the piece inside the big brackets in the lower
line is precisely the mean density of the L-th roots of the eigenvalues of P ,
hence, it will be equal to the distribution of these eigenvalues themselves
upon the change of variables w = L

√
z,

1
N1

N1∑
a=1

〈
δ(2)

(
w − L

√
λa, w − L

√
λa

)〉
=

1
L

∂z

∂w

∂z

∂w
ρP

(
wL, wL

)
= L|w|2(L−1)ρP

(
wL, wL

)
, (A.51)

where the factor of 1/L in the Jacobian originates from the L-valuedness of
the transformation z → w. Combining (A.51) with (A.50), we arrive at a
relationship between the mean densities of the eigenvalues of P̃ and P ,

ρfP (w,w) =
L2N1

Ntot.
|w|2(L−1)ρP

(
wL, wL

)
+
(

1− LN1

Ntot.

)
δ(2)(w,w) . (A.52)

This generalizes formula (16) of [19] to constituent random matrices having
arbitrary rectangularities.

Relation (A.52) may be recast (A.21) in the language of the non-holomor-
phic Green’s function,

∂

∂w
GeP (w,w)=

∂

∂w

(
LN1

Ntot.
wL−1GP

(
wL, wL

)
+
(

1− LN1

Ntot.

)
1
w

)
, (A.53)

where in the last term on the r.h.s. we have rewritten the complex Dirac’s
delta as δ(2)(w,w) = (1/π)∂w(1/w), equivalent to (A.19) upon the regular-
ization 1/w = limε→0w/(ww + ε2). It is of course desirable now to remove
the derivatives ∂w from both sides of (A.53), but this could in principle
produce an additive regular term independent of w, f(w); however, we will
shortly justify that f(w) = 0. If so, (A.53), without the derivatives, appears
even simpler in terms of the non-holomorphic M -transform,

MeP (w,w) =
LN1

Ntot.
MP

(
wL, wL

)
, (A.54)

which is exactly (18).
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The idea of proving f(w) = 0 is to show that (A.54) holds for the usual
(holomorphic) M -transforms (A.7), i.e. outside of the domain D of the
average eigenvalues; then, knowing that the non-holomorphic and holomor-
phic M -transforms coincide on the borderline ∂D, (A.54) would be proven.
Hence, expanding the holomorphic M -transforms into the series of the mo-
ments (A.8), and noticing that if an integer n is a multiple of L, n = Lk,
then Tr P̃

n
= LTrP k (A.49), while in all the other cases, Tr P̃

n
= 0 — we

obtain

MeP (w) =
∑
n≥1

1
wn

1
Ntot.

Tr
〈
P̃
n〉 =

LN1

Ntot.

∑
k≥1

1
wLk

1
N1

Tr
〈
P k
〉

=
LN1

Ntot.
MP

(
wL
)
, (A.55)

i.e. precisely like (A.54), but in the holomorphic sector. This completes the
proof of (18).

Appendix B

Free random variables in a Nutshell

In this appendix, we briefly outline some basic facts about the free ran-
dom variables (FRV) calculus; given the broadness of the subject, we redirect
the reader for more details to the specialized literature. The mathematical
structure behind FRV, established by Voiculescu et al. and Speicher [51,52],
is an extension of classical probability theory to the world of non-commuting
random objects, of which large random matrices are a prime example.

Freeness and addition of random matrices
Independence and the classical addition law

A fundamental notion in the standard theory of probability is that of
independence — two random variables H1 and H2 are called independent if
after subtracting their average values, H ′1,2 ≡ H1,2 − 〈H1,2〉, they fulfil〈

H ′1H
′
2

〉
= 0 . (B.1)

Statistical independence constitutes a basis for numerous important con-
structions. For instance, the probability distribution of the sum (H1 +H2)
of independent random numbers depends uniquely on the PDFs of the sum-
mands, and can be obtained by the following simple procedure: Thanks to
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(B.1), any moment of the sum can be expressed through the moments of the
respective variables using the binomial theorem,

MH1+H2,n = 〈(H1 +H2)n〉 =
n∑
k=0

(
n

k

)〈
Hk

1H
n−k
2

〉
(B.2)

=
n∑
k=0

(
n

k

)〈
Hk

1

〉〈
Hn−k

2

〉
=

n∑
k=0

(
n

k

)
MH1,kMH2,n−k . (B.3)

In other words, gathering the moments into a generating function, named
the characteristic function,

gH(x) ≡
∑
n≥0

inxn

n!
MH,n =

〈∑
n≥0

(ixH)n

n!

〉
=
〈
eixH

〉
, (B.4)

where x is a real argument, one discovers that gH1+H2(x) = gH1(x)gH2(x),
or yet in other words, that the logarithm of the characteristic function,

rH(x) ≡ log gH(x) , (B.5)

is simply additive when summing independent random numbers,

rH1+H2(x) = rH1(x) + rH2(x) , for independent H1, H2 . (B.6)

This is the commutative (classical) addition law.

Freeness

One might wonder whether an analogous structure could be developed
in the world of random matrices. Let us focus on the Hermitian case first —
consider L Hermitian N ×N random matrices H l, and try to introduce an
appropriate notion of independence. Let us also take the matrix dimension
N → ∞, which happens to be a necessary constraint: FRV works only in
the thermodynamic limit.

One notices that it is not sufficient to assume statistical independence
of all the entries of various H ls for them to be truly called independent —
indeed, one has to additionally require that there is no angular correlation
between them; such correlations do arise from angular patterns specific to
the given matrix ensembles. One may remove this angular dependence by
performing a random similarity transformation of each matrix, with the
uniform density on the unitary group, U lH lU

†
l — such matrices display

then all the necessary features, and are referred to as freely independent, or
just free. Non-commutative probability theory equipped with the notion of
freeness is called free probability or free random variables (FRV) calculus.
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In order to put this definition in rigorous terms [51,52], one begins from
making a claim that the appropriate generalization of the classical expecta-
tion map 〈. . .〉 should be τ(. . .) ≡ (1/N) Tr〈. . .〉. Now, one says that theH ls
are free if their centered counterparts,H ′l ≡H l−τ(H l), obey the following
analogue of (B.1),

τ
(
H ′l1H

′
l2 . . .H

′
ln

)
= 0 , (B.7)

for all integers n ≥ 2, and all indices l1, l2, . . . , ln = 1, 2, . . . , L such that
l1 6= l2 6= . . . 6= ln.

To get better acquainted with (B.7), let us examine some of its simplest
implications for two free matrices: By writing H l = H ′l + τ(H l) and using
(B.7), one may work out all the correlation functions. The 2-point one is
then found to be

τ (H1H2) = τ (H1) τ (H2) , (B.8)
i.e. precisely like in the commutative case. For the two possible 4-point
correlation functions, one has

τ
(
H2

1H
2
2

)
= τ

(
H2

1

)
τ
(
H2

2

)
, (B.9)

i.e. again no difference from the scalar sector, but

τ (H1H2H1H2)=τ (H1)2 τ
(
H2

2

)
+τ
(
H2

1

)
τ (H2)2−τ (H1)2 τ (H2)2 ,

(B.10)
which is very different from the classical case. Hence, mixed moments gener-
ically do not factorize into moments of separate variables, as in usual prob-
ability theory — a property which we have seen (B.3) to be the cornerstone
of the classical addition law (B.6); consequently, the latter will require some
serious amendments to make up for this new situation.

The FRV addition law for Hermitian random matrices

We have explained in Appendix (A) that all the moments of a Hermitian
random matrix H are conveniently grouped into a generating function such
as the Green’s function GH(z) (A.3) or the M -transform MH(z) (A.7). In
an analogous way as in standard probability theory, where the application
of the logarithm (B.5) to the characteristic function gH(x) (B.4) leads to
the object rH(x), which is additive (B.6) under the addition of independent
(B.1) random variables — so in free probability, one has to apply functional
inversion to the Green’s function,

GH (BH(z)) = BH (GH(z)) = z , (B.11)

finding the so-called Blue’s function, which fulfils the non-commutative (FRV)
addition law,

BH1+H2(z) = BH1(z) +BH2(z)− 1
z
, for free H1, H2 . (B.12)
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Let us show on an example how this result can be practically used.
Consider the normalized sum (H1 +H2 + . . .+HL)/

√
L of L free random

matrices sampled from the Gaussian Unitary Ensembles (A.9), with the vari-
ances σ2

1, σ
2
2, . . . , σ

2
L, respectively. The normalization by 1/

√
L is equivalent

to the rescaling of all the variances as σ2
l /L. The Green’s function of the

GUE with an arbitrary variance σ2 is given by (A.16). It is easy to invert
it functionally, which produces the corresponding Blue’s function (B.11),

BH(z) = σ2z +
1
z
. (B.13)

Hence, the addition law (B.12) yields the Blue’s function of the normalized
sum to be

B(H1+H2+...+HL)/
√
L(z) = σ2z +

1
z
,

where σ2 ≡ σ2
1 + σ2

2 + . . .+ σ2
L

L
. (B.14)

In other words, it remains a GUE random matrix, yet with the variance σ2

equal to the arithmetic mean of the constituent variances.
We have thus observed how one may exploit the FRV addition law (B.12)

to make discoveries of non-trivial results concerning sums of freely indepen-
dent random matrices in an algorithmic, wholly algebraic, and usually quite
simple way.

Let us finally remark that there exist several alternative notations com-
monly used in the literature, equivalent to the Blue’s function language
(B.11). For example, Voiculescu et al. formulated the theory in terms of the
R-transform, RH(z) ≡ BH(z) − 1/z, in terms of which the FRV addition
law (B.12) appears even simpler, RH1+H2(z) = RH1(z) +RH2(z) (compare
(B.6)).

The FRV addition law for non-Hermitian random matrices

Even though of no use in the current paper, let us mention that the FRV
addition law (B.12) can be generalized from the Hermitian to non-Hermitian
realm with aquaternion construction [53, 54].

The underlying idea looks as follows: We have elaborated (Appendix A)
on how the 2×2 matrix-valued Green’s function (A.29) is the proper quantity
to encode all the average spectral information about a non-Hermitian matrix
model X,

GX(z, z) = lim
ε→0

lim
N→∞

1
N

bTr
〈(
ZD
ε −XD

)−1
〉
. (B.15)
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We have stated that it comprises a non-Hermitian analogue of the Hermitian
Green’s function GH(z) (A.3), but this is not entirely true — the presence
of ZD

ε suggests that it is rather a counterpart of GH(λ + iε), ε → 0+. On
the other hand, when one wishes to use the Hermitian FRV addition law
(B.12), one needs the Blue’s function, which is the functional inversion of
the Green’s function (B.11), and hence, the functional form of the latter is
necessary for any complex z, and not only for z = λ+ iε.

In a pursuit of a non-Hermitian generalization of the Blue’s function, one
is therefore compelled to replace ZD

ε in (B.15) — sufficient for producing the
average spectral density, yet incapable of engineering functional inversion —
by an arbitrary quaternion,

ZD
ε ≡

(
z iε
iε z

)
⊗ 1N −→ Q⊗ 1N ≡

(
a ib
ib a

)
⊗ 1N , (B.16)

where a, b are complex numbers. (Actually, one might restrain b to the real
axis, i.e. choose a 3-dimensional subspace in the quaternion space. This,
however, does not result in simplifying any equation, so we will abandon it.
The point is that b must no longer be close to zero, but cover the entire real
line/complex plane.) In other words, the matrix-valued Green’s function
(B.15) is accordingly promoted to a quaternion function of a quaternion
variable, named thequaternion Green’s function,

GX(Q) = lim
N→∞

1
N

bTr
〈(Q⊗ 1N −XD

)−1
〉
. (B.17)

After this modification, functional inversion is finally allowed in the
quaternion space, and one defines the quaternion Blue’s function,

GX (BX(Q)) = BX (GX(Q)) = Q . (B.18)

Remarkably [53, 54], it may be proven that it satisfies the quaternion FRV
addition law, which parallels the Hermitian version (B.12), but at the quater-
nion level,

BX1+X2
(Q) = BX1(Q) + BX2(Q)− 1

Q , for free X1 , X2 . (B.19)

This result constitutes a robust tool, greatly simplifying handling of sums
of free non-Hermitian random matrices (see for instance [55, 56] to view it
at work).

Multiplication of random matrices

Another important problem, after the addition of free random matri-
ces, is their multiplication. For scalar random variables, it boils down
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to the addition task through the exponential change of variables, since
expH1 expH2 = exp(H1 +H2). Unfortunately, for non-commuting objects,
generically expH1 expH2 6= exp(H1 +H2), and one faces a challenge to
devise a different approach.

The FRV calculus provides such a straightforward prescription of mul-
tiplying free random matrices. They must be either Hermitian, but with
an additional assumption that their product is Hermitian, too, or unitary,
in which case the product automatically remains unitary. The procedure
for such matrices looks as follows: First, invert functionally the pertinent
M -transforms (A.7),

MH (NH(z)) = NH (MH(z)) = z , (B.20)

obtaining the so-named N -transforms. This object is proven to satisfy the
non-commutative (FRV) multiplication law,

NH1H2(z) =
z

z + 1
NH1(z)NH2(z) , for free H1 , H2 . (B.21)

We exploit this formula extensively in Section 3.
Finally, let us mention that our notation is distinct from the one most

often used in the context of multiplying free random variables; one may
alternatively define the S-transform, SH(z) ≡ (z + 1)/(zNH(z)), which is
simply multiplicative, SH1H2(z) = SH1(z)SH2(z).
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