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We apply the method of anomaly cancellation initiated by Robinson
and Wilczek et al. to the Hawking radiation of rotating D-brane solutions
of superstring theories. We obtain that their reduced field theories near
their horizons are two-dimensional chiral field theories in a set of curved
backgrounds. Therefore, we can calculate their angular momentum fluxes
and energy-momentum fluxes from the method of anomaly cancellation. We
obtain that the energy-momentum fluxes of the rotating D-branes compose
thermal radiations, their thermal temperatures match with their Hawking
temperatures obtained from black brane thermodynamics.
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1. Introduction

Hawking radiation is one of the most interesting problems of a black
hole. Since its primal discovery by Hawking more than three decades ago [1],
people have given many different explanations to this phenomenon [2,3,4,5,
6], but the same result has been obtained. Different derivation methods of
Hawking radiation have shown that Hawking radiation is related with the
quantum field effect in the spacetime of a black hole.

Recently, a new method for the derivation of Hawking radiation has
been set up by Robinson and Wilczek et al. which is called anomaly can-
cellation [7, 8]. Because a black hole’s horizon is a one-way membrane, the
effective field theory of quantum fields near the horizon is a two-dimensional
chiral field theory. Hence there are gauge and gravitational anomalies for
the currents outside the horizon. However, the effective action of quantum
fields of a black hole is still gauge invariant and general covariant. Then, to
combine certain boundary conditions for the covariantly anomalous currents

(1163)
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on the horizon, gauge and energy-momentum fluxes of a black hole can be
derived. Such a method for the derivation of Hawking radiation has revealed
the connections between Hawking radiation and anomalies of quantum fields
of a black hole. But one can see that the original mind of such a method
has occurred in [5] many years ago.

In [9, 10, 11], the method of anomaly cancellation for the derivation of
Hawking radiation has been generalized to higher-dimensional rotating black
holes. Then, people have applied such a method for the study of Hawking
radiation of many different kinds of black holes [12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. In [32], to combine the techniques
of conformal field theory, the anomaly cancellation method for the radiation
of a black hole has been generalized to the radiation of higher-spin currents.
Some further developments and applications on the method of anomaly can-
cellation have been carried out in [33,34,35].

There are many rotating D-brane solutions existing in superstring theo-
ries [36,37,38,39]. Rotating D-branes have many interesting thermodynam-
ical properties [40,41,42]. Because a rotating D-brane has an event horizon
like that of a rotating black hole, it also has Hawking radiation like that of
a rotating black hole. Because it is now shown that the method of anomaly
cancellation is universal to the Hawking radiation of many different kinds
of black holes, while the Hawking radiation of rotating D-branes from the
method of anomaly cancellation has not been investigated in the literature
yet, it is necessary for us to give an analysis of the Hawking radiation of
rotating D-branes from the method of anomaly cancellation. In addition,
some technical details in the anomaly cancellation method for a rotating ob-
ject with multiple rotating parameters are still necessary to be investigated
further.

This paper is organized as follows. In Sec. 2, we study the effective field
theories of quantum fields near the horizons of rotating D-branes. We obtain
that they are equal to two-dimensional chiral field theories in a set of curved
backgrounds. Therefore, we can apply the anomaly cancellation method
to these black hole like objects. In Sec. 3, we calculate the angular mo-
mentum fluxes and energy-momentum fluxes of the rotating D-branes from
the method of anomaly cancellation. We obtain that the energy-momentum
fluxes of the rotating D-branes compose thermal radiations, their thermal
temperatures match with their Hawking temperatures obtained from black
brane thermodynamics. In Sec. 4, we give the expressions of the Hawking
temperatures of all of the rotating D-branes in 10-dimensional space-time.
In the Appendix A, we supply with the fluxes of two-dimensional black body
radiation with multiple chemical potentials for the purpose of comparison.
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2. Quantum fields near the horizons of rotating D-branes

Rotating D-branes of supergravity and superstring theories in 10-dimen-
sional space-time have been constructed in [36,37,38,39]. They are higher di-
mensional rotating objects carrying Ramond–Ramond charges of the
Ramond–Ramond (p+ 1)-form fields Ap+1(x). Their actions are given by

S =
1

2κ2

∫
d10x
√
−g
[
R− 1

2
(∂Φ)2 − 1

2(p+ 2)!
e−aΦ|Fp+2|2

]
, (1)

where Φ is the dilaton field and Fp+2(x) = dAp+1(x) is the Ramond–Ramond
field strength. For even dimensional world volume case, the metrics of the
rotating D-branes in Einstein-frame are given by

ds2D = H−
d̃

D−2

(
−(1− 2m

rd̃∆
)dt2 + dx2

1 + . . .+ dx2
p

)
+H

d
D−2

[
∆dr2

H1 . . . HN − 2mr−d̃
+ r2

N∑
i=1

Hi

(
dµ2

i + µ2
i dφ

2
i

)
−4m coshα

rd̃H∆
dt

(
N∑
i=1

liµ
2
i dφi

)
+

2m

rd̃H∆

(
N∑
i=1

liµ
2
i dφi

)2
 , (2)

where D = 10 is the total space-time dimension, d = p + 1 is the world
volume dimension, d̃ = D− d− 2, 2N = d̃+ 2, N is the total number of the
rotating parameters. In metric (2), the functions ∆, H and Hi are given by

∆ = H1 . . . HN

N∑
i=1

µ2
i

Hi
, H = 1 +

2m sinh2 α

rd̃∆
,

Hi = 1 +
l2i
r2
, i = 1, 2, . . . , N . (3)

The N quantities µi satisfy the constraint
N∑
i=1

µ2
i = 1. They can be parame-

trized by (N − 1) unconstrained angles as

µi = sinϕi
i−1∏
j=1

cosϕj , i ≤ N − 1 ,

µN =
N−1∏
j=1

cosϕj . (4)
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In (4),
∏n
j=1 cosϕj is defined to be equal to 1 when n ≤ 0. The dilaton field

Φ and the Ramond–Ramond (p+ 1)-form field Ap+1(x) are given by

e2Φ/a = H , A(p+1) =
1−H−1

sinhα

(
coshαdt+

N∑
i=1

liµ
2
i dφi

)
∧ dpx . (5)

In (1) and (5), the constant a is determined by a2 = 4 − 2dd̃/(d + d̃). For
the odd dimensional world volume case, we have 2N = d̃+ 1, the metrics of
the rotating D-branes have the same form as metric (2), but with the range
of the index i including 0, i.e., i = 0, 1, . . . , N , so there are N unconstrained
angles. Equations (3) to (5) are simply generalized to this case, and we need
to define l0 = 0, φ0 = 0 and H0 = 1.

The horizon rH of a rotating D-brane is determined by the largest real
root of the equation

N∏
i=1

Hi −
2m

rd̃
= 0 . (6)

The rotating D-brane extends in the x1, x2, . . . , xp directions and rotates in
the perpendicular φ1, φ2, . . . , φN directions. The angular velocities
Ω1, Ω2, . . . , ΩN of the event horizon in φ1, φ2, . . . , φN directions can be ob-
tained by requiring η2 = 0 on the horizon, where η = ∂

∂x0
+ Ωi

∂
∂φi

is the
Killing vector. They are evaluated to be

Ωi =
2li

coshα(r2H + l2i )
, i = 1, 2, . . . , N . (7)

The Hawking temperature of a rotating D-brane can be evaluated through
the formula of black hole thermodynamics

T 2
H = lim

r→rH

1
16π2(−η2)

∇µη2∇µη2 . (8)

Being a constant, it can be calculated at any special point on the horizon.
Through defining two functions A(r) and B(r) as

A(r) = 1− 2m

rd̃
(

1 + l21
r2

)(
1 + l22

r2

)
. . .
(

1 + l2N
r2

) ,
B(r) = 1 +

2m sinh2 α

rd̃
(

1 + l21
r2

)(
1 + l22

r2

)
. . .
(

1 + l2N
r2

) , (9)

the result of the Hawking temperature of a rotating D-brane can be given by

TH =
1

4π
A′(r)
B1/2(r)

∣∣∣∣
r=rH

. (10)
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The anomaly cancellation method for the derivation of Hawking radi-
ation has shown the connections between the Hawking radiation and the
anomalies of quantum fields of a black hole. Because classically the particles
cannot exit though a black hole horizon, the effective field theory of quan-
tum fields near a black hole horizon should be a two-dimensional chiral field
theory. Thus when we reduce field theories to two-dimensional space-time
near the horizon of a black hole, there should be gauge and gravitational
anomalies for the currents outside the horizon.

But for a four-dimensional or a higher-dimensional black hole, to observe
from four-dimensional or higher-dimensional space-time, people do not con-
sider that field theories near the horizon are chiral; at the same time, people
can observe that Hawking radiation is existing outside the horizon. This
means that when we reduce field theories to two-dimensional space-time near
the horizon of a black hole, the effective field theories still satisfy the gauge
invariance and general covariance conditions, and there are some other cur-
rents which have counteracted the anomalies of the two-dimensional chiral
field theories.

These currents can be determined by certain boundary conditions which
are physically acceptable. As we can see in Sec. 3 the existence of these
currents results in the correct Hawking radiation of a black hole in four-
dimensional and higher-dimensional space-time. Thus, in order to investi-
gate the Hawking radiation of the rotating D-branes from the method of
anomaly cancellation, we first need to study the effective field theories of
quantum fields near the horizons of rotating D-branes.

We consider a free scalar field ϕ in the background of metric (2). We
suppose that the scalar field is zero-mass and does not couple with the
Ramond–Ramond gauge field. Then, the action of the system is given by

Sfree(ϕ) =
∫
dDx
√
−g gµν∂µϕ∂νϕ

=
∫
dDx
√
−g [∂µ(ϕ∂µϕ)− ϕ∂µ∂µϕ] , (11)

where g is the determinant of metric (2). The scalar field ϕ(x) can be
expanded in terms of the harmonic functions of a rotating D-brane space-
time. To consider the odd dimensional world volume case, we can write

ϕ(x) =
∑

k1,...,kp

∑
l1,...,lN

∑
m1,...,mN

ϕl1...lNm1...mNk1...kp(r, t)

×Yl1,...,lN ,m1,...,mN
(θ, ϕ1, . . . , ϕN−1, φ1, . . . , φN )X(k1, . . . , kp) . (12)



1168 Z.Z. Ma

In (12), Yl1,...,lN ,m1,...,mN
(θ, ϕ1, . . . , ϕN−1, φ1, . . . , φN ) are the normalized

spherical harmonics on a 2N -dimensional unit sphere. Yl1,...,lN ,m1,...,mN

(θ, ϕ1, . . . , ϕN−1, φ1, . . . , φN ) can be written in the form

Yl1,...,lN ,m1,...,mN
(θ, ϕ1, . . . , ϕN−1, φ1, . . . , φN )

= Pm1...mN
l1...lN

(cos θ, cosϕ1, . . . , cosϕN−1)e
i

NP
i=1

miφi

, (13)

where Pm1,...,mN

l1,...,lN
(cos θ, cosϕ1, . . . , cosϕN−1) are the generalized associated

Legendre functions on a 2N -dimensional unit sphere. The functions
X(k1, . . . , kp) are plane waves in the transverse space. They are given by

X(k1, . . . , kp) = ei(k1x
1+...+kpxp) . (14)

The number set (l1, . . . , lN ,m1, . . . ,mN , k1, . . . , kp) are the quantum num-
bers of a partial wave. We suppose that the functions Yl1,...,lN ,m1,...,mN

(θ, ϕ1, . . . , ϕN−1, φ1, . . . , φN ) and X(k1, . . . , kp) satisfy the normalization
condition∫

dΩ2Nd
pxYl1,...,lN ,m1,...,mN

(θ, ϕ1, . . . , ϕN−1, φ1, . . . , φN )X(k1, . . . , kp)

×Y ∗u1,...,uN ,v1,...,vN
(θ, ϕ1, . . . , ϕN−1, φ1, . . . , φN )X∗(q1, . . . , qp)

= δl1u1 . . . δlNuN
δm1v1 . . . δmNvN δk1q1 . . . δkpqp , (15)

where the integration of the coordinates xi takes a unit area on the
p-dimensional transverse space of a rotating D-brane.

To substitute (12) into (11) and complexify the first ϕ inside the inte-
gral, through some calculation, to take the limit near horizon and leave the
dominant terms only [8, 9, 10,24], we obtain finally

Sfree(ϕ) = −
√
−g|rH

∑
k1,...,kp,l1...,lN,m1,...,mN

∫
dtdrϕ∗l1,...,lN ,m1,...,mN ,k1,...,kp

(r, t)

×

−Bd̃/(D−2)(r)
A(r)

∂t +
2imjlj

coshα
(
r2 + l2j

)
2

+
A(r)

Bd/(D−2)(r)
∂2
r


× ϕl1,...,lN ,m1,...,mN ,k1,...,kp(r, t) . (16)

From (16), we obtain that, near the horizon of a rotating D-brane, the effec-
tive field theory of a scalar field reduces to an infinite set of two-dimensional
complex scalar fields in a curved background with metric

ds2 = − A(r)

Bd̃/(D−2)(r)
dt2 +

Bd/(D−2)(r)
A(r)

dr2 , (17)



Hawking Radiation of Rotating D-branes from Anomaly Cancellation 1169

where the functions A(r) and B(r) have been defined in (9). The horizon of
the two-dimensional metric (17) is determined by equation A(rH) = 0, just
the same equation as (6). In addition, each of the two-dimensional complex
field carries N U(1) charges mj , which are just the N angular momentum
quantum numbers of the original partial waves. The corresponding N U(1)
gauge fields are given by

Ajt (r) = − 2lj

coshα
(
r2 + l2j

) , j = 1, 2, . . . , N . (18)

The N axial isometries along each φj directions of metric (2) have turned
into the N U(1) gauge symmetries. Corresponding to the N U(1) gauge
symmetries, there are N U(1) currents Jµi (r), i = 1, 2, . . . , N . For the ro-
tating D-branes of even dimensional world volume, the calculation is similar
as above, and the results of (16)–(18) are also similar. Like that of the ro-
tating black holes [8, 9, 10], in the reduced two-dimensional metric (17), the
relevance with the azimuthal angles in the original metric (2) related with
the rotation of the brane has been dismissed.

If the scalar field carries Ramond–Ramond charges, then it will couple
with the Ramond–Ramond gauge fields of the rotating D-branes. However,
because now the explicit forms of the covariant couplings of quantum fields
with Ramond–Ramond gauge fields are not clear, we do not consider such
a coupling and the related Ramond–Ramond charge fluxes in this paper.
However, we can expect that if we include the couplings of scalar field with
Ramond–Ramond gauge fields in the action, the curved backgrounds of the
reduced two-dimensional field theories of the rotatingD-branes are still given
by metric (17).

3. Hawking radiation of rotating D-brane
from anomaly cancellation

For the reduced near horizon metric (17), to consider the area outside its
horizon, we divide it into two parts: [rH, rH + ε] and [rH + ε,∞]. [rH, rH + ε]
is the area near the horizon, where the physics has certain exotic properties.
[rH + ε,∞] is the area far away from the horizon, where the physics has the
normal properties. The parameter ε can take to be arbitrarily small, thus,
for observable quantities, they can be taken in the area [rH + ε,∞]. In the
near horizon area [rH, rH + ε], to consider that a black hole’s horizon is a
one-way membrane, for the (1+1)-dimensional field theory, the ingoing (left
moving) modes will move towards the centre singularity, therefore, they will
not affect the physics of the area [rH, rH + ε]. That is to say, in the area
[rH, rH + ε], only the outgoing (right moving) modes are responsible for the
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observable physics. This fact makes the effective field theory there be a two-
dimensional chiral field theory. Thus, in the area [rH, rH+ε], there are gauge
and gravitational anomalies for the currents. In the area [rH + ε,∞], the
ingoing and outgoing modes are both existing, field theory there is a normal
one and there are no anomalies for the gauge and gravitational currents.

For a rotating D-brane, it is a thermodynamical equilibrium system,
all currents in the space-time outside the horizon are static. Outside the
horizon, the N U(1) gauge currents can be decomposed into the form

√
−g2Jµi (r) =

√
−g2Jµi(H)(r)H(r) +

√
−g2Jµi(o)(r)Θ+(r) , (19)

where Θ+(r) = Θ(r − r+ − ε) (here we use r+ to represent the radius of
the event horizon), H(r) = 1 − Θ+(r), and g2 = −B(d−d̃)/(D−2)(r) is the
determinant of metric (17). From (19),

√
−g2Jµi(o)(r) are the currents in the

region [rH + ε,∞], they satisfy the ordinary conservation equation. Thus we
have

∂r

[√
−g2Jri(o)(r)

]
= 0 . (20)

On the other hand,
√
−g2Jµi(H)(r) are the currents in the region [rH, rH + ε].

As mentioned above, they are anomalous and thus obey the anomalous con-
servation equation [43,44]

∂r

[√
−g2Jri(H)(r)

]
=
mi

4π
∂rAt(r) , (21)

where At(r) = miAit(r) is the sum of N U(1) fields. The solutions of (20)
and (21) are given by

√
−g2Jri(o) = ci(o) ,

√
−g2Jri(H) = ci(H) +

mi

4π
(At(r)−At(rH)) , (22)

where ci(o) and ci(H) are two sets of integration constants. In fact, ci(o) are
just the currents for an observer to observe at infinity, ci(H) are the values
of the consistent currents of the outgoing modes at the horizon.

On the other hand, current anomaly is a pure quantum field effect, its
existence does not change the gauge invariance of the effective action. A
gauge transformation for the effective action of the two-dimensional field
theory yields [7, 8, 16]

δW = −
∫
d2x
√
−g2λi∇µJµi

= −
∫
d2xλi

[
∂r

(mi

4π
AtH(r)

)
+
(√
−g2Jri(o) −

√
−g2Jri(H) +

mi

4π
At

)
δ (r − r+ − ε)

]
, (23)
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where λi are N U(1) gauge parameters. The first term in the second line
of (23) can be cancelled by the quantum effect of the ingoing modes near
horizon. Thus gauge invariance of the effective action leads to the vanishing
of the coefficients of the δ-function. The combination with (22) yields the
relation

ci(o) = ci(H) −
mi

4π
At(rH) . (24)

The constants ci(H) in (24) can be determined through introducing the
covariantly anomalous currents

√
−g2J̃ri (r) =

√
−g2Jri (r) +

mi

4π
At(r)H(r) , (25)

together with the boundary conditions
√
−g2J̃ri (rH) = 0 , (26)

i.e., the covariant currents vanish away on the horizon [7,8,9]. Such a bound-
ary condition makes physical quantities regular on the future horizon [7,8,9].
The combination of (19), (25) and (26) yields

√
−g2Jri(H)(rH) = −mi

4π
At(rH) . (27)

To combine (22) and (27), we obtain

ci(H) =
√
−g2Jri(H)(rH) = −mi

4π
At(rH) . (28)

To substitute (28) into (24), we obtain

ci(o) = −mi

2π
At(rH) =

mi

2π

N∑
j=1

2mjlj

coshα
(
r2H + l2j

) . (29)

Thus we have obtained the N U(1) gauge currents of the two-dimensional
black hole (17). In (29), because mi are just the N angular momentum
quantum numbers of the partial waves of the original rotating D-brane, (29)
are just the angular momentum fluxes of the rotating D-brane.

Next, we need to calculate the energy-momentum flux of the two-dimen-
sional black hole (17). The energy-momentum tensor outside the horizon
can be decomposed into the form

√
−g2Tµν (r) =

√
−g2Tµν(H)(r)H(r) +

√
−g2Tµν(o)(r)Θ+(r) , (30)

where Θ+(r) = Θ(r− r+− ε) (here we use r+ to represent the radius of the
horizon), H(r) = 1−Θ+(r). Thus,

√
−g2Tµν(H)(r) is the energy-momentum

tensor in the area [rH, rH + ε],
√
−g2Tµν(o)(r) is the energy-momentum tensor

in the area [rH + ε,∞].
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In a two-dimensional curved space-time,
√
−g2T rt (r) is just the energy-

momentum flux in the radial direction. For
√
−g2Tµν(o)(r), as mentioned

above, it has no gauge and gravitational anomalies, therefore, it satisfies the
normal conservation equation

∂r

[√
−g2T rt(o)(r)

]
= Jr(o)∂rAt(r) , (31)

where the right-hand side of (31) comes from the U(1) gauge currents. Jr(o)

is a constant determined by Jr(o) = − 1
2πAt(rH). From (29), we have

Jr(o) =
1

2π

N∑
j=1

2mjlj

coshα
(
r2H + l2j

) ≡ co . (32)

The integration of (31) gives
√
−g2T rt(o)(r) = ao + coAt(r) , (33)

where ao is an integration constant. Because At(r∞) = 0, ao is just the
energy-momentum flux for an observer to measure at spatial infinity.

For
√
−g2Tµν(H)(r), as mentioned above, it has gauge and gravitational

anomalies, therefore, it satisfies the anomalous conservation equation
[7, 8, 45,46]

∂r

[√
−g2T rt(H)(r)

]
=
√
−g2JrH(r)∂rAt(r) +At(r)∂r

×
[√
−g2Jr(H)(r)

]
+ ∂rN

r
t (r) , (34)

where the first term comes from the U(1) gauge currents, the second term
comes from the U(1) gauge anomaly, the third term comes from the gravi-
tational anomaly of the consistent energy-momentum tensor. For a general
two-dimensional non-Schwarzschild-type spherically symmetric metric

ds2 = −f(r)dt2 + g−1(r)dr2 , (35)

the quantity N r
t (r) is given by [7, 8]

N r
t (r) =

1
192π

[
f ′′(r)g(r) + f ′(r)g′(r)

]
; (36)

therefore, for metric (17), we have

N r
t (r) =

1
192π

[(
A(r)

Bd/(D−2)(r)

)(
A(r)

Bd̃/(D−2)(r)

)′′

+
(

A(r)
Bd/(D−2)(r)

)′( A(r)

Bd̃/(D−2)(r)

)′]
. (37)
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From (22) and (24), we have

JrH(r) = co +
1

4π
At(r) . (38)

The integration of (34) gives

√
−g2T rt(H)(r) = aH +

r∫
rH

dr∂r

(
coAt(r) +

1
2π
A2
t (r) +N r

t (r)
)
, (39)

where aH is an integration constant.
On the other hand, because the anomaly of energy-momentum tensor is

a pure quantum field effect, it does not affect the general covariance of the
effective action. To perform an infinitesimal coordinate transformation for
the two-dimensional field theory along the time direction with parameter ξt,
we have [7, 8, 16]

δW = −
∫
d2x
√
−g2 ξt∇µTµt

= −
∫
d2x ξt

{
co∂rAt(r) + ∂r

[
1

4π
A2
t (r)H(r) +N r

t (r)H(r)
]

+
[√
−g2

(
T rt(o)(r)−T

r
t(H)(r)

)
+

1
4π
A2
t (r)+N r

t (r)
]
δ(r−r+−ε)

}
.

(40)

In (40), the first term comes from the classical current. The second term
can be cancelled by the quantum effect of the ingoing modes near horizon.
Thus, general covariance of the effective action leads to the vanishing of the
coefficient of the δ-function. To combine with (33) and (39), we obtain

ao = aH +
1

4π
A2
t (rH)−N r

t (rH) . (41)

According to (37), and because on the horizon A(rH) = 0, we have

N r
t (rH) =

1
192π

[(
A(r)

Bd/(D−2)(r)

)′( A(r)

Bd̃/(D−2)(r)

)′] ∣∣∣∣∣
r=rH

. (42)

In order to determine the constant aH of (41), we need to introduce
the covariantly anomalous energy-momentum tensor T̃µν which satisfies the
covariant anomaly equation [46]

∇µT̃µν =
1

96π
√
−g2

εµν∂
µR , (43)
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where R is the Ricci scalar. For the component T̃ rt (r) which is needed in
the following calculation, for two-dimensional metric (35), to solve (43), we
obtain

√
−g2T̃ rt (r) =

√
−g2T rt (r) +

1
192π

[
f ′′(r)g(r)− 2f ′(r)g′(r)

]
. (44)

Thus, for two-dimensional metric (17), we have

√
−g2T̃ rt (r) =

√
−g2T rt (r) +

1
192π

[(
A(r)

Bd/(D−2)(r)

)(
A(r)

Bd̃/(D−2)(r)

)′′

−2
(

A(r)
Bd/(D−2)(r)

)′( A(r)

Bd̃/(D−2)(r)

)′]
.

(45)

Like that in [7, 8, 9], we add the boundary condition

√
−g2T̃ rt (rH) = 0 (46)

to
√
−g2T̃ rt (r), because such a boundary condition makes physical quantities

regular on the future horizon for a free falling observer. The combination
of (45), (46) and (30) yields

√
−g2T rt(H)(rH) =

1
192π

[
2
(

A(r)
Bd/(D−2)(r)

)′( A(r)

Bd̃/(D−2)(r)

)′

−
(

A(r)
Bd/(D−2)(r)

)(
A(r)

Bd̃/(D−2)(r)

)′′] ∣∣∣∣∣
r=rH

.

(47)

Because on the horizon A(rH) = 0, we obtain

√
−g2T rt(H)(rH) =

1
96π

[(
A(r)

Bd/(D−2)(r)

)′( A(r)

Bd̃/(D−2)(r)

)′] ∣∣∣∣∣
r=rH

. (48)

The combination of (48) and (39) yields

aH =
1

96π

[(
A(r)

Bd/(D−2)(r)

)′( A(r)

Bd̃/(D−2)(r)

)′] ∣∣∣∣∣
r=rH

. (49)
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To substitute (49) and (42) into (41) and make use of (18) and (7), we obtain

ao =
1

4π

(
N∑
i=1

miΩi

)2

+
1

192π

[(
A(r)

Bd/(D−2)(r)

)′( A(r)

Bd̃/(D−2)(r)

)′] ∣∣∣∣∣
r=rH

.

(50)

Thus we have obtained the energy-momentum flux of the two-dimensional
black hole (17). The first term of (50) is due to the radiation of the U(1)
gauge currents of the two-dimensional black hole (17).

We can write (50) in the form

ao =
1

4π

(
N∑
i=1

miΩi

)2

+
π

12
T 2

H , (51)

where TH is the presumed Hawking temperature of metric (17). To com-
pare (51) with (50) and because A(rH) = 0, we obtain

TH =
1

4π
A′(r)
B1/2(r)

∣∣∣∣
r=rH

. (52)

Equation (52) is the Hawking temperature of metric (17) obtained from the
method of anomaly cancellation. For the original rotating D-brane met-
ric (2), from the mode decomposition of scalar field in terms of (12), we can
deduce that the distribution of the spectrum does not change. In (29), be-
cause mi are just the N angular momentum quantum numbers of the partial
waves of the rotating D-brane, (29) are just the angular momentum fluxes of
the rotating D-brane. Therefore, we can deduce that the energy-momentum
flux of the rotating D-brane is just given by (51), the Hawking temperature
of the rotating D-brane is given by (52) which is just equal to that of (10)
obtained from the black brane thermodynamics. Thus, we have derived the
Hawking temperature of the rotating D-brane from the method of anomaly
cancellation.

4. Hawking temperatures of rotating D-branes

In this section, we give the Hawking temperatures of all of the rotating
D-branes in 10-dimensional space-time in terms of metric (2) to use (52)
obtained in Sec. 3, where the two functions A(r) and B(r) have been given
by (9). Most of these results have not been given in the literature before.
The obtained results are the following
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TD0 =
1

4πmr2H coshα

[
7mrH − 3

(
l21l

2
2l

2
3 + l11l

2
2l

2
4 + l11l

2
3l

2
4 + l12l

2
3l

2
4

)
r2H

− 2
(
l21l

2
2 + l21l

2
3 + l21l

2
4 + l22l

2
3 + l22l

2
4 + l23l

2
4

)
r4H

−
(
l21 + l22 + l23 + l24

)
r6H − 4l21l

2
2l

2
3l

2
4

]
, (53)

TD1 =
1

4πmr3H coshα

[
3r8H + 2

(
l21 + l22 + l23 + l24

)
r6H

+
(
l21l

2
2 + l21l

2
3 + l21l

2
4 + l22l

2
3 + l22l

2
4 + l23l

2
4

)
r4H − l21l22l23l24

]
, (54)

TD2 =
1

4πmr2H coshα

[
5mrH − 2

(
l21l

2
2 + l21l

2
3 + l22l

2
3

)
r2H

−
(
l21 + l22 + l23

)
r4H − 3l21l

2
2l

2
3

]
, (55)

TD3 =
1

4πmr3H coshα

[
2r6H +

(
l21 + l22 + l23

)
r4H − l21l22l23

]
, (56)

TD4 =
1

4πmr2H coshα

[
3mrH −

(
l21 + l22

)
r2H − 2l21l

2
2

]
, (57)

TD5 =
1

4πmr3H coshα

[
r4H − l21l22

]
, (58)

TD6 =
1

4πmr2H coshα

[
mrH − l2

]
, (59)

TD7 =
l2

4πmr3H coshα
. (60)

For a D8-brane, because its number of rotating parameters is zero, it is not
a rotating D-brane.

5. Conclusion

There are many different approaches for the derivation of Hawking radia-
tion of a black hole [1,2,3,4,5,6]. Recently, a new method for the derivation
of Hawking radiation has been proposed by Robinson and Wilczek et al.
which is called anomaly cancellation [7, 8]. Using such a method, Hawk-
ing radiation of a black hole can be derived from the near horizon two-
dimensional chiral field theory of a black hole. Such a method has been
widely used for the Hawking radiation of many different kinds of black
holes [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35]. In this paper, we have studied the Hawking radia-
tion of rotating D-branes of superstring theories [36, 37, 38, 39] from the
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method of anomaly cancellation. We obtain that their reduced field the-
ories near their horizons are two-dimensional chiral field theories in a set
of curved backgrounds. Then we calculate their angular momentum fluxes
and energy-momentum fluxes from the method of anomaly cancellation. We
obtain that the energy-momentum fluxes of the rotating D-branes are in
accordance with thermal radiations, their thermal temperatures match with
their Hawking temperatures obtained from black brane thermodynamics.

If the scalar field carries Ramond–Ramond charges, then it will couple
with the Ramond–Ramond gauge fields of the rotating D-branes. However,
since now the explicit forms of the covariant couplings of quantum fields with
Ramond–Ramond gauge fields are not clear, we do not consider such a cou-
pling and the Ramond–Ramond charge fluxes in this paper. However, we can
expect that if we include the couplings of scalar field with Ramond–Ramond
gauge fields, the curved backgrounds of the reduced two-dimensional field
theories of the rotating D-branes are still given by metric (17), and the final
results will not change.

Appendix A

Fluxes of two-dimensional black body radiations

In this appendix, we derive the fluxes of two-dimensional black body
radiations with multiple chemical potentials for the purpose of comparison.
Although the calculation of this paper is carried out with respect to a scalar
field, the same treatment can be carried out with respect to a fermion field
to supply some additional detailed analysis. We can obtain that for the ra-
diation of a fermion particle, its U(1) gauge currents and energy-momentum
flux are still given by (29), (50) and (51). In order to avoid the problem of
superradiance that is related with the rotation of a black hole, we calculate
the fluxes of the radiation of a fermion particle in this appendix.

To consider a two-dimensional black body radiation with thermal tem-
perature TH and N chemical potentials Ω1, Ω2, . . . , ΩN , the distribution of
a fermion particle carrying N U(1) charges m1,m2, . . . ,mN is given by

N(ω,m1, . . . ,mN ) =
1

e(ω−m1Ω1−···−mNΩN )/TH + 1
. (A.1)

The N U(1) gauge currents of this two-dimensional black body radiation are
given by
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Fai = mi

∞∫
0

dω

2π
(N (ω,m1, . . . ,mN )−N (ω,−m1, . . . ,−mN ))

=
mi

2π

N∑
j=1

mjΩj . (A.2)

The energy-momentum flux of this two-dimensional black body radiation is
given by

FE =

∞∫
0

dω

2π
ω (N (ω,m1, . . . ,mN ) +N (ω,−m1, . . . ,−mN ))

=
1

4π

(
N∑
i=1

miΩi

)2

+
π

12
T 2

H . (A.3)

In the context, we have obtained that the N U(1) gauge currents and the
energy-momentum flux of the two-dimensional black hole (17) are given
by (29) and (51). We can see that they are just equal to (A.2) and (A.3).
Therefore, we can deduce that the distribution of the Hawking radiation of a
fermion particle of the two-dimensional black hole (17) is just equal to that
of (A.1). And we can deduce that for the original ten-dimensional metric (2),
the spectrum of its Hawking radiation is still given by (A.1). However for
metric (2), Ω1, Ω2, . . . , ΩN are just the angular velocities of its event horizon,
m1,m2, . . . ,mN are just the N angular momentum quantum numbers of its
radiated particles; therefore, (29) are just the angular momentum fluxes
and (51) is just the energy-momentum flux of the rotating D-brane.
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