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We compute the leading terms of the spectral action for orientable
three dimensional Bieberbach manifolds using two different methods: the
Poisson summation formula and the perturbative expansion. Assuming
that the cut-off function is not necessarily symmetric we find that the scale
invariant part of the perturbative expansion might only differ from the
spectral action of the flat three-torus by the value of the eta invariant.
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1. Introduction

Bieberbach manifolds are compact manifolds, which are quotients of the
Euclidean space by a free, properly discontinuous and isometric action of
a discrete group. The classification of all Bieberbach manifolds is a com-
plex problem in itself (see [1] and the references therein). The non-trivial
lowest dimensional examples appear in three dimensions and have been first
described in [2, 3].

In this paper we study whether the non-perturbative form of the spectral
action as introduced by Connes [4] and calculated for several examples in [5]
and [6] can distinguish between the torus itself and the chosen Bieberbach
three-manifolds.

2. Three-dimensional Bieberbach manifolds

In this section, we briefly recall the description of three-dimensional
Bieberbach manifolds as quotients of three-dimensional tori by the action
of a finite discrete group. We use the algebraic language, starting with the
algebra of the functions on the three-torus T3, which we view as generated
by three mutually commuting unitaries U, V,W .

† Partially supported by MNII grants 189/6.PRUE/2007/7 and N 201 1770 33.

(1189)



1190 P. Olczykowski, A. Sitarz

There are, in total, 10 different Bieberbach three-dimensional manifolds,
six orientable (and that includes the three-torus) and four non-orientable
ones. They all could be defined as quotients of the three-torus by the fol-
lowing free actions of a discrete group on the three-torus. We restrict our
attention here to the orientable manifolds different from the three-torus.
The respective action of discrete groups on the unitary generators of the
algebra of functions on the three-torus is summarized in Table I.

TABLE I

Name Group Generators Action on the generators of T3

G2 Z2 e e . U = −U , e . V = V ∗, e . W = W ∗

G3 Z3 e e . U = e
2
3πiU , e . V = W , e . W = W ∗V ∗

G4 Z4 e e . U = iU , e . V = W , e . W = V ∗

G5 Z6 e e . U = e
1
3πiU , e . V = W , e . W = WV ∗

G6 Z2 × Z2 e1, e2 e1 . U = −U , e1 . V = V ∗, e1 . W = W ∗

e2 . U = U∗, e2 . V = −V , e2 . W = −W ∗

3. The spectra of the Dirac operator

The spectrum of the Dirac operator on Bieberbach manifolds has been
first calculated by Pfäffle [7]. We shall use his results, though rewritten in
a form more suitable for our purposes. As the covering three-torus we shall
choose the equilateral one (with lengths of three fundamental circles equal).

The spectrum can be also easily derived using the formalism of real
spectral triples (which we shall present elsewhere [8]).

Let us fix here the notation. By D3
τ we denote the Dirac operator on the

three-torus with equal lengths of three circles, with the eigenvalues

λk,l,m = ±
√

(k + ε1)2 + |l + ε2 + τ(m+ ε3)|2 , k, l,m ∈ Z ,

where ε1, ε2, ε3 are 0 or 1
2 and depend on the choice of the spin structure and

|τ | = 1, τ not real. The choice of τ = i corresponds to the usually assumed
Dirac operator. We shall denote the spectrum of D3

τ , counted with the
multiplicities, by Sp3

τ . Further, we shall need the generalized Dirac operator
on the circle, taking the standard one, with eigenvalues

λk = αk + β , k ∈ Z, α, β ∈ R ,

we shall denote its spectrum by Sp1
α,β .
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Whenever we write a coefficient in front of the spectrum set we mean the
same set but with the multiplicities reduced by that factor (of course, if the
coefficient is 1

n this requires that the multiplicities must be divisible by n).
As above the spin structures of the three-torus are parametrized by

ε1, ε2, ε3. Furthermore, the representation of the discrete group on the
Hilbert space of spinors can add an additional spin structure on the quotient,
labelled here by δ = ±1.

We have the following spectra of the Dirac operator:

• G2

Here we must have ε1 = 1
2 and have eight possible spin structures,

parametrized by choice of ε2, ε3 and δ. As the Dirac operator on three
torus we take D3

i , with eigenvalues ±
√

(k+ 1
2)2 + (l+ε2)2 + (m+ε3)2,

k, l,m ∈ Z

SpG2
=

{
1
2Sp

3
i if ε2 = 1

2 or ε3 = 1
2 ,

1
2

(
Sp3

i \ 2Sp1
1, 1

2

)
∪ 2Sp1

2,1− 1
2
δ

if ε2 = ε3 = 0 , δ = ±1 .

Observe that only in the ε2 = ε3 = 0 case the spectrum is not the same
as for the torus.

• G3

In this case only the spin structures with ε2 = ε3 = 0 could be projected
to the quotient space. The parameter δ is fixed by the choice of the
spin structure ε1. As the projectable Dirac we take D3

e
2πi
3

SpG3
=


1
3

(
Sp3

e
2πi
3
\ 2Sp1

1, 1
2

)
∪ 2Sp1

3, 1
2

if ε1 = 1
2 , δ = 1 ,

1
3

(
Sp3

e
2πi
3
\ 2Sp1

1,0

)
∪ 2Sp1

3,2 if ε1 = 0 , δ = −1 .

• G4

For the action of Z4 only ε1 = 1
2 and ε2 = ε3 spin structures could be

projected onto the quotient, the Dirac operator which commutes with
the action of the discrete group is D3

e
πi
4
. There are four possible spin

structures and the corresponding spectra are:

SpG4
=


1
4

(
Sp3

e
πi
4

)
if ε2 = ε3 = 1

2 ,

1
4

(
Sp3

e
πi
4
\ 2Sp1

1, 1
2

)
∪ 2Sp1

4, 3
2
−δ if ε2 = ε3 = 0 , δ = ±1 .
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• G5

Here, the situation is similar as in the G3 case and only the spin
structures with ε1 = 1

2 and ε2 = ε3 = 0 could be projected to the
quotient space. The parameter δ is free and gives us two possible spin
structures. The projectable Dirac we take D3

e
2πi
3

SpG5
=


1
6

(
Sp3

e
2πi
3
\ 2Sp1

1, 1
2

)
∪ 2Sp1

6, 1
2

if ε1 = 1
2 , δ = 1 ,

1
6

(
Sp3

e
2πi
3
\ 2Sp1

1, 1
2

)
∪ 2Sp1

6, 7
2

if ε1 = 1
2 , δ = −1 .

• G6

In this case the only projectable spin structure are those with ε1 =
ε2 = ε3 = 1

2 , the projectable Dirac operator is D3
i and the spectrum

of D remains the same (apart from rescaled multiplicities) for each of
four spin structures over G6

SpG6
= Sp3

i .

4. The spectral action

Since we have split the spectra of the Dirac operators into the sets, which
corresponds to the known cases, we shall begin by calculating the spectral
action of the corresponding three-dimensional and one-dimensional tori.

We assume here that the spectral action depends on D and not on D2

(that is we do not restrict ourselves to the even functions over the spectrum),
therefore there is a slight change of notation when compared to [6].

We begin with the action for the torus with the Dirac D3
τ

S
(
D3
τ , Λ

)
= 2

∑
k,l,m

f

(
±
√

(k + ε1)2 + |l + ε2 + τ(m+ ε3)|2
Λ

)

= 2f̂(0, 0, 0)+o
(
Λ−1

)
=2
∫
dx

∫
dy

∫
dzf

(√
x2+|y+τz|2

Λ

)

=
8π

sinφ
Λ3

∞∫
0

dρ f(ρ)ρ2 + o
(
Λ−1

)
,

where τ = eiφ, f̂ denotes the Fourier transform of f considered as a function
of three variables

f̂(kx, ky, kz) =
∫
R3

f(x, y, z)e2πi(kxx+kyy+kzz)dxdydz ,

and we have used the Poisson summation formula.
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For the Dirac operator D1
α,β over the circle we have

S
(
D1
α,β, Λ

)
=
∑
k

f

(
αk + β

Λ

)
= f̂(0) + o

(
Λ−1

)
= Λ

∫
R

f

(
αk + β

Λ

)
dx+ o

(
Λ−1

)
=

1
α
Λ

∫
R

f(x)dx+ o
(
Λ−1

)
.

In the formula above f̂ is the usual Fourier transform of f . Let us observe
that the following identity occurs

S
(
D1

1,γ , Λ
)

= αS
(
D1
α,β, Λ

)
independently of the values of α, β and γ.

We can now formulate

Theorem 4.1. The non-perturbative spectral action over the orientable
Bieberbach manifolds with the Dirac operator projected from the equilateral
Dirac operator over the three-torus is (up to a scaling and up to order o(Λ−1))
indistinguishable from the spectral action over the three-torus.

Proof. Of course, only the cases when the spectrum differs significantly for
the spectrum of the Dirac over three torus may give rise to some differences.
However, observe that the difference in the spectra is always of the form

− 1
n

2
(
Sp1

1,γ

)
+ 2

(
Sp1

n,β

)
.

The coefficient denotes the multiplicity of the eigenvalues from the part
of the spectrum, whereas its sign denotes whether part of the spectrum is
present in the spectrum of chosen Bieberbach manifold (then it is +) or
absent from it (then it is −). The constants β and γ vary from case to case,
n depends on the order of the discrete group G so that the manifold if T 3/G.

From the observation above, however, we know that the resulting spectral
action components will not depend on β and γ and we will obtain

− 2
n

∫
R

f(x)dx

+
2
n

∫
R

f(x)dx

 = 0 ,

and hence will not contribute to the leading terms of the spectral action.
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5. The perturbative spectral action

We can explicitly calculate the difference between the spectral action
on the Bieberbach manifolds and the spectral action on the three-torus,
expanding then the result in Λ.

Consider first an even function f . Taking f be a Laplace transform of h

f(s) =

∞∫
0

e−sxh(x)dx ,

we can write

Tr f
(
|D|
Λ

)
=

∞∫
0

Tr e−x
|D|
Λ h(x)dx .

Knowing the spectra of the Dirac operator over Bieberbach manifolds
when compared to the three torus we can calculate the difference.

First we need the technical lemma. Let D1
α,β be (as denoted before)

the spectrum of the rescaled Dirac over the circle. We calculate exactly the
exponential Tr e−p|D

1
α,β |, assuming that |β| < α.

Tr e−p|D
1
α,β | = e−p|β| +

∞∑
k=1

e−p(αk+β) +
∞∑
k=1

e−p(αk−β)

= e−p|β| +
(

e−pα

1− e−pα

)
2 cosh(pβ) .

Taking into account that p = x
Λ we can take the Laurent expansion for

large values of Λ

e−p|β| +
(

e−pα

1− e−pα

)
2 cosh(pβ) ∼ 2

α

Λ

x
+ o

(x
Λ

)
. (1)

We can now state

Theorem 5.1. The even component of the function f in the spectral action
is the same up to order o(Λ−1) on all three-dimensional Bieberbach manifolds
(including three-torus).

Proof. As we have seen only for some of the spin structures the spectra of
the Dirac operator differ from the spectrum of the three torus (apart from
the trivial factor of multiplicities). In general, we have, for the Bieberbach
Gx, which is a quotient of the torus T 3 the following relation of the spectra

Sp(Gx) =
1
nx

(
Sp
(
T 3
)
\ 2Sp1,ε

)
+ 2Spnx,ε′ ,
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where nx are integer constants, which are n2 = 2, n3 = 3, n4 = 4, n5 = 6
and ε, ε′ depend on the choice of spin structure.

So the difference between the spectral actions on the three-torus T3 and
on the Bieberbach Gx could be calculated from this difference of the spectra

S(Gx, Λ)− 1
nx
S
(
T 3, Λ

)
= 2

∑
λ∈Spnx,ε′

f

(
λ

Λ

)
− 2
nx

∑
λ∈Sp1,ε

f

(
λ

Λ

)
. (2)

As the spectra Sp± are the spectra of rescaled Dirac on the circle, us-
ing the result (1) we see that only the Λ component in the perturbative
expansion could appear. Calculating it explicitly

S(Gx, Λ)− 1
nx
S
(
T 3, Λ

)
= Λ

(
2

2
nx
− 2
nx

2
)∫

1
x
f(x)dx+o

(
Λ−1

)
= o

(
Λ−1

)
.

Therefore, irrespective of the chosen spin structure and Bieberbach man-
ifold, even component of the function determining the spectral action gives
the same result.

The situation is different for the odd component of f . We can always
write, for an odd function f

f

(
D

Λ

)
=

D

|D|
φ

(
|D|
Λ

)
,

where φ is an even function. Assuming that φ is a Laplace transform of h
the odd part of the spectral action becomes

Tr f
(
D

Λ

)
= Tr

D

|D|
φ

(
|D|
Λ

)
=

∞∫
0

Tr
D

|D|
e−x

|D|
Λ h(x)dx .

For the spectra of Dirac operators, which we know, we can calculate the
function under the integral

Tr
D

|D|
e−x

|D|
Λ

and obtain (again we denote p = x
Λ)

Tr sign(D1
α,β)e

−p|D1
α,β | = sign(β)e−p|β| +

∞∑
k=1

e−p(αk+β) −
∞∑
k=1

e−p(αk−β)

= sign(β)e−p|β| −
(

e−pα

1− e−pα

)
2 sinh(pβ) .
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We can expand the function for small p around 0

sign(β)e−p|β| −
(

e−pα

1− e−pα

)
2 sinh(pβ) ∼ sign(β)

α− 2|β|
α

+ o(p) .

Therefore, only (up to terms of order o(Λ−1)) only scale invariant term
can appear. We have

Theorem 5.2. The odd component of the function f gives rise to a differ-
ence in the spectral action on the Bieberbach manifolds in the scale invariant
part of the action. The difference equals the eta invariant of the Dirac op-
erator on the Bieberbach manifold.

Proof. First of all, observe that for the rescaled Dirac operator on the circle
Dα,β the term

sign(β)
α− 2|β|

α
,

is the eta invariant η(D1
α,β), which measures the antisymmetry between the

positive and negative parts of the spectrum of D1
α,β . Therefore, for any of

the spin structures of the circle, the term vanishes for the standard Dirac
operator (that is, D1

1, 1
2

or D1
1,0, using the notation of the paper). As a

consequence, the difference between the (rescaled) spectral action on the
three-torus T3 and on the Bieberbach Gx is (up to order o(Λ−1)

S(Gx, Λ)− 1
nx
S
(
T 3, Λ

)
= 2η

(
D1
nx,ε′x

)
φ(0) ,

where nx is as before and ε′x depends on the chosen spin structure, and we
have used that φ is a Laplace transform of h, so that

∞∫
0

h(x)dx = φ(0) .

As this is, however, the only component of the spectrum of the Bieberbach
manifolds, we have

2η
(
D1
nx,ε′x

)
= η

(
D3
Gx,ε

)
,

and, finally
S(Gx, Λ) = η

(
D3
Gx,ε

)
Φ(0) .

The value of η invariant can be calculated explicitly for the manifolds
G2, G3, G4, G5 and the chosen spin structures for which it does not vanish,
Table II shows the results (A and B denote the spin structures, giving rise
to asymmetric spectrum, in the order presented in Section 3)
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TABLE II

Name A B

G2 1 −1

G3
4
3 − 2

3

G4
3
2 − 1

2

G5
5
3 − 1

3

In fact, the result is not entirely surprising. From the general results
of Bismut and Freed [9] one knows the small-t asymptotic of the following
function of the Dirac operator on the odd dimensional manifolds

Tr
D

|D|
e−t|D| = η(D) +

∞∑
l=0

(Al +Bl log t)t2l+2 .

We can calculate then the leading term of the spectral action arising
from an odd function to be

S(D,Λ, fo) = η(D)φ(0) + o
(
Λ−1

)
.

We shall finish this section by observing why this effect was not picked
by the methods used earlier, which involved sum over the entire spectrum
with the help of the Poisson summation formula.

Observe that the η invariant would appear if φ(0) 6= 0. Since our function
f(x) = sign(x)φ(|x|) that means that f is odd, but discontinuous at x = 0.
Therefore, the previous considerations were valid but since were (implicitly)
assuming continuity of f we could not have obtained any deviation from the
spectral action over the torus.

6. Conclusions

We have shown that apart from the possible difference arising from the
eta invariant the perturbative spectral action is exactly the same for all three
dimensional Bieberbach manifolds as for the three torus. This is not at all
surprising as all terms in the perturbative expansion (for the symmetric cut-
off) depend on the Riemann curvature and Bieberbach manifolds are flat.
The new result is the appearance of slight modifications when the cut-off
function has an asymmetric part. Although here we obtain an invariant, it
would be interesting to see if such a term might appear in some more com-
plicated models, with some extra degrees of freedom coming from discrete
spectral triples, for instance.
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Note added: After the paper was submitted, similar results appeared
in a paper [10] by Marcolli, Pierpaoli and Teh.
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