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We provide a Finslerian extension of the Schwarzschild metric based on
heuristic arguments. The proposed metric asymptotically approaches not
the Minkowski space-time but the Bogoslovsky locally anisotropic space-
time which arises naturally as a deformation of very special relativity.
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Local Lorentz invariance is a fundamental cornerstone of modern phy-
sics. Despite extremely tight experimental bounds on Lorentz symmetry
violations [1] there still remains a tremendous interest in search for such
violations from both experimental and theoretical sides [2].

An ingenious way to break Lorentz invariance was suggested by Cohen
and Glashow [3]. According to them, all current experimental limits on
violations of Lorentz invariance may not imply that the full Lorentz group
is the exact symmetry group of nature. The invariance with respect to its
four-parameter subgroup SIM(2), which leaves invariant a preferred null-
direction nµ, will suffice to meet all current experimental limitations [3, 4].

Extended by space-time translations, SIM(2) leads to the eight-parame-
ter subgroup ISIM(2) (first introduced, probably, in [5]) of the Poincaré
group which is supposed to be the genuine exact symmetry group of nature.

It is well known that, in isotropic situation, there exists essentially only
one way to generalize special relativity, namely by endowing space-time
with some constant curvature [6]. The resulting de Sitter and Anti-de Sit-
ter groups, which are the most general isotropic relativity groups, can be
considered as deformations of the Poincaré group [7]. Similar deforma-
tions of ISIM(2) were considered in [8]. Among deformations of ISIM(2)
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particularly interesting is a one-parameter family of deformations, called
DISIMb(2), which does not leave invariant the standard Minkowski metric
ds2 = ηµνdx

µdxν but the Finslerian metric

ds2 = (nσdxσ)2b(ηµνdxµdxν)1−b , (1)

which was introduced by Bogoslovsky long ago [9, 10, 11] in his attempts
to formulate a generalization of the relativity theory for locally anisotropic
space-time.

To investigate cosmological implications of the metric (1), one should
ask and answer the natural question: what is a curved-space generalization
of this metric? The simplest heuristic guess applied in [12] is to change the
Minkowski metric ηµν in (1) by the Robertson–Walker (or any other general
relativistic) metric.

Although viable, such a procedure is somewhat ad hoc and there is no
guarantee that it gives the true solution. Of course, more systematic ap-
proach implies Finslerian generalization of Einstein field equations. Some
such generalizations were suggested (see, for example, [13,14] and references
therein) but at present it is not altogether clear [15] whether any of them is
on the correct route in the sense of representing reality.

In this note, applying another kind of heuristic arguments, we consider
a Finslerian generalization of Bogoslovsky type of the Schwarzschild metric
(units are such that c = 1 and G = 1)

ds2 = α dT 2 − α−1 dR2 −R2
(
dθ2 + sin2 θ dφ2

)
, (2)

where
α = 1− 2m

R
.

Earlier, a different type of Finslerian generalization of the Schwarzschild
metric was considered by Asanov [16,17].

Firstly, let us concentrate on the radial part of the metric (2). In the
Kruskal–Szekeres coordinates t, x [18, 19] this radial part takes the form

ds2 =
32m3

R
e−R/2m

(
dt2 − dx2

)
, (3)

where (in the exterior region R > 2m)

t

x
= tanh

(
T

4m

)
, (4)

and R as a function of x2 − t2 is implicitly determined through the relation(
R

2m
− 1
)
eR/2m = x2 − t2 . (5)
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Straightforward Finslerian generalization of the radial metric (3) is

ds2 =
32m3

R
e−R/2m

(
dt− dx
dt+ dx

)b (
dt2 − dx2

)
, (6)

where the the function R(x, t) is implicitly determined through the relation(
R

2m
− 1
)
eR/2m =

(
x− t
x+ t

)b (
x2 − t2

)
, (7)

while the relation (4) still remains valid.
Note that the r.h.s. of (7) is invariant [10] under the generalized Lorentz

transformations (Bogoslovsky transformations)

x′ = e−bψ (x coshψ − t sinhψ) ,

t′ = e−bψ (t coshψ − x sinhψ) , (8)

ψ being the rapidity. Under the transformations (8), the original Schwarz-
schild coordinates R and T transform as follows

R′ = R , T ′ = T − 4mψ . (9)

To rewrite the metric (6) in the Schwarzschild coordinates we proceed as
follows. Let us introduce auxiliary variables u = x + t and v = x − t.
Then (7) takes the form

α
R

2m
eR/2m = u1−b v1+b , (10)

which can be used to recast the metric (6) as follows

ds2 = 16m2α

(
du

u

)1−b(
−dv
v

)1+b

. (11)

On the other hand, differentiating(
R

2m
− 1
)
eR/2m = u1−b v1+b

and using (10) in the result, we get

α−1 dR

2m
= (1− b) du

u
+ (1 + b)

dv

v
. (12)
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The second equation is obtained if we express (4) in terms of u and v and
differentiate the resulting equation. This gives

dT

2m
=
du

u
− dv

v
. (13)

Now we can solve (12) and (13) to obtain

du

u
=

1
2

[
(1 + b)

dT

2m
+ α−1 dR

2m

]
,

−dv
v

=
1
2

[
(1− b) dT

2m
− α−1 dR

2m

]
. (14)

Substituting these expressions into (11), we finally get

ds2 = α
[
(1 + b)dT + α−1 dR

]1−b [(1− b)dT − α−1 dR
]1+b

,

which can be rewritten as follows

ds2 =
[
(1− b) dT − α−1 dR

(1 + b) dT + α−1 dR

]b [(
1− b2

)
αdT 2 − α−1 dR2 − 2b dT dR

]
.

(15)
Let us introduce a generalized tortoise coordinate

R∗ = R+ 2m ln
(
R

2m
− 1
)

+ bT . (16)

Then
dR∗ = α−1 dR+ b dT , (17)

and the metric (15) takes a simpler form

ds2 =
(
dT − dR∗
dT + dR∗

)b
α
(
dT 2 − dR2

∗
)
, (18)

that is the same as

ds2 = [
√
α (dT − dR∗)]2b

[
α
(
dT 2 − dR2

∗
)]1−b

. (19)

If the original Schwarzschild radial coordinate R is restored through (17),
we get the final form of our radial Finsler metric

ds2 =
[
(1−b)α1/2 dT−α−1/2 dR

]2b [(
1−b2

)
αdT 2−α−1 dR2−2b dR dT

]1−b
.

(20)
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Of course, this can be obtained directly from (15), but the detour through the
tortoise coordinate makes it clear that it is r = R+ bT , the asymptotic form
of this (generalized) tortoise coordinate, not R, which retains a well defined
Finslerian asymptotic physical meaning. Indeed, α→ 1 when R→∞, and
in this limit (18) takes just the Bogoslovsky form [10]

ds2 =
(
dT − dr
dT + dr

)b (
dT 2 − dr2

)
.

But what about the angular part of the metric? Kruskal–Szekeres coordi-
nates are intimately related to the Fronsdal embedding of the Schwarzschild
space-time into a six-dimensional pseudo-Euclidean space with signature
(+,−,−,−,−,−) [20]. The embedding is given by equations

z1 = 4m
√
α sinh

(
T

4m

)
, z2 = 4m

√
α cosh

(
T

4m

)
, z3 = g(R) ,

z4 = R sin θ cosφ , z5 = R sin θ sinφ , z6 = R cos θ ,
(21)

where the function g(R) satisfies [20,21](
dg

dR

)2

=
2m
R

+
(

2m
R

)2

+
(

2m
R

)3

= α−1

[
1−

(
2m
R

)4
]
− 1 . (22)

Under this embedding, the Kruskal–Szekeres coordinates are given by [22]

t =
1

4m

√
R

2m
exp

(
R

4m

)
z1, x =

1
4m

√
R

2m
exp

(
R

4m

)
z2 . (23)

For the needs of Finslerian generalization, we need the embedding to
induce the radial metric (1 − b2)αdT 2 − α−1dR2 − 2b dR dT instead of
Schwarzschildian αdT 2 − α−1dR2. For this goal, we add one more time-
like dimension and modify the Fronsdal embedding in the following way

z0 = bT, z3 = f(R) , z1 = 4m
√

1− b2
√
α sinh

(
T

4m

)
,

z2 = 4m
√

1− b2
√
α cosh

(
T

4m

)
, z4 = (R+ bT ) sin θ cosφ ,

z5 = (R+ bT ) sin θ sinφ , z6 = (R+ bT ) cos θ , (24)

where the function f(R) is defined through(
df

dR

)2

= α−1

[
1− (1− b2)

(
2m
R

)4
]
− 1 . (25)
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Evidently, the embedding defined via (24) and (25) reduces to the Fronsdal
embedding when b = 0. The Finslerian variant of the Kruskal–Szekeres
coordinates is given by

t =
1

4m

√
R

2m
exp

(
R+ bT

4m

)
z1√

1− b2
,

x =
1

4m

√
R

2m
exp

(
R+ bT

4m

)
z2√

1− b2
, (26)

so that (7) is satisfied.
Let us now consider the Finslerian metric in the ambient space

ds2 =
(
NA dz

A
)2b (

ηAB dz
AdzB

)1−b
, (27)

where the dummy indices run from 0 to 6 and

ηAB = diag(+1,+1,−1,−1,−1,−1,−1) .

We want to choose seven unknown functions NA(R, T ) in such a way that, in
the case θ = π/2, φ = const, the metric (27) to induce the radial metric (20)
under the embedding (24). First of all, we assume that the induced metric
is axially symmetric with symmetry axis coinciding with the z-direction in
the usual three-dimensional space, so that the metric does not depend on
the angle φ. This demands N4 = N5 = 0. The remaining five NA functions
should ensure the above mentioned radial metric matching condition, along
with the requirement that they determine the null-direction, NAN

A = 0.
The resulting functional equations are

b(N0 −N6) + α1/2
√

1− b2
(
N1 cosh

T

4M
−N2 sinh

T

4M

)
= (1− b)α1/2 ,(

2m
R

)2
√

1− b2
α

(
N1 sinh

T

4M
−N2 cosh

T

4M

)
−N3

df

dR
−N6 = −α−1/2 ,

N2
0 +N2

1 −N2
2 −N2

3 −N2
6 = 0 , (28)

and they have the “natural” solution (as the case b = 1 indicates)

N0 = N6 , N1 =

√
1− b
1 + b

cosh
T

4m
,

N2 =

√
1− b
1 + b

sinh
T

4m
, N3 =

√
1− b
1 + b

,

N6 = α−1/2 −N3
df

dR
= α−1/2

1−
√

1−b
1+b

√
2m
R

√
1−(1−b2)

(
2m
R

)3
 .
(29)
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We are almost done. Our generalization of the Schwarzschild metric (2)
is induced by (27) on the Fronsdal-type sub-manifold parametrically defined
through (24). At that, on this manifold,

ηAB dz
AdzB =(

1− b2
)
αdT 2 − α−1 dR2 − 2b dR dT − (R+ bT )2

(
dθ2 + sin2 θ dφ2

)
, (30)

and

NA dz
A = (1− b)α 1/2 dT − α−1/2 dR+N6 d [(R+ bT )(1− cos θ)] . (31)

What remains is to show that this Finslerian generalization of the Schwarz-
schild metric is asymptotically the flat Bogoslovsky space-time. But in the
limit R → ∞, both α and N6 tend to unity, the generalized tortoise co-
ordinate (16) can be replaced by r = R + bT under differentials, and we
have

ηAB dz
AdzB → dT 2 − dr2 − r2

(
dθ2 + sin2 θ dφ2

)
,

NA dz
A → dT − d(r cos θ) . (32)

Therefore, the asymptotic space-time has the Bogoslovsky metric (1) with
nµ = (1, 0, 0, 1).

The anisotropy parameter b is expected to be very small and hard to
access experimentally [8]. Why all the buzz then? The fact that b arises
through the deformation of Cohen and Glashow’s very special relativity indi-
cates that the Bogoslovsky space-time parallels de Sitter (or Anti-de Sitter)
space-time, not Minkowski space-time. Therefore b parallels, in a sense, the
cosmological constant and the question “Why b is so small” is as fundamental
as the cosmological constant problem [8]. Maybe both questions are related
to each other and have a common origin in quantum gravity.
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