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We show that there is only one physically acceptable vacuum state for
quantum fields in de Sitter space-time which is left invariant under the
action of the de Sitter–Lorentz group SO(1, d) and supply its physical in-
terpretation in terms of the Poincaré invariant quantum field theory (QFT)
on one dimension higher Minkowski space-time. We compute correlation
functions of the generalized vertex operator : eiŜ(x) :, where Ŝ(x) is a mass-
less scalar field, on the d-dimensional de Sitter space and demonstrate that
their limiting values at time-like infinities on de Sitter space reproduce cor-
relation functions in (d − 1)-dimensional Euclidean conformal field theory
(CFT) on Sd−1 for scalar operators with arbitrary real conformal dimen-
sions. We also compute correlation functions for a vertex operator eiŜ(u) on
the Łobaczewski space and find that they also reproduce correlation func-
tions of the same CFT. The massless field Ŝ(u) is the nonlocal transform
of the massless field Ŝ(x) on de Sitter space introduced by one of us.
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1. Introduction

The maximally symmetric and homogeneous solution to Einstein’s equa-
tions with the positive vacuum energy density is the de Sitter space-time. It
is therefore important to understand the behavior of quantum fields on this
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space. Recently, this subject has been taken up with renewed interest after
the new and spectacular evidence for the positive cosmological constant and
the accelerating expansion of the Universe has turned up in recent cosmo-
logical measurements. Although quantum field theory (QFT) on de Sitter
space-time is a rather well studied subject [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
there are some aspects of it which attracted considerable interest most re-
cently. One of them is the question of uniqueness of the de Sitter invariant
vacuum state [1,2,3,4,5,6,7,8,9,10,11,12] while the second one is the fact first
established in [1,2,9,13,14] that the limiting values of correlation functions at
time-like infinities on de Sitter space reproduce correlation functions of Eu-
clidean CFT in one dimension lower. This property is now referred to as the
de Sitter/CFT correspondence in the recent literature. In some early pa-
pers on the subject of QFT on de Sitter space an analysis of solutions to
the wave equation for a massive scalar field led to the conclusion that there
exists a one-parameter family of de Sitter invariant vacuum states for a
massive scalar field Φ̂(x) [8,9,10]. In the current literature the origin of this
one-parameter family of vacuum states is regarded as mysterious [8, 9, 10].
Similarly, the proposal of de Sitter/CFT correspondence based on the anal-
ysis of the propagator for massive fields on de Sitter space leads to some
difficulties because the scaling dimensions

∆± =
d− 1

2
±

√(
d− 1

2

)2

−m2 (1.1)

become complex for m2 > (d−1
2 )2 [9, 13].

The purpose of this paper is to address these two aspects of QFT on de
Sitter space. In particular, we shall demonstrate the existence of the one-
parameter family of de Sitter invariant vacuum states | λ > by solving equa-
tions following from the conditions that they are annihilated by generators
of the de Sitter group, M̂

ab
| λ 〉 = 0 and we will connect their origin to the

same property of the Lorentz covariant QFT on Minkowski space. It is well
known that the spatial infinity of d+1-dimensional Minkowski space-time is
the d-dimensional de Sitter space [15,16]. Quantum field theory of massless
and massive fields on de Sitter space inherits its vacuum structure from the
Lorentz invariant QFT of massless fields in Minkowski space-time. There
exists a one-parameter family of Lorentz invariant vacuum states for QFT
on Minkowski space-time. This implies the presence of λ-vacua for QFT on
de Sitter space. It turns out that these states are physically unacceptable
for λ 6= 0 as they introduce correlations between the antipodal points on de
Sitter space-time. We shall show that there exists only one physically accept-
able and unique de Sitter invariant vacuum state for massive and massless
fields on de Sitter space, corresponding to λ = 0, and supply the physical
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interpretation of this state in terms of the Poincaré invariant QFT of a mass-
less particle in d + 1-dimensional Minkowski space-time [1, 2, 3, 4, 5, 11, 12].
The positive frequency modes e−ik·x of a massless particle in Minkowski
space-time properly projected on de Sitter space lead to the unique positive
frequency modes on de Sitter space [1, 2, 3, 4, 5, 6, 7, 11, 12] and to a unique
physically acceptable de Sitter invariant vacuum state.

We shall also address the now well known fact [1,2,9,13,14] that behavior
of two-point correlation functions at time-like infinities on d-dimensional de
Sitter space (and at spatial infinity on Łobaczewski space) is characteristic
of the d − 1-dimensional Euclidean conformal field theory (CFT). In order
to make the de Sitter/CFT correspondence as transparent as possible and
at the same time satisfy the requirement that conformal dimensions ∆ of
scalar operators in CFT be real and positive we shall introduce a family of
generalized vertex operators eiŜ(x) for a massless scalar field Ŝ(x) and com-
pute their two-point correlation functions [1, 2, 3, 4, 5, 6, 7]. We demonstrate
that every correlation function for a scalar operator of conformal dimension
∆ is reproduced by our vertex operators on de Sitter space-time.

2. De Sitter invariant vacuum states

De Sitter space is a single-sheeted hyperboloid in the d+ 1-dimensional
Minkowski space

xaηabx
b = x·x = −1 . (2.1)

This representation of de Sitter space makes it transparent that the de Sitter
isometry group is SO(1, d). The generators of this symmetry corresponding
to Killing vectors on de Sitter space are

Mab = i(xa∂b − xb∂a) . (2.2)

Using the standard global parametrization of the hyperboloid

x0 = sinh τ , xi = ni cosh τ , n2 = 1 (2.3)

one obtains the induced metric on de Sitter space

ds2 = gµνdx
µdxν = dτ2 − cosh2 τdΩ2

d−1 . (2.4)

The d’Alambertian on de Sitter space is

2g = | det(g)|−
1
2∂µ

(
| det(g)|

1
2 gµν∂ν

)
= (cosh τ)1−d∂τ

(
(cosh τ)d−1∂τ

)
+ cosh−2 τL2 , (2.5)

where L2 is the Laplace–Beltrami operator on the unit Sd−1 sphere.
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One can show that 2g = −C, where C is the Casimir operator C =
−1

2MabM
ab of the de Sitter group acting on scalars. The Casimir operator C

enters a very useful identity relating the d’Alambertian on Minkowski space
2d+1 = ηab∂a∂b to the one on de Sitter space

C = −1
2MabM

ab = x22d+1 − E(E + d− 1) , (2.6)

where E = xa∂a is the Euler operator (a generator of the dilatation subgroup
of the conformal group). This identity allows us to describe massive (and
massless) scalar fields on de Sitter space in terms of a massless scalar field
on Minkowski space. A massless scalar field Φ∆(x) in Minkowski space with
the scaling dimension ∆

Φ∆(λx) = λ−∆Φ∆(x) , EΦ∆(x) = −∆Φ∆(x) , (2.7)

corresponds to a massive scalar field on de Sitter space with a mass m such
that

m2 = ∆(d− 1−∆) . (2.8)

For a given mass there are two scaling dimensions

∆± =
d− 1

2
±

√(
d− 1

2

)2

−m2 . (2.9)

In the following, we choose ∆ = ∆− for the scaling dimension of a mass-
less scalar field on Minkowski space corresponding to a massive scalar on
de Sitter space.

The dynamics of this massive scalar field Φ(x) is defined by the following
Lagrangian density

L = 1
2

(
gµν∂µΦ∂νΦ−m2Φ2

)
. (2.10)

The Poincaré invariant QFT of a massless scalar field on Minkowski space
induces a de Sitter invariant QFT of a massive (or massless) scalar field
on de Sitter space with a unique vacuum state. This follows immediately
from (2.6) and the observation that the sign of the Klein–Gordon norm for
a massless scalar field on Minkowski space is preserved upon projection on
the de Sitter hyperboloid [1, 2, 3, 4, 5, 6, 7]. This has two immediately clear
implications. First, a positive frequency solution for a massless scalar on
Minkowski space

Φ(+)
∆

(x) =
∫

(dk)d
k0

e−ik·xa∆(k) , (2.11)

where
a∆(λk) = λ−∆̃a∆(k) , ∆̃ = d− 1−∆ , (2.12)
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and k is a null momentum vector k2 = 0, when projected on the de Sitter
hyperboloid x·x = −1 becomes a positive frequency solution for the Klein–
Gordon wave equation on de Sitter space. Choosing

a∆(k) =
∑
nM

Nnk0
−∆̃YnM

(
k̂
)
anM , (2.13)

with ∆̃ = ∆+, k̂ = k
k0
, and YnM (k̂) the spherical harmonics on Sd−1, one

obtains the positive frequency modes of the massive scalar field on de Sitter
space

fn(τ)YnM (n) = Nn

∫
(dk)d
k0

e−ik·xk0
−∆̃YnM

(
k̂
)
. (2.14)

The integral (2.14) can be easily evaluated [12] and it is given below in (2.22)
with

A(0)
n =

1
2

√√√√√ Γ
(
n+∆+

2

)
Γ
(
n+∆−

2

)
Γ
(
n+1+∆+

2

)
Γ
(
n+1+∆−

2

) , B(0)
n = − i

2A(0)
n

. (2.15)

The spherical harmonics YnM (k̂) and YnM (n) are eigenfunctions of the
Laplacian on Sd−1 corresponding to the eigenvalue n(n + d − 2) and the
degeneracy

dn(d) =
(2n+ d− 2)

(d− 2)!
(n+ 1) . . . (n+ d− 3) . (2.16)

Second, by promoting the amplitudes anM to the annihilation operators
ânM one also obtains the positive frequency part of the massive scalar field
operator Φ̂(+)(x) on de Sitter space. The unique de Sitter invariant vacuum
state | 0 > is defined by the condition

Φ̂(+)(x) | 0 〉 = 0 . (2.17)

We now construct the generators M̂ab of the de Sitter group acting on
the Fock space of a massive scalar field Φ̂(x). To claim de Sitter invariance
of a vacuum state one needs to impose the conditions

M̂ab | 0 〉 = 0 , (2.18)

where conserved objects

M̂ab =
∫

(cosh τ)d−1dΩd−1 : T̂ 0
µ(x) : ξµab , (2.19)
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are the generators of the de Sitter group evaluated at τ = 0, ξµab are the de
Sitter space Killing vectors, and

: T̂µν(x) :=: ∂µΦ̂(x)∂νΦ̂(x) : −1
2gµν : L(x) : , (2.20)

is the stress-energy-momentum tensor of a massive scalar field on de Sitter
space. The field operator of a massive scalar field on the de Sitter space is

Φ̂(x) =
∑
nM

(fn(y)YnM (n)ânM + h.c.) , (2.21)

where

fn(y) = (1− y)s−
[
AnF

(
s− +

n

2
, s− +

2− d− n
2

;
1
2

; y
)

+Bny
1
2F

(
s− +

n+ 1
2

, s− +
3− d− n

2
;
3
2

; y
)]

, (2.22)

s− = 1
2∆−, y = tanh2 τ , and F is the hypergeometric function. The coeffi-

cients An and Bn satisfy the condition

i
(
AnBn −AnBn

)
= 1 , (2.23)

following from the positivity of the Klein–Gordon norm for the positive
frequency modes fn(y)YnM (n). To find the de Sitter invariant vacuum state
it is sufficient to compute the de Sitter group generators M̂0i and demand
that they annihilate this vacuum state. The Killing vectors ξµab, a = 0,
b = i, corresponding to these generators are expressed in terms of the n = 1
spherical harmonics,

ξ0 = Y1M0(n) , ξα = − sinh τ cosh τ∂αY1M0(n) . (2.24)

We obtain the following formula for the only non-vanishing terms in the
normal ordered expression for the generators M̂0i acting on the vacuum
state | 0 >

1
2

∑
nM

∑
n′M ′

Cnn′

∫
dΩd−1Y1M0Y nMY n′M ′ â

†
nM â

†
n′M ′ + . . . , (2.25)

Cnn′ = BnBn′ +
(
m2 + 1

2n(n+ d− 2)

+1
2n
′(n′ + d− 2)− 1

2(d− 1)
)
AnAn′ . (2.26)
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The generators M̂0i annihilate the vacuum state | 0 > only when the co-
efficients in front of two creation operators in (2.25) vanish. The Clebsch–
Gordan coupling coefficients for SO(d) do not vanish for | n− n′ |= 1. This
implies that Cnn′ for | n − n′ |= 1 must vanish. We obtain the following
simple equation for αn = iBnAn

αnαn+1 = m2 + n(n+ d− 1) , (2.27)

which together with the K–G norm condition leads to the following result:
for n even,

An = eλA(0)
n , Bn = e−λB(0)

n , (2.28)

and for n odd,
An = e−λA(0)

n , Bn = eλB(0)
n , (2.29)

with λ real. A(0)
n and B(0)

n are the coefficients obtained before (2.15) from
the evaluation of the integral (2.14). The closure of the Lorentz–de Sitter
Lie algebra implies that the remaining generators will also annihilate the
vacuum state. There exists a simple canonical transformation between the
field operator Φ̂λ(x) corresponding to the modes (2.22) and the field operator
Φ̂(x) corresponding to the unique vacuum state (2.14)

Φ̂λ(x) = coshλΦ̂(x) + sinhλΦ̂(−x) , (2.30)

which makes the correlations between antipodal points transparent. The
modes (2.22) correspond to the following Lorentz, but not Poincaré, invari-
ant choice for positive frequency modes for a QFT on Minkowski spacetime

fk(x) = coshλe−ik·x + sinhλeik·x . (2.31)

This concludes our demonstration of the existence of a one-parameter family
of de Sitter invariant vacuum states | λ > and elucidates their physical
meaning.

3. Vertex operators on de Sitter space-time
and their correlation functions

The special case of a massless scalar field which is the phase Ŝ(x) canoni-
cally conjugate to the electric charge operator Q̂ has been studied extensively
in the physically most interesting case d = 3 in [1, 2, 3, 4, 5, 6, 7]. It turns
out that a special care is needed in the treatment of the zero mode n = 0 of
the Laplacian on the unit sphere. Indeed, our formula for A(0)

n has a simple
pole at n = 0 for a massless field and as such is meaningless. We need to
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solve the d’Alambert equation for the n = 0 part of a massless scalar field
which from now on we denote Ŝ(x). The dynamics of Ŝ(x) is derived from
the somewhat more conveniently normalized Lagrangian density

L =
(
2e2Ωd−1

)−1
gµν∂µŜ∂ν Ŝ , (3.1)

where Ωd−1 is the volume of Sd−1 and e is the coupling constant whose
meaning is that of a unit of electric charge in the d = 3 case. We find the
following expression for the massless field operator Ŝ(x)

Ŝ(x) = Ŝ0 + eQ̂f0(τ) +
∑
nM

(fn(τ)YnM (n)ânM + h.c.) , (3.2)

where the sum is over n 6= 0 and the zero mode f0(τ) satisfies the following
equation

(cosh τ)d−1∂τf0(τ) = 1 . (3.3)

The operators Ŝ0 and Q̂ are canonically conjugate[
Ŝ0, Q̂

]
= ie . (3.4)

The annihilation and creation operators satisfy the following commutation
relations [

ânM , â
†
n′M ′

]
= e2Ωd−1δnn′δMM ′ . (3.5)

It is easy to show that the de Sitter group generators evaluated for a mass-
less scalar Ŝ(x) do not depend on the constant phase Ŝ0 but do depend
on the charge operator Q̂. The de Sitter invariant vacuum state is then
characterized by the following conditions:

Q̂ | 0 〉 = 0 , ânM | 0 〉 = 0 . (3.6)

In the representation in which the operator eiŜ0 is diagonal and eigenstates
of Q̂ are normalizable S0 is a periodic variable with the usual period of 2π.
It is a phase conjugate to a charge Q̂.

It is convenient, following [1, 2, 3, 4, 5, 6, 7], to introduce the generalized
vertex operator on de Sitter space

V̂ (x) =: eiŜ(x) : , (3.7)

and compute its two-point correlation function

〈0 |: eiŜ(x) :: e−iŜ(y) :| 0〉 = eF (x,y) , (3.8)
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where

F (x, y) = e2
(
〈0 | Ŝ+(x)Ŝ−(y) | 0〉 − ie2

2
(f0(x)− f0(y))

)
, (3.9)

with Ŝ+(x) and Ŝ−(x) the positive and negative frequency parts of Ŝ(x).
The master function F (x, y) can be computed exactly but its exact form is
of no concern for us here. The remarkable property of this function is its
universal asymptotic behavior when τ(x) = τ(y) = ±∞. One finds in this
limit

F (x̂, ŷ) = −C(d)e2
(

1
(d− 3)!

ln
(

1− cosθ
2

)
+ C ′(d)

)
, (3.10)

where
cos θ = n(x) · n(y) , (3.11)

and

C(d) =
2d−3Γ 2

(
d−1
2

)
(d− 2)π

, (3.12)

C ′(d) =
(

1 + (−1)d
)

ln 2 + (−1)d
d−2∑
n=1

(−1)n
1
n
. (3.13)

This implies that the two-point correlation function of the vertex opera-
tor on time-like infinity Sd−1 is equal to the two-point correlation function
of the scalar operator with the conformal dimension ∆ = C(d)e2 in the
Euclidean CFT on Sd−1. The underlying reason for this relation is the iso-
morphism of the conformal group of Rd−1 (or Sd−1) and the de Sitter group
SO(1, d) on d-dimensional de Sitter space which is the basic kinematical fact
with many different dynamical realizations [1,2,13,14,17,18,19]. Our basic
formula (3.8) generalizes the one obtained in the special case of d = 3 [1,2].
Unlike the case of the two-point correlation function of a massive scalar field
first discussed in [9,13] there are no problems with the vanishing with τ →∞
of an overall amplitude of the d−1-dimensional CFT two-point function and
the complex values of the scaling dimensions ∆± for m2 > (d−1

2 )2. Using
our vertex operators we can reproduce all multi-point correlation functions
of scalar primary scaling operators of any scaling dimension in the Euclidean
d− 1-dimensional CFT.

4. Correlation functions on the Łobaczewski space

The operator Ŝ0 can be extracted from Ŝ(x) by averaging over the sphere
Sd−1, τ = 0, which is an intersection of x0 = 0 with the de Sitter hyper-
boloid x·x = −1. The proper Lorentz invariant generalization of Ŝ0 is the
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following nonlocal transform from de Sitter space to the Łobaczewski space
of velocities u [1, 2, 3, 4, 5, 6, 7]

Ŝ(u) =
2

Ωd−1

∫
(dx)d+1δ(x·x+ 1)δ(u·x)Ŝ(x) , (4.1)

where u·u = 1. The induced metric on the Łobaczewski space is

ds2 = dψ2 + sinh2 ψdΩ2
d−1 . (4.2)

One can show that Ŝ(u) satisfies the Laplace equation on Łobaczewski space

∆Ŝ(u) = 0 . (4.3)

A quick inspection of (4.1) reveals that only the even part of Ŝ(x),

Ŝe(−x) = Ŝe(x) , (4.4)

enters the formula for Ŝ(u). This means that for n even only An, and
for n odd only Bn part of the positive (negative) frequency modes enters the
formula for Ŝ(u). We obtain the following expression for Ŝ(u)

Ŝ(u) = Ŝ0 +
∑
nM

(fn(y)YnM (n)ânM + h.c.) , (4.5)

where the sum is over n 6= 0. The fn(y) modes on Łobaczewski space are
the same functions of y as before but here we have y = coth2 ψ. The fact
that only even modes in Ŝ(x) appear in Ŝ(u) implies that Q̂ does not appear
in it. The two-point correlation function of the vertex operator

Û(u) = eiŜ(u) , (4.6)

is a finite function which does not require that the normal ordering prescrip-
tion be applied in marking contrast to the de Sitter case

〈0 | eiŜ(u)e−iŜ(v) | 0〉 = eH(u,v) , (4.7)

H(u, v) = −1
2〈0 |

(
Ŝ(u)− Ŝ(v)

)2
| 0〉+ 1

2

[
Ŝ(u), Ŝ(v)

]
. (4.8)

One can show that the commutator function vanishes on Łobaczewski
space. Lorentz invariance implies that H(u, v) is a function of the scalar
product u·v = coshλ = z, H(u, v) = Hd(z), which vanishes for z = 1 and
satisfies an inhomogeneous Laplace equation on Łobaczewski space

∆uH(u, v) = const. (4.9)
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The complete result of integration of the resulting differential equation on
d-dimensional Łobaczewski space is

Hd(z) = −e2 2d−3(d−1)
π(d−2)!

Γ 2

(
d−1

2

) z∫
1

dx
(
x2−1

)− d
2

x∫
1

dy
(
y2−1

) d
2
−1

.

(4.10)
In particular for d = 3 we find [1, 2, 3, 4, 5, 20]

H3(λ) = −e
2

π
(λ cothλ− 1) , (4.11)

and for d = 4 we have

H4(λ) = −e
2

2

(
ln cosh

λ

2
+

1
4

tanh2 λ

2

)
. (4.12)

This completes our demonstration that the proper framework for the dis-
cussion of the relation between correlation functions on de Sitter (or Łoba-
czewski) space and correlation functions of the Euclidean CFT on a time-
like infinity Sd−1 are the generalized vertex operators and this is the context
where the so-called dS/CFT correspondence [1,2,13,14,17,18] was first dis-
covered as a simple side effect of work on the physical problem [1,2,3,4,5,6,7].
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