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We review our previous studies of truncated Mellin moments of parton
distributions. We show in detail the derivation of the evolution equation
for double truncated moments. The obtained splitting function has the
same rescaled form as in a case of the single truncated moments. We apply
the truncated moments formalism to QCD analyses of the spin structure
functions of the nucleon, g1 and g2. We generalize the Wandzura–Wilczek
relation in terms of the truncated moments and find new sum rules. We
derive the DGLAP-like evolution equation for the twist-2 part of g2 and
solve it numerically. We find also useful relations between the truncated
and untruncated moments.
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1. Introduction

Truncated moments (TM) of parton distribution functions (PDFs) were
introduced and developed in the QCD analysis by Forte, Latorre, Magnea,
Piccione and Ridolfi [1, 2, 3, 4]. The authors obtained the non-diagonal evo-
lution equations, where each n-th truncated moment couples to all higher
ones. Then, the idea of TM was successfully applied in the leading ln2x

(1231)



1232 D. Kotlorz, A. Kotlorz

approximation, where we found diagonal solutions [5]. Also Sissakian,
Shevchenko and Ivanov used the TM technique in their NLO analyses of
SIDIS data, incorporating polynomial expansion [6, 7]. Several years ago,
we derived the DGLAP-type diagonal (no mixing between moments of dif-
ferent orders) and exact evolution equation for the TM in a case of a single
truncation [8]. Then, we have utilized this approach to the determination
of the parton distribution functions from their truncated moments [9]. The
idea of the TM was also discussed by Psaker, Melnitchouk, Christy and
Keppel in a context of the quark–hadron duality [10]. In this paper, in the
continuation of our earlier works, we present in detail a generalization of the
TM approach for a double truncation of the integral limits. This problem
has been already briefly discussed in [10] and presented in [11]. Here, we also
present interesting, novel implications of the TM approach for the analysis
of the polarized structure function g2.

The evolution equations for the truncated Mellin moments of the parton
distributions can be a useful additional tool in the perturbative QCD analy-
sis of the structure functions. In the standard Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) formalism [12, 13, 14, 15] a central role play the
parton densities, which depend on the kinematic variables Q2 and x. Then
the truncated or untruncated moments, which are e.g. contributions to the
sum rules, can be obtained by integrating of the parton distribution q(x,Q2)
over the Bjorken-x. Alternatively, one can study directly the Q2 evolution of
the moments. This is sometimes more convenient, particularly in the cases
when we know the moments (e.g. from direct measurements, calculations
on lattice and sum rules constraints), while the PDFs are poorly known. We
have shown in [8] that the evolution equation for the n-th truncated at x0

moment
∫ 1
x0
dxxn−1 q(x,Q2) has the same DGLAP form as for the parton

density itself, but with a modified splitting function P ′ij(n, x) = xnPij(x).
The TM approach allows one to avoid the problem of the unphysical region
x→ 0. Furthermore, this approach refers directly to the physical values —
moments (rather than to the parton distributions), what enables one to use
a wide range of deep-inelastic scattering data in terms of a smaller number
of parameters. The evolution equations for the truncated moments are uni-
versal — they can be used in each order of the approximation (LO, NLO,
NNLO etc.) and for unpolarized, as well as polarized parton densities.

The contents of this paper are as follows. In Section 2 we recall the
evolution equation for the n-th truncated at x0 moment and generalize this
formula for the double truncation — in both limits of integration. Novel im-
plications of the TM approach for the the polarized structure function g2 are
presented in Section 3. We derive the Wandzura–Wilczek relation in terms of
the truncated moments, finding new sum rules. Then we derive the DGLAP-
like evolution equation for the twist-2 part of g2 and present numerical so-
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lutions. In Section 4 we derive some useful relations between the truncated
and untruncated Mellin moments. Finally, we summarize the main results
and discuss future possible applications of the TM approach.

2. The evolution equations for the truncated Mellin moments
of the parton densities

The standard perturbative QCD approach is based on the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations for the par-
ton densities [12,13,14,15]. In this formalism the main role is played by the
parton distribution functions q(x,Q2), which obey the well-known formula

dq
(
x,Q2

)
d lnQ2

=
αs

(
Q2
)

2π
(P ⊗ q)

(
x,Q2

)
, (1)

where αs(Q2) is the running coupling and ⊗ denotes the Mellin convolution

(A⊗B)(x) ≡
1∫
x

dz

z
A
(x
z

)
B(z) . (2)

The splitting function P (z,Q2) can be expanded in a power series of αs(Q2).
For the untruncated n-th Mellin moment, defined for an arbitrary function
f(x) as

f̄n =

1∫
0

dxxn−1 f(x) , (3)

the evolution equation takes the form of an ordinary linear differential one,
namely

dq̄n
(
Q2
)

d lnQ2
=
αs

(
Q2
)

2π
γn
(
Q2
)
q̄n
(
Q2
)
. (4)

Here, the anomalous dimension γn(Q2) is the untruncated moment of the
splitting function P (z,Q2)

γn
(
Q2
)

=

1∫
0

dz zn−1 P
(
z,Q2

)
. (5)

Eq. (4) can be solved analytically

q̄n
(
Q2
)

= q̄n
(
Q2

0

) [αs

(
Q2

0

)
αs (Q2)

] b γn

(6)
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and the parton density q(x,Q2) can be found via the inverse Mellin transform

q
(
x,Q2

)
=

1
2πi

c+i∞∫
c−i∞

dnx−n q̄n
(
Q2
)
. (7)

Now, let us focus on the approach, in which we can study the Q2 evolution of
the truncated moments of the parton distributions. In [8] we have found that
the single truncated moments of the parton distributions q(x,Q2), defined as

q̄n
(
x0, Q

2
)

=

1∫
x0

dxxn−1 q
(
x,Q2

)
, (8)

obey the DGLAP-like equation1

dq̄n
(
x0, Q

2
)

d lnQ2
=
αs

(
Q2
)

2π
(P ′ ⊗ q̄n)

(
x0, Q

2
)
. (9)

Here a role of the splitting function plays P ′(n, z)

P ′(n, z) = zn P (z) . (10)

Since the experimental data cover only a limited range of x, except very
small x → 0 as well as large x → 1, it is very natural and convenient
to deal with the double truncated moments. Truncation at large x is less
important in comparison to the small-x limit because of the rapid decrease
of the parton densities as x → 1, nevertheless, a comprehensive theoretical
analysis requires an equal treatment of the both truncated limits.

It can be shown (see [10,11]), that the double truncated moments

q̄n
(
xmin, xmax, Q

2
)

=

xmax∫
xmin

dxxn−1 q
(
x,Q2

)
(11)

also satisfy the DGLAP-type evolution Eq. (9), namely

dq̄n
(
xmin, xmax, Q

2
)

d lnQ2
=
αs

(
Q2
)

2π

1∫
xmin

dz

z
P ′(n, z) q̄n

(xmin

z
,
xmax

z
,Q2

)
(12)

1 For clarity we present only the nonsinglet part.
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with P ′ given again by Eq. (10). Indeed, one can note that the double trun-
cated moment, defined by Eq. (11), is a subtraction of two single truncated
ones Eq. (8)

q̄n
(
xmin, xmax, Q

2
)

=

1∫
xmin

dxxn−1 q
(
x,Q2

)
−

1∫
xmax

dxxn−1 q
(
x,Q2

)
= q̄n

(
xmin, Q

2
)
− q̄n

(
xmax, Q

2
)
. (13)

Applying the evolution equation for the single truncated moments Eq. (9)
to the above formula, one can write

dq̄n
(
xmin, xmax, Q

2
)

d lnQ2
=

αs

(
Q2
)

2π

 1∫
xmin

dz

z
P ′(n, z)q̄n

(xmin

z
,Q2

)

−
1∫

xmax

dz

z
P ′(n, z)q̄n

(xmax

z
,Q2

) . (14)

Then, the lower limit of integration in the second integral on the r.h.s. can
be moved from xmax to xmin since for z below xmax the argument of the
truncated moment becomes greater then one and such a moment is equal
to zero. This leads immediately to Eq. (12). Our approach Eq. (9)–(12) is
valid for the coupled DGLAP equations for quarks and gluons and for any
approximation (LO, NLO, NNLO, etc.). Only for clarity we present here
the nonsinglet and leading order part. Let us emphasize that the evolution
equations for the double truncated moments Eq. (12) are in fact a valuable
generalization of those for the single truncated and untruncated ones. Set-
ting xmin = x0 or xmin = 0 and xmax = 1, one obtains Eq. (9) or Eq. (4),
respectively. In the next section, we study the application of the presented
equations to the polarized structure function g2.

3. Predictions for the spin structure function g2 based
on the truncated moments

For a complete description of the nucleon spin, one needs two polarized
structure functions: g1 and g2. Recently, a new generation of experiments
with high polarized luminosity, performed at Jefferson Lab, allows more
precise study of the polarized structure functions and their moments. This
is crucial in our understanding of the QCD spin sum rules, higher-twist
effects and quark–hadron duality.
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The function g1 has a simple interpretation in the parton model

g1(x) =
1
2

∑
i

ei ∆qi(x) , (15)

describing the distribution of quark spin in the nucleon, while function g2
has no such physical meaning in this classic model. Due to the technical
difficulties of obtaining transversely polarized targets, the structure function
g2 has not been a topic of investigations for a long time. Recently, new
experimental data at low and intermediate momentum transfers make g2 also
a valuable and hopeful tool to study the spin structure of the nucleon. The
function g2 provides knowledge on higher twist effects, which are a reflection
of the quark–gluon correlations in the nucleon. A particular important role
in this analysis is played by moments of the spin structure functions

Γn1 =

1∫
0

dxxn−1g1
(
x,Q2

)
, (16)

Γn2 =

1∫
0

dxxn−1g2
(
x,Q2

)
. (17)

They are a sensitive tool for testing the QCD sum rules and determination
of the higher twist contributions (for a review of this problem see, e.g. [16]).
Here, we would like to focus on the application of the TM and their evolution
equations to predictions for the spin structure function g2.

The experimental value of the function g2, measured in the small to
intermediate Q2 region, consists of two parts: the twist-2 (leading) and the
higher twist term

g2
(
x,Q2

)
= gLT

2

(
x,Q2

)
+ gHT

2

(
x,Q2

)
. (18)

The leading-twist term gLT
2 can be determined from the other structure

function — g1 via the Wandzura–Wilczek relation [17]

gLT
2

(
x,Q2

)
= gWW

2

(
x,Q2

)
= −g1

(
x,Q2

)
+

1∫
x

dy

y
g1
(
y,Q2

)
. (19)

Then, from the measurements of g1 and g2, using the Wandzura–Wilczek
approximation Eq. (19), one is able to extract the higher-twist term gHT

2 .
We find a new equation which is a generalization of the Wandzura–Wilczek
relation, for the truncated moments

ḡn2
(
x0, Q

2
)

=
1− n
n

ḡn1
(
x0, Q

2
)
− xn0

n
ḡ0
1

(
x0, Q

2
)
. (20)
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It is easy to see that for the untruncated moments Eq. (20) takes the well
known form

ḡn2
(
Q2
)

=
1− n
n

ḡn1
(
Q2
)
. (21)

Here,

ḡn1,2
(
Q2
)

=

1∫
0

dxxn−1 g1,2
(
x,Q2

)
, (22)

ḡn1,2
(
x0, Q

2
)

=

1∫
x0

dxxn−1 g1,2
(
x,Q2

)
, (23)

and consequently

ḡ0
1

(
x0, Q

2
)

=

1∫
x0

dx

x
g1
(
x,Q2

)
. (24)

For the first moment (n = 1) Eq. (20) reads

ḡ1
2

(
x0, Q

2
)

= −x0 ḡ
0
1

(
x0, Q

2
)

(25)

or equivalently

1∫
x0

dx g2
(
x,Q2

)
= −x0

1∫
x0

dx

x
g1
(
x,Q2

)
. (26)

The moments of the spin structure functions g1 and g2 are of great impor-
tance due to their relations to the fundamental QCD sum rules:

• Bjorken sum rule (BSR) [18]

1∫
0

dx
[
gp1
(
x,Q2

)
− gn1

(
x,Q2

)]
=
gA
6

; (27)

• Efremov–Leader–Teryaev sum rule (ELT) [19]

1∫
0

dxx
[
gp2
(
x,Q2

)
− gn2

(
x,Q2

)]
= −1

2

1∫
0

dxx
[
gp1
(
x,Q2

)
− gn1 (x,Q2)

]
;

(28)
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• Burkhardt–Cottingham sum rule (BC) [20]

1∫
0

dx g2
(
x,Q2

)
= 0 . (29)

From Eq. (20), setting n = 1 and x0 → 0, one can obtain automatically
the BC sum rule for gWW

2 . Furthermore, using the generalization of the
Wandzura–Wilczek relation Eq. (20) for n = 1 at two different points of
the truncation and also applying the BC sum rule Eq. (29), we obtain an
interesting relation
x2∫
x1

dx gWW
2

(
x,Q2

)
= (x2−x1)

1∫
x2

dx

x
g1
(
x,Q2

)
−x1

x2∫
x1

dx

x
g1
(
x,Q2

)
. (30)

The above formula can be very useful in determination of the partial twist-2
contribution to the BC sum rule. For example, setting x1 = 0 and x2 = x0,
when x0 → 0, one can get the small-x contribution to the BC sum rule

x0∫
0

dx gWW
2

(
x,Q2

)
= x0

1∫
x0

dx

x
g1
(
x,Q2

)
. (31)

Since it is assumed that for x < 0.02 the higher-twist effects are negligible
(see, e.g. [21]), Eq. (31) allows one to estimate the small-x (x0 < 0.02)
contribution as

x0<0.02∫
0

dx g2
(
x,Q2

)
≈

x0<0.02∫
0

dx gWW
2

(
x,Q2

)
. (32)

Concluding, the obtained Eqs. (20), (26), (30) and (31) are some sorts of
sum rules and can be significant in increasing of the reliability of the data
analyses in spin physics.

Now we would like to discuss the problem of the Q2 evolution of g2.
While a general DGLAP-type equation for g2 does not exist, for the twist-
3 component of g2 suitable evolution equations have been formulated by
Braun, Korchemsky and Manashov in [21, 22, 23]. In the leading twist-2
approximation, the Q2 evolution of g2 is governed by the evolution of g1,
according to the Wandzura–Wilczek relation. Since the second term on the
r.h.s. of Eq. (19) is the n = 0-th truncated moment of the function g1
Eq. (24), we can rewrite the Wandzura–Wilczek relation in the form

gWW
2

(
x,Q2

)
= −g1

(
z,Q2

)
+ ḡ0

1

(
z,Q2

)
(33)
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and obtain the evolution equation for gWW
2

dgWW
2

(
x,Q2

)
d lnQ2

= −
dg1

(
x,Q2

)
d lnQ2

+
dḡ0

1

(
x,Q2

)
d lnQ2

. (34)

It is worth noting that according to Eqs. (9), (10), the n = 0-th truncated
moment of the parton distribution q evolves in the same way as q itself
(P ′(0, z) = P (z)). Taking this into account in the case of g1, we obtain from
Eqs. (34), (33) the evolution equation

dgWW
2

(
x,Q2

)
d lnQ2

=
αs

(
Q2
)

2π

1∫
x

dz

z
P
(x
z

) [
ḡ0
1

(
z,Q2

)
− g1

(
z,Q2

)]
(35)

or finally2

dgWW
2

(
x,Q2

)
d lnQ2

=
αs

(
Q2
)

2π

1∫
x

dz

z
P
(x
z

)
gWW
2

(
z,Q2

)
. (36)

The above formula shows that the twist-2 component of the function g2
obeys the standard DGLAP evolution with the same evolution kernel as g1.
Eq. (36) provides predictions for the leading twist contribution to the g2 and
hence enables determination of the higher twist terms from experimental
data as

gHT
2

(
x,Q2

)
= gEXP

2

(
x,Q2

)
− gWW

2

(
x,Q2

)
. (37)

The obtained evolution equation Eq. (36) can be a useful additional tool for
the study of the nucleon structure function g2.

Here, we present numerical solutions of Eq. (36). In Figs. 1 and 2 we show
the nonsinglet contributions to the polarized structure function xgNS

2 (x,Q2),
calculated in the leading order. We choose the input parametrization of the
structure function gNS

1 (x,Q2
0) at Q2

0 = 1 GeV2 in a general form

gNS
1 (x,Q2

0) = N xα(1− x)β(1 + γx) , (38)

where α, β and γ control the small-, large- and medium-x behavior of g1 and
hence g2, respectively. The values of the PDF input parameters α, β, γ are
usually obtained from a global analysis of data and N must be determined
from the sum rules constraints. Here, we use a simple fit with β = 3, γ = 20
and different values of α to study its influence on the evolution of g2. Fig. 1
shows the predictions as a function of x for different scales of Q2: 1, 10 and

2 Again, for clarity, we use only the nonsinglet and LO notation.
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100 GeV2. In the input parametrization of g1 we assume at the initial scale
Q2

0 α = −0.4. Note that xgNS
2 is positive for low-x, at about x = 0.1 − 0.2

changes sign and becomes negative for larger x. Similar results were obtained
for light and heavy flavor contributions to g2 by Bluemlein, Ravindran and
van Neerven [24]. This is, as a matter of fact, evidence of agreement with
the BC sum rule. From Fig. 1 one can see also that with increasing Q2, an
x-intercept of gNS

2 occurs at smaller values of x.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 1e-04  0.001  0.01  0.1  1

x
g

2
N

S
(x

,Q
2
)

x

Fig. 1. The nonsinglet LO contributions to the polarized structure function
xgNS

2 (x,Q2) as a function of x for different Q2: 1 GeV2 (solid), 10 GeV2 (dashed)
and 100 GeV2 (dotted). Parametrization of g1 is given by Eq. (38) with α = −0.4.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 1e-04  0.001  0.01  0.1  1

x
g

2
N

S
(x

,Q
2
)

x

Fig. 2. The nonsinglet LO contributions to the polarized structure function
xgNS

2 (x,Q2) at Q2 = 10 GeV2 as a function of x for different parameterizations
of g1, given by Eq. (38): α = 0 (solid), α = −0.4 (dashed) and α = −0.8 (dotted).
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In Fig. 2 we compare the predictions for gNS
2 for different small-x behavior

of the g1 parametrization Eq. (38): α = 0,−0.4,−0.8. We find that more
singular small-x behavior of g1 implies smaller value of the x-intercept of g2.

From Figs. 3 and 4, where we plot gNS
2 (x,Q2) vs. x, one can see that the

evolution of the polarized structure function g2 is for small-x very sensitive
to the value of Q2 and, of course, to the assumed input parametrization.
For x = 10−4 the results of gNS

2 can differ by a factor of over 2 from Q2 =
1 GeV2 to Q2 = 100 GeV2 for typical input with α = −0.4. Also the input
parametrization itself has a large (dominated) impact on the evolution of g2.
Namely, for x = 10−4 and Q2 = 10 GeV2 the results of gNS

2 can differ by a
factor of over 4 from the flat input (α = 0) to the very steep one (α = −0.8).

-2

 0

 2

 4

 6

 8

 10

 12

 1e-04  0.001  0.01  0.1  1

g
2
N

S
(x

,Q
2
)

x

Fig. 3. The nonsinglet LO contributions to the polarized structure function
gNS
2 (x,Q2) as a function of x for different Q2: 1 GeV2 (solid), 10 GeV2 (dashed)
and 100 GeV2 (dotted). Parametrization of g1 is given by Eq. (38) with α = −0.4.

Knowledge of the small-x behavior of the structure functions and their
moments is crucial in our understanding of the nucleon structure. Presented
here uncertainty in the determination of the nonsinglet g1 and g2 at low-x is
additionally enhanced in the case of the singlet contributions. Namely, the
results for the singlet gS

1 and gS
2 are very sensitive on the polarized gluon

densities, which are completely unknown. Therefore, the comprehensive
theoretical analysis of the small-x behavior of structure functions is of a
great importance to compensate the lack of the experimental data in this
region. In the next section, we derive some relations between truncated and
untruncated Mellin moments, which can be helpful for such analyses in the
future.
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Fig. 4. The nonsinglet LO contributions to the polarized structure function
gNS
2 (x,Q2) at Q2 = 10 GeV2 as a function of x for different parameterizations
of g1, given by Eq. (38): α = 0 (solid), α = −0.4 (dashed) and α = −0.8 (dotted).

4. Useful relations between truncated and untruncated
Mellin moments

The evolution equations for the truncated moments Eq. (9) are very
similar to those for the parton densities Eq. (1). In both cases one deals
with functions of two variables x and Q2 (with additionally fixed index n
for moments), which obey the differentio-integral Volterra-like equations.
The only difference lies in the splitting function, which for moments has the
rescaled form Eq. (10). This similarity allows one to solve the equations for
truncated moments with use of standard methods of solving the DGLAP
equations. Analysis of the evolution, performed in moment space according
to Eqs. (3)–(7), when applying to the truncated moments, implies dealing
with such an exotic structure like ‘Moment of Moment’. Let us discuss
this in detail and introduce some useful relations involving untruncated and
truncated Mellin moments.

There are in literature several methods for the solution of the integro-
differential DGLAP equations. They are based either on the polynomial
expansion or on the Mellin transformation — for review see, e.g. [25]. In
our previous studies on the evolution of the truncated moments we used the
Chebyshev polynomial technique [26], earlier widely applied by Kwieciński
in many QCD treatments — for details see, e.g., Appendix of [27]. Using
this method, one obtains the system of linear differential equations instead
of the original integro-differential ones. The Chebyshev expansion provides
a robust method of discretising a continuous problem.
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An alternative approach is based on the Mellin transformation and the
moments factorization. Taking the s-th moment of the evolution equa-
tion (9), one obtains

dM s,n
(
Q2
)

d lnQ2
=
αs

(
Q2
)

2π
γs+n

(
Q2
)
M s, n

(
Q2
)
, (39)

where M s,n denotes s-th (untruncated) moment of n-th truncated moment
of the parton density

M s,n
(
Q2
)

=

1∫
0

dxxs−1 q̄n
(
x,Q2

)
. (40)

Analogically to the solution for the parton distribution — Eqs. (6), (7), we
can write down immediately solutions for the truncated moments

M s,n
(
Q2
)

= M s,n
(
Q2

0

) [αs

(
Q2

0

)
αs (Q2)

] b γs+n

(41)

and

q̄n
(
x,Q2

)
=

1
2πi

c+i∞∫
c−i∞

ds x−sM s, n
(
Q2
)
. (42)

The quantity M s,n, which is rather exotic and has no physical meaning,
can be replaced by the usual truncated moment q̄. Indeed, the ‘Moment of
Moment’ M s,n can be written in terms of the parton density q(x,Q2) as

M s,n =

1∫
0

dxxs−1

1∫
x

dz zn−1q(z) . (43)

For clarity we drop Q2-dependence of the functions. After simple manip-
ulation with help of the Heaviside function, we can change the order of
integration in Eq. (43). Thus, the right-hand side of Eq. (43) takes the
following form

1∫
0

dxxs−1

1∫
0

dz zn−1Θ(z − x) q(z) =

1∫
0

dz zn−1q(z)

1∫
0

dxxs−1Θ(z − x) .

(44)
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Next, absorbing the Θ(z − x) into the upper limit of integration gives

M s, n =

1∫
0

dz zn−1q(z)

z∫
0

dxxs−1 . (45)

Finally, performing integration over x, we obtain

M s,n =
1
s

1∫
0

dz zs+n−1q(z) =
1
s
q̄s+n . (46)

Now, replacing the M s,n in Eq. (42) by Eq. (46), we obtain

q̄n
(
x,Q2

)
=

1
2πi

c+i∞∫
c−i∞

ds
x−s

s
q̄s+n

(
Q2
)
. (47)

We also find the invert transformation to Eq. (47). Using Eq. (46) for the
‘Moment of Moment’ M s−n,n

M s−n,n =
1

s− n
q̄s , (48)

we have

q̄s
(
Q2
)

= (s− n)M s−n, n (Q2
)

= (s− n)

1∫
0

dxxs−n−1 q̄n
(
x,Q2

)
. (49)

Eqs. (46), (47) and (49) are useful relations between the truncated and
untruncated moments. Particularly Eq. (47) seems to have a large practical
meaning and could be applied when the untruncated moments are known
e.g. from lattice calculations.

5. Summary

This paper is a continuation of our earlier studies on the truncated mo-
ments of the parton densities. We have derived the evolution equation for
the double truncated moments, which is a generalization of those for the
single truncated and untruncated ones. We have obtained the Wandzura–
Wilczek relation in terms of the truncated moments and found new sum
rules involving the structure functions g1 and g2. We have also derived the
DGLAP evolution equation for the twist-2 part of g2. We have presented
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numerical predictions for the evolution of gNS
2 at different values of Q2 and

for different small-x behavior of the initial parametrization. We have also
derived relations between the truncated and untruncated Mellin moments,
which can be useful in further studies of spin physics. The method of the
truncated moments enables one direct, efficient study of the evolution of
the moments (and hence sum rules) within different approximations: LO,
NLO, etc., in non-spin as well as in spin sectors. The adaptation of the evo-
lution equations for the restricted experimentally x-region provides a new,
additional tool for analysis of the nucleon structure functions.

Finally, let us list a few of the valuable future applications of the pre-
sented evolution equation and relations for the truncated moments:

• Studying the fundamental properties of nucleon structure, concerning
moments of F1, F2 and g1. These are: the momentum fraction car-
ried by quarks, quark helicities contributions to the spin of nucleon
and, what is particularly important, estimation of the polarized gluon
contribution ∆G from COMPASS and RHIC data.

• Determination of Higher Twist (HT) effects from the moments of g2,
which will be measured at JLab. This is possible via the generalization
of Wandzura–Wilczek relation for the truncated moments and test of
Burkhardt–Cottingham and Efremov–Leader–Teryaev sum rules. HT
corrections can provide information on the quark–hadron duality.

• Predictions for the generalized parton distributions (GPDs). Moments
of the GPDs can be related to the total angular momentum (spin and
orbital) carried by various quark flavors. Measurements of DVCS,
sensitive to GPDs, will be done at JLab. This would be an important
step towards a full accounting of the nucleon spin.

Concluding, in light of the recent progress in experimental program, the-
oretical developments which improve our knowledge of the nucleon structure
functions and their moments are of great importance.

We warmly thank K. Golec-Biernat for valuable remarks and suggestions.
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