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monic oscillator shells. The results are compared with the experimental
data.
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1. Introduction

With the advent of modern accurate nucleon–nucleon interactions and
modern many-body computational schemes, nuclear structure calculations
starting from the nucleonic degrees of freedom have become possible in the
recent years. A major advancement has been the systematic construction of
realistic nucleon–nucleon potential using chiral effective field theories which
start from the most general Lagrangian, consistent with the symmetries of
QCD and the spontaneously broken chiral symmetry, appropriate for low
energy nucleons and pions (Refs. [1, 2, 3, 4]). Using these nucleon–nucleon
interactions and sometimes even the three nucleon interaction derived from
chiral effective field theory several nuclear structure calculations have been
performed (Refs. [5,6,7,8]). Typically these calculations are limited to light
nuclei (A ' 16) and, in some cases, to closed shell medium mass nuclei
(Ref. [8]). The nuclear structure methods mostly used are the no-core shell
model (Refs. [9, 10, 11, 12]) which pioneered ab initio nuclear structure cal-
culations, the coupled cluster method (Refs. [13,14,15]), the hyperspherical
harmonics method (Refs. [16, 17]) and, to a lesser extent, the hybrid mul-
tideterminant method (HMD) (Refs. [18, 19, 20]). The no-core shell model
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method is limited by the size of the Hilbert space which become gigantic
as the particle number is increased and is used for A ' 16. The coupled-
cluster method is used typically at or around shell closure, but it has been
applied also to medium mass nuclei (Ref. [15]). The hyperspherical harmon-
ics method has been used for very light systems. The HMD method, which
is utilized in this work, is not limited by the size of the Hilbert space as
it can be easily used for medium mass nuclei, and it is equally applicable
to closed and open shell nuclei (Ref. [21]). Using realistic nucleon–nucleon
interactions, so far it has been used only in few cases. It is our goal to sys-
tematically apply this method to nuclei in several mass regions. This method
belongs to the same family of the VAMPIR methods (Refs. [22,23,24]), ex-
cept that the HMD uses a linear combination of particle Slater determinants
instead of quasi-particle Slater determinants as in the VAMPIR methods.
It is similar to the Quantum Monte Carlo method (Refs. [25,26,27]), except
that the variational method is not stochastic. It utilizes quasi-Newtonian
methods (Ref. [28]), and the Slater determinants are parametrized differ-
ently. In this work we take the N3LO nucleon–nucleon interaction (Ref. [4]),
and study the carbon isotopes, both even and odd, and evaluate ground
state energies and few excited states for all isotopes under study. Because
of the large amount of calculations involved, especially for the odd isotopes,
we limit ourselves to few harmonic oscillator frequencies, and renormalize
the interaction up to 4, and in some cases up to 5, harmonic oscillator shells
using the Lee–Suzuki (Refs. [28, 29, 30, 31]) renormalization procedure. In
an ab initio approach, one considers several harmonic oscillator frequencies
and an increasing number of harmonic oscillator major shells until the re-
sults are independent from the frequency and the number of major shells. In
practice, at least for this chain of isotopes, this has never been done so far.
Such an approach would be necessary if both accurate binding energies and
excitation energy are required. Here we focus mostly on excitation energies
and energy differences for which convergence is faster.

Some carbon isotopes have been considered in the framework of the
UMOA renormalization prescription and shell model diagonalization
(Ref. [32]) with a truncation in the number of allowed excitations. More
recently they have been considered in Ref. [33], although the renormaliza-
tion method is applied in momentum space (with a sharp cutoff at 2.1 fm−1)
rather than in the harmonic oscillator space. Moreover, an inert 14C has been
assumed and the neutron single-particle space is restricted to the sd shell.
In contrast, we use a no-core approach up to the fp shell included, and
in some case up to sdg shell, with the effective interaction constructed for
this space. The heaviest of the carbon isotopes 22C has been recently found
to be a borromean nucleus (Ref. [34]), that is, stable for particle emission
although 21C is particle unstable. All calculations discussed in this work have
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been performed using personal computers, two quad-core and four dual-core
processors. The outline of this work is the following. In Sec. 2 we give a
brief recap of the HMD method. In Sec. 3 and subsections we discuss the
results and compare with the experimental data. In Sec. 4 we summarize
the results.

2. A brief recap of the HMD method

The HMD method (Refs. [18, 19, 20]) consists in solving the many-body
Schrodinger equation using as ansatz for the yrast eigenstates |ψ〉 a linear
combination of Slater determinants, i.e.

|ψ〉 =
Nw∑
α=1

gαP̂ |φ, α〉 . (1)

The operator P̂ restores the desired exact quantum numbers (angular mo-
mentum and parity), α labels the Slater determinants and |φ, α〉 is a general
Slater determinant (that is, no symmetries are imposed). Each Slater deter-
minant is built from the generalized creation operators

c†n(α) =
Ns∑
i=1

Ui,n(α)a†i . (2)

a†i is the creation operator in the harmonic oscillator single-particle state i,
and Ns is the dimension of the single-particle basis. The complex numbers
gα and Ui,n are determined by minimizing the expectation values of the
Hamiltonian with quasi-Newtonian methods (cf. Refs. [28,35] and references
in there). Clearly the larger the number of Slater determinants Nw the more
|ψ〉 will approach the exact yrast eigenstate. The ansatz of Eq. (1) is valid for
yrast eigenstates, for excited eigenstates having the same quantum numbers
we must in addition add terms containing the lower eigenstates with the same
quantum numbers and the linear combination must preserve orthogonality
with the previously determined eigenstates (Ref. [23]).

The degree of accuracy of the ansatz of Eq. (1) for finite Nw has been
recently analyzed in Ref. [36] in order to construct extrapolation techniques,
using the phenomenological fpd6 realistic effective interaction. We have
tested the accuracy and effectiveness of our quasi-Newtonian variational
method for 56Ni. Using 15 angular momentum projected Slater determi-
nants we obtained for the ground state energy −203.157 MeV, with 25 Slater
determinants we obtained −203.175 MeV and using 35 Slater determinants
−203.182 MeV. This is to be compared with the exact shell model value
of −203.198 MeV quoted in Ref. [36], and with the Quantum Monte Carlo
result (prior extrapolation) of −203.161 MeV which was obtained with 150
Slater determinants (Ref. [36]).
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In practice, for ab initio no-core calculations, we avoid the use of the full
angular momentum projector since experience shows that, in such cases, we
need a rather large number of fully angular momentum and parity projected
Slater determinants to obtain good approximations to the eigenstates and
therefore, in order to reduce the computational cost, we proceed as follows.

We add to the Hamiltonian a term γ(Ĵ2 − J(J + 1)), where Ĵ is the
angular momentum operator and J is the desired value and we use, instead
of the full angular momentum projector only the projector to good projection
onto the z-axis Jz = J , much in the same way it is done in standard shell
model calculations. This device is very useful especially for odd and odd–odd
mass nuclei. The wave functions obtained in this way are used to evaluate
observables with the full three-dimensional angular momentum projector.
Experience shows that few hundreds Slater determinants are relatively easy
to obtain and the full re-projection of the wave function obtained this way
is much less expensive than the use of the full projector from the beginning.
However, if we desire excited states with the same exact quantum numbers,
the use of the full projector seems necessary so far.

As discussed in the next section, for no-core calculations, we need several
hundreds Jπz projected Slater determinants to reach a reasonable conver-
gence to the energies, however the convergence to the excitation energies is
much faster, provided wave functions with different Jπz undergo exactly the
same sequence of computational steps. The number of Slater determinants
necessary to achieve convergence increases with the number of major shells.
Hence for 5 major shells calculations we only evaluate excitations energies.

The intrinsic Hamiltonian used in the calculations is obtained in the fol-
lowing way. First an harmonic oscillator potential is added to the
A-particle Hamiltonian, the resulting Hamiltonian is A-dependent. The two-
body interaction is obtained by renormalizing the two-particle A-dependent
Hamiltonian with the Lee–Suzuki procedure, much in the same way it is
done in the no-core shell model (cf. Ref. [9] for a detailed description).
The two-particle interaction is restricted to some number of relative coor-
dinate harmonic oscillator shells Nr + 1. The two-body matrix elements of
the intrinsic Hamiltonian for the A-particle system can then be constructed.
Using the Talmi–Moshinski transformations brackets, the matrix elements
of this intrinsic Hamiltonian are evaluated up to Nr/2+1 major shells in the
frame of the single-particle coordinates. This is the HMD-a version of the
method (cf. Ref. [20] for more details). Usually, in order to prevent center
of mass excitations in the evaluation of excited states a term proportional to
the harmonic oscillator Hamiltonian for the center of mass β(Ĥcm− 3/2~Ω)
is added at the end.
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The variational calculation is carried out progressively. That is, we start
with a single Slater determinant and add trial Slater determinant one at
a time and always optimize the last added Slater determinant. At specific
numbers of Slater determinants we vary anew all Slater determinants one at
a time. For example, when Nw = 5 all Slater determinants are varied anew,
and after we reach, say, Nw = 10, 15, 25, 35, 50 we re-optimize all Slater de-
terminants etc. The numbers 5, 10, 15, 25, 35, 70, 100, 150 . . . are somewhat
a free choice. By far this is the most expensive part of the calculation, espe-
cially if we consider the full angular momentum and parity projector, hence
the choice to replace it with a partial projector and only after a sufficiently
large number of Slater determinants has been constructed, we use the full
projector to evaluate expectation values.

Both the method and the set of computer codes have been extensively
tested.

3. Carbon isotopes

For all the cases discussed below the coefficient of the center of mass
Hamiltonian is fixed to β = 0.7, the harmonic oscillator frequency is for
most of the cases ~Ω = 14 MeV. The coefficient γ of the Ĵ2− J(J + 1) term
is set to 0 for the even–even isotopes to 2 MeV or 4 MeV for the odd-mass
isotopes. In the following, the experimental values of the binding energies
are taken from Ref. [37] and the excitation energies form Ref. [38]. For
17C and 19C the experimental data is taken from Ref. [39], for 18C from
Ref. [40] and for 20C from Ref. [41]. In what follows we also discuss the
variation of the number of nucleons in the single particle shells and define
δn(Ex, a, t) = n(Ex, a, t)−n(Egs, a, t), where Ex is any of the excited states,
Egs is the ground state energy, a is any of the single-particle shells and
t = n, p denotes the type of particles (neutrons or protons). Only the largest
variations will be given, the ones that are omitted are too small compared
with the others. This is a very simple way to classify the type of excitation,
e.g. neutron excitation, proton excitation or both.

As previously mentioned, in some cases we have performed calculations
also with 5 major shells. We find that the absolute binding energies are
different from the ones obtained with 4 major shells, however the excitation
energies are rather similar. This reflects the fact that energy differences
converge much better than the energies. Also the value of ~Ω = 14 MeV
is close to the energy minimum as a function of ~Ω, thereby decreasing
the dependence of the energies on ~Ω. A systematic calculation for several
values of ~Ω, for 4 and 5 major shells, for all these isotopes is too lengthy
on personal computers. Unless explicitely stated we consider ~Ω = 14 MeV
and 4 major shells.
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3.1. 10C

The experimental binding energy of 10C is 60.320 MeV. Using 250 Slater
determinants, optimized as explained in the previous section with Jπz = 0+

and then re-projecting to Jπ = 0+, in order to evaluate the expectation
values, we obtained a binding energy of 53.438 MeV. The behavior of the
ground state energy as a function of the inverse of the number of Slater
determinants, NSD, is shown in Fig. 1. The behavior of the energies in
Fig. 1 is typical if the number of Slater determinants is large enough. It is
reasonable, due to the linear behavior of the energy as a function of 1/NSD

to extrapolate in order to estimate the uncertainty of the calculation. The
extrapolated value for the ground-state energy is −53.808 MeV, hence our
result has an uncertainty of 0.7%. We found this 1/NSD behavior in most
of the cases. Only in few cases the number of Slater determinants was
not sufficiently large. We use anyway a linear extrapolation in order to
have an estimate of the uncertainty of the calculations. These uncertainties
should not be confused with the statistical uncertainties as in Monte Carlo
calculations. They are simply an estimate of the possible decrease of the
energies if we would increase the number of Slater determinants, that is,
how far we are from the exact values.
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Fig. 1. Ground-state energy of 10C as a function of the inverse of the number of
Slater determinants.

For the light carbon isotopes we find that theoretical binding energies are
underestimated compared to the experimental values, while for the heavy
carbon isotopes the theoretical values overestimate the corresponding ex-
perimental values. The experimental value of the excitation energy of the
2+
1 state is 3.354 MeV. Our calculation gives E(2+

1 ) = 3.764 MeV. In Fig. 2
we show the behavior of the excitation energy as a function of the number
of the Slater determinants. As it can be seen the value of the excitation
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Fig. 2. Excitation energy of the 2+
1 state as a function of the number of Slater

determinants for the even carbon isotopes.

energy is rather stable and the oscillation for large NSD have an amplitude
of about 10 keV for this nucleus. The reason for this remarkable stability is
that both calculations for the 0+ and the 2+ energy have almost the same
error and of the same sign (these are variational calculations) and this error
cancels out in the evaluation of the excitation energy. This is the reason
why excitation energies converge much better than the absolute value of
the energies. It should be stressed however that the relative uncertainty in
the binding energy is small. It is interesting to look at the variation of the
population of nucleons as we go from the ground-state to the excited state.
We have δn(2+, 0p, n) = 0.08 and δn(2+, 0p, p) = 0.07. Although small,
the number of neutrons (protons) excited above the s and p shells is non-
zero: δn(2+, sd, n) = 0.17, δn(2+, sd, p) = 0.21 and δn(2+, fp, n) = 0.12
and δn(2+, fp, p) = 0.15.

For this nucleus, we performed also a calculation with ~Ω = 11 MeV with
4 major shells. The binding energy becomes 51.372 MeV (compared with
53.438 MeV for ~Ω = 14 MeV), however the excitation energy of the 2+

1 is
E(2+

1 ) = 3.72 MeV and it is well converged as a function of the number
of Slater determinants, and it is almost the same as the one obtained for
~Ω = 14 MeV, which is 3.764 MeV. For ~Ω = 17 MeV, the excitation energy
of the 2+

1 state obtained with 300 Slater determinants, becomes E(2+
1 ) =

3.73 MeV. It is quite remarkable that although the energies have a non
negligible ~Ω dependence, the excitation energies are nearly constant.

Using ~Ω = 14 MeV we have also performed a calculation with 5 ma-
jor shells. However, we used only 200 Slater determinants, and obtained
E(2+

1 ) = 3.67 MeV. The calculation is not entirely converged since the exci-
tation energy has a small increase with the number of Slater determinants
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(about 70 KeV in the last 30 Slater determinants), but it is consistent with
and it approaches the values obtained with 4 major shells. This shows that
working with 4 major shells and ~Ω = 14 MeV, gives reliable results for the
excitation energies for this nucleus.

At this point a few comments are in order about the convergence of our
method. The HMD method is applicable regardless of the dimensionality
of the Hilbert space, however we do not know yet how many Slater deter-
minants we have to optimize in order to obtain the energies within, say 1%
accuracy. We do know however that larger Hilbert spaces require a larger
number of Slater determinants. Using 4 major shells, we need a few hun-
dreds Slater determinants (perhaps even 500), for calculations utilizing 5
major shells this number is higher, hence it is not so surprising that the
excitation energy for the 2+

1 state in the case of 5 major shells is not entirely
converged with 200 Slater determinants. Presumably, the optimal way to
calculate binding energies is to evaluate differences of binding energies and
to perform an accurate binding energy calculation on just one isotope. An
other possibility is to explore, in the context of ab initio calculations, the
extrapolation method of Ref. [36].

3.2. 11C

The experimental value of the binding energy of 11C is 73.44 MeV and
the ground state has Jπ = 3/2−, which is reproduced by our calculation.
The theoretical value is 67.842 MeV. As before for large NSD the energy
is linear as a function of 1/NSD and the extrapolated value is 68.546 MeV
giving a theoretical uncertainty of 1%. The energy of the first excited state
(1/2−) is not well reproduced. The experimental value is 2 MeV, while
our calculation gives 0.58 MeV. The first 5/2− state has an experimental
excitation energy of 4.32 MeV, our calculation gives 3.38 MeV. In Fig. 3 we
show the behavior of the excitation energies as a function of the number of
Slater determinants. The number of neutrons (protons) for the ground-state
in the s, p, sd and fp shells are 1.81(1.83), 2.79(3.75), 0.21(0.22), 0.19(0.2),
respectively. Moreover, for the 1/2− state

δn(1/2−, 0p3/2, n) = −0.19 , δn(1/2−, 0p1/2, n) = 0.19 ,
δn(1/2−, 0p3/2, p) = −0.25 , δn(1/2−, 0p1/2, p) = 0.24 .

The 5/2− state is primarily a neutron excitation. In fact

δn(5/2−, 0p3/2, n) = −0.38 , δn(5/2−, 0p1/2, n) = 0.38 ,
δn(5/2−, 0p3/2, p) = −0.1 , δn(5/2−, 0p1/2, p) = 0.09 .
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Fig. 3. Excitation energy of the 1/2− and 5/2− states as a function of the number
of Slater determinants for 11C.

3.3. 12C
12C has been extensively investigated, both experimentally and theoret-

ically because of its astrophysical importance. As in the no-core shell model
calculations the 0+

2 state (the Hoyle state), is missing at low energy. A small
number of harmonic oscillator major shells is not sufficient to reproduce the
position of this state. The experimental binding energy is 92.16 MeV, the
calculated value with 200 Slater determinants is 90.154 MeV and the ex-
trapolated value is 90.773 MeV. We performed another calculation using
400 Slater determinants and obtained 90.503 MeV and a corresponding ex-
trapolated value of 90.940 MeV. In this case the 1/NSD behavior seen in
the previous cases is not entirely correct. This example shows that the ex-
trapolated values give simply an uncertainty of the calculated ones. Also
in this case the uncertainty is about 1%. The calculated excitation energy
of the 2+

1 state is 4.31 MeV to be compared with the experimental value of
4.44 MeV. The behavior of the excitation energy as a function of the number
of Slater determinants is shown in Fig. 2. The occupation numbers for the
ground state are nearly equal for neutrons and protons, and a small number
of neutrons and protons is moved from the 0p3/2 to the 0p1/2 shell (< 0.1)
for the 2+ state.

3.4. 13C

Odd-mass isotopes allow to study whether the single-particle properties
of the Hamiltonian are correct. The experimental binding energy of 13C is
97.11 MeV and the ground-state has Jπ = 1/2−. Some low-lying yrast levels
of negative parity are (in MeV) E(3/2−) = 3.68, E(5/2−) = 7.55. Our calcu-
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lation reproduces the correct Jπ = 1/2− of the ground-state with a binding
energy of 97.58 MeV (with 250 Slater determinants and an uncertainty of
0.5%). For the above negative parity levels we obtained E(3/2−) = 2.6 MeV
and E(5/2−) = 5.89 MeV (cf. Fig. 4). Regarding the nature of these states,
we have

δn(3/2−, 0p3/2, n) = −0.34 , δn(3/2−, 0p1/2, n) = 0.35 ,
δn(3/2−, 0p3/2, p) = −0.33 , δn(3/2−, 0p1/2, p) = 0.33 ,

and for the 5/2− state

δn(5/2−, 0p3/2, n) = 0.14 , δn(5/2−, 0p1/2, n) = −0.16 ,
δn(5/2−, 0p3/2, p) = −0.46 , δn(5/2−, 0p1/2, p) = 0.47 .

These variations show that the 5/2− is primarily a proton excitation.
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Fig. 4. Excitation energies of the selected states as a function of the number of
Slater determinants for 13C.

The positive parity levels involve the sd shell. The experimental lo-
cations in MeV are (we consider only few yrast levels) E(1/2+) = 3.09,
E(5/2+) = 3.85 and E(3/2+) = 7.69. The corresponding theoretical values
are E(1/2+) = 8.2, E(5/2+) = 8.67 and E(3/2+) = 12.32, nearly 5 MeV too
high. The variations of the occupation numbers reveal the nature of these
levels. We have

δn(1/2+, 0p3/2, n) = −0.53 ,
δn(1/2+, 0p1/2, n) = −0.35 ,
δn(1/2+, 1s1/2, n) = 0.83 ,
δn(1/2+, 0p3/2, p) = −0.25 ,
δn(1/2+, 0p1/2, p) = 0.30 .
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The neutron 1s1/2 orbital contains one extra neutron. All others δn are
small. For the 5/2+ state we have

δn(5/2+, 0p3/2, n) = −0.53 ,
δn(5/2+, 0p1/2, n) = −0.34 ,
δn(5/2+, 0d5/2, n) = 0.94 ,
δn(5/2+, 0p3/2, p) = −0.29 ,
δn(5/2+, 0p1/2, p) = 0.34 .

Almost one extra neutron in the 0d5/2 orbital. For the 3/2+ state we have

δn(3/2+, 0p3/2, n) = −0.59 ,
δn(3/2+, 0p1/2, n) = −0.28 ,
δn(3/2+, 0d3/2, n) = 0.78 ,
δn(3/2+, 0p3/2, p) = −0.34 ,
δn(3/2+, 0p1/2, p) = 0.38 .

Almost one extra neutron in the 0d3/2 orbital. In all cases there is a strong
proton excitation. For this nucleus different value of ~Ω were not consid-
ered. The rather large excitation energy across major shells remains to be
understood, that is, whether it is an artifact of the restriction to 4 major
shells, or it is a feature of this NN interaction. Eventually, this nucleus will
be studied in the future in a more detailed way (i.e. a larger number of
major shells and several values of ~Ω).

3.5. 14C

The experimental binding energy of this nucleus is 105.284 MeV and the
excitation energy of the 2+

1 state is 7.01 MeV. The first excited state is a 1−

state at 6.09 MeV. This high excitation energy is considered as a motivation
for model assumptions that take 14C as an inert core. We considered 150
Slater determinants. Our result for the binding energy is 109.976 with an
uncertainty of 0.37%. As in the previous cases, the energy shows a 1/NSD

behavior for large NSD. Our values for the excitation energies are E(2+
1 ) =

5.31 MeV and E(1−) = 12.3 MeV. As expected the 2+ state is a proton
excitation and δn(2+, 0p3/2, p) = −0.68 and δn(2+, 0p1/2, p) = 0.69. The
number of neutrons in the 0s and 0p shells is 7.3 indicating that the closure
of the neutron shell is partially broken. One can see this more explicitely
by comparing the final ground-state results with the ones obtained with a
Hartree–Fock calculation using the full angular momentum projector. The
HF binding energy is 106.33 MeV, close to the HMD value. However, the
proton occupation numbers for the p shell are different and, to a less extent,
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also the neutron occupation numbers. The calculated 1− state is mostly a
neutron excitation, in fact

δn(1−, 0p3/2, n) = −0.17 ,
δn(1−, 0p1/2, n) = −0.67 ,
δn(1−, 1s1/2, n) = 0.82 ,
δn(1−, 0p3/2, p) = −0.21 ,
δn(1−, 0p1/2, p) = −0.25 .

Both the structure of this state and the high energy of the 1− state again
indicate that the distance between the p and sd major shells is too large.

For this nucleus we performed also a calculation of the excitation en-
ergy of the 2+

1 state using ~Ω = 11 MeV and 200 Slater determinants. We
obtained E(2+

1 ) = 4.36 MeV. Using ~Ω = 17 MeV with 200 Slater determi-
nants we obtained E(2+

1 ) = 5.6 MeV (we did not in this case reevaluate the
excitation energy with the full angular momentum projector). These results
show a dependence of E(2+

1 ) on ~Ω. We therefore performed for this nucleus
a calculation using 5 major shells. Again no reprojection was performed at
the end of the calculation for this case. For ~Ω = 11 MeV, 14 MeV, 17 MeV
we obtained E(2+

1 ) = 4.23 MeV, 4.8 MeV, 4.7 MeV, respectively. The un-
certainty of the calculation is about 0.1 MeV. There is still a residual ~Ω
dependence of the excitation energy, but it is smaller than the one obtained
with 4 major shells.

3.6. 15C

The experimental binding energy of 15C is 106.5 MeV and the ground
state has Jπ = 1/2+. The first excited state has E(5/2+) = 0.74 MeV and
the first 3/2+ state is at 4.78 MeV. The first few negative parity levels are
E(1/2−) = 3.10 MeV, E(5/2−) = 4.22 MeV and E(3/2−) = 4.66 MeV. Our
results are the following. The binding energy obtained with 250 Slater de-
terminants is 110.586 MeV with an uncertainty of 0.46%. The ground-state
spin and parity are properly reproduced. Heavy carbon isotopes overbind
compared to the experimental data while the light ones underbind. Our
results for the yrast positive parity levels are: E(5/2+) = 0.79 MeV and
E(3/2+) = 5.43 MeV (cf. Fig. 5). If we compare the occupation numbers of
the 1/2+ state of 15C with the occupation numbers of the ground-state of
14C we find that mostly they differ because of the population of the 1s1/2
neutron shell. The difference in the number of neutrons for this shell is 0.88.
The remaining 0.12 neutrons are accounted for small difference in the popu-
lation of the other neutron shells. The largest differences in the occupation
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Fig. 5. Excitation energies of the selected states as a function of the number of
Slater determinants for 15C.

numbers of the 5/2+ state and the 1/2+ state are the following

δn(5/2+, 0d5/2, n) = 0.91 , δn(1/2+, 1s1/2, n) = −0.88 ,
δn(5/2+, 0p3/2, p) = −0.13 , δn(1/2+, 0p1/2, p) = 0.13 .

That is, the 5/2+ state is predominantly, but not entirely a neutron
excitation. The 3/2+ state is not a neutron excitation built on the ground
state. In fact the dominant differences in the occupation numbers are

δn(3/2+, 0d3/2, n) = 0.14 , δn(1/2+, 1s1/2, n) = −0.12 ,
δn(3/2+, 0p3/2, p) = −0.56 , δn(1/2+, 0p1/2, p) = 0.58 .

Therefore, this state is predominantly a proton excitation. The first nega-
tive parity yrast levels have high excitation energy compared with the corre-
sponding experimental values. We obtained E(1/2−) = 9.7 MeV E(3/2−) =
11.97 MeV (this state was obtained with 200 Slater determinants and is not
fully converged). The calculated 5/2− is so high in energy that we can-
not rule out a center of mass excitation. The variations of the occupation
numbers compared with the ground state are

δn(1/2−, 0p3/2, n) = −0.16 , δn(1/2−, 0p1/2, n) = −0.7 ,
δn(1/2−, 0d5/2, n) = 1.02 , δn(1/2−, 1s1/2, n) = −0.14 ,
δn(1/2−, 0p3/2, p) = −0.27 , δn(1/2−, 0p1/2, p) = 0.33 ,
δn(3/2−, 1s1/2, n) = −0.84 , δn(3/2−, 1p3/2, n) = 0.86 .

Therefore, the 3/2− state is a neutron excitation from the sd shell to the fp
shell, while the 1/2− is mostly an excitation from the p shell to the sd shell.
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3.7. 16C, 18C, 20C

The experimental binding energy of 16C is 110.75 MeV and the first
excited state is E(2+) = 1.766 MeV. For this nucleus we used 300 Slater
determinants and obtained a binding energy of 114.707 MeV with a 0.6%
uncertainty. The theoretical 2+ has an excitation energy of 1.74 MeV, in
good agreement with the experimental value. This state is predominantly a
neutron excitation since

δn(2+, 0d5/2, n) = 0.12 , δn(2+, 1s1/2, n) = −0.12 .

The fp shell is appreciably populated by 0.43 neutrons and 0.33 protons.
It seems that intrashell excitations are overall in agreement with the ex-
perimental values (cf. the discussion of the other isotopes) but intershell
excitations are too high compared with the experimental data.

The experimental binding energy of 18C is 115.67 MeV and E(2+) =
1.59MeV. With 250 Slater determinants we obtained a binding energy of
119.73 MeV and E(2+) = 1.89 MeV. The 2+ state is predominantly a neu-
tron excitation with a 0.12 increase in the population of the 0d5/2 orbital
at the expenses of the 0d3/2 and 1s1/2. Also here we have 0.44 neutrons
and 0.3 protons in the fp shell.

The experimental binding energy of 20C is 119.17 MeV and E(2+) =
1.59MeV. With 200 Slater determinants we obtained a binding energy of
124.43 MeV and E(2+) = 1.94 MeV. The 2+ state is mostly a neutron
excitation with a 0.11 decrease in the population of the 1s1/2 orbital in
favor of the 0d3/2 and 0d5/2/2. The only appreciable change in the num-
ber of proton is a 0.03 decrease in the 0p3/2 population in favor of the
0p1/2 orbit. Also here we have 0.46 neutrons and 0.29 protons in the fp
shell. We repeated this calculation using 400 Slater determinants in order
to see whether 22C is more bound than 20C. Absolute values for the ener-
gies have a slower convergence with the number of Slater determinants than
excitation energies, and 400 Slater determinants are not sufficient to deter-
mine unambiguously whether 22C is bound in this approach. We obtained
Egs(22C)−Egs(20C) = 0.2 MeV and this energy difference is slowly decreas-
ing with the number of Slater determinants. The model space used in this
work can hardly properly describe halo nuclei. The isotope 21C is unbound
by few MeVs.

3.8. 17C, 19C

The experimental binding energy for 17C is 111.48 MeV. The ground
state has Jπ = 3/2+ and the known excited states have E(1/2+) = 0.21 MeV
and E(5/2+) = 0.331 MeV. For this nucleus we considered only 150 Slater
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determinants and therefore the calculated binding energy is not well de-
termined (we did not see in this case a linear behavior as a function of
1/NSD. The calculated binding energy is 114.48 MeV. More importantly the
ground-state has Jπ = 1/2+ in disagreement with the experimental value.
Although less accurate than the excitation energies in the previous cases, we
have E(3/2+) = 0.4 MeV and E(5/2+) = 1.9 MeV. The experimental bind-
ing energy for 19C is 115.8 MeV and the ground-state has Jπ = 1/2+, the
first excited state has E(3/2+) = 0.196 MeV and the second excited state
has E(5/2+) = 0.269 MeV. The calculated binding energy is 120.05 MeV
with an estimated uncertainty of 0.4%. The ground-state has Jπ = 3/2+ in
disagreement with the experimental value.

3.9. Separation energies

Although we have seen, in this model space, a systematic underbind-
ing for light isotopes and overbinding for the heavy ones, it is interesting
to extract the neutron separation energies and to compare them with the
experimental data. This is done in Fig. 6. The overall trend is rather well
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Fig. 6. Neutron separation energies for carbon isotopes.

reproduced, especially the even–odd effect. In all these calculations the
binding energies are not fully converged, that is, we need a larger number
of Slater determinants. However, this does not represent a problem as pre-
viously mentioned, since these calculations are variational. In other words,
the theoretical errors have all the same sign and such errors tend to cancel
out in the evaluation of the separation energies. This seems to be especially
true for the evaluation of the excitation energies. As a final point, let us
mention that the sizes of the Hilbert spaces with 4 major shells, range from
3× 1010 in the case of 10C to about 1016 in the case of 22C.
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4. Summary

In this work we have studied carbon isotopes in a fully microscopic
way using the chiral N3LO interaction properly renormalized to 4 (in some
cases 5) major shells. In this treatment there are no adjustable parameters.
We have evaluated binding energies, separation energies and few low energies
levels. There seems to a systematic discrepancy with the experimental data
whenever energy levels involve cross-shell excitation. Moreover, although
by a small amount, 22C is not bound. This is not very surprising since the
model space is not well suited to describe loosely bound systems. The first
2+ state of heavy even isotopes are dominated by neutron excitation and for
light odd isotopes the proper spin of the ground state is reproduced.
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