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CHIRAL DENSITY WAVES IN QUARKYONIC MATTER
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We study the phase diagram of strongly interacting matter includ-
ing the inhomogeneous phase of Chiral Density Waves (CDW) within the
Polyakov loop extended Nambu–Jona-Lasinio (PNJL) model. We discuss
the phase structure taking into account density and flavour dependence
of the Polyakov loop potential parameter and temperature dependence of
the four-point coupling constant of the NJL model. It is shown that the
CDW phase exists and that can be interpreted as a special realisation of
quarkyonic matter. This fact is of particular interest because the existence
of homogeneous quarkyonic matter is strongly constrained. This also indi-
cates that the study of inhomogeneous phases at finite temperatures and
baryon densities are of special importance.
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1. Introduction

An understanding of structure of the phase diagram of strongly inter-
acting matter at finite baryon density is still an open problem despite many
efforts that have been devoted to its study since the very beginning of the
QCD era. The lack of experimental data and reliable tools of the direct QCD
based calculations are the main culprits of this situation. Nevertheless, the
progress is still possible and our experience must rely on the interplay be-
tween general arguments, models calculations and QCD lattice results acces-
sible at the low chemical potential. A very good example of such approach is
the PNJL model [1] which combines the chiral and the deconfinement order
parameters linked to QCD at finite temperature through the parameter fits
to the lattice data [2, 3, 4].
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The new insight into the high baryon density domain based on large Nc

expansion has been proposed by McLerran and Pisarski [5]. In the limit
of a large number of colours Nc → ∞ the QCD phase diagram simplifies
substantially. The low baryon density and temperature region is occupied
by the confined, chirally broken phase where the matter pressure scales with
Nc as P ∼ O(1). The high temperature phase is deconfined and dominated
by gluons with the P ∼ N2

c scaling. Finally, at the low temperature and
high baryon density there is a confined phase which scales as P ∼ Nc. The
latter phase has been named quarkyonic.

It is very natural to interpret the quarkyonic phase within the PNJL
model as deconfined and chirally restored phase. This is based on the PNJL
picture of the dense matter which consists of a degenerate Fermi sea of quarks
with the colourless particle–hole excitations at the Fermi surface. Then the
P ∼ Nc scaling at high density naturally arises. It was shown in paper [6]
that at Nc = 3 the quarkyonic phase slightly precedes the chiral transition at
finite density and low temperature. The existence of the quarkyonic phase
within the PNJL model was also studied in Ref. [7].

Discussions of the QCD phase diagram frequently consider only homo-
geneous phases. However, at the high baryon density one also has to take
into account the possibility of the crystal structures. The very well known
examples are large Nc QCD [8], skyrmion crystals [9], LOFF phases [10],
Overhauser effect [11] and chiral density waves [12]. The competition be-
tween chiral density waves and uniform colour superconductors were also
discussed [13]. The chiral spirals have been already considered in the quarky-
onic phase [14]. In this letter we would like to consider the chiral density
waves in quarkyonic matter from the point of view of the PNJL model. It is
an interesting problem to check how the chiral density waves are influenced
by the presence of the Polyakov loop field and what kind of the feedback it
generates. We also pay a particular attention to the relation between the
inhomogeneous chiral phase and the quarkyonic matter.

2. Chiral density waves in the PNJL model

We consider the PNJL model with two light quarks and three colours
with the parametrisation of the Polyakov loop based on paper [3] and the
NJL part based on paper [15]

L = ψ̄iγµDµψ +G
[(
ψ̄ψ
)2 +

(
ψ̄iγ5~τψ

)2]− U(Φ, T ) , (1)

where ψ is a massless quark field and Dµ = ∂µ− iAµ is covariant derivative.
The SU(3) gauge field Aµ = (A0,~0), A0 = gAa0λa/2 and λa are the Gell-
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Mann matrices. The effective potential describing the traced Polyakov loop

Φ =
1
Nc

Tr

P exp

i β∫
0

dτA4

 ,
in the fundamental representation takes the form [3]

U(Φ, T )
T 4

= −1
2
a(T )Φ2 + b(T ) ln

[
1− 6Φ2 + 8Φ3 − 3Φ4

]
,

a(T ) = 3.51− 2.47
T0

T
+ 15.2

(
T0

T

)2

, b(T ) = −1.75
(
T0

T

)3

, (2)

where A4 = iA0 is a colour gauge field and the temperature T0 = 270 MeV
describes the deconfinement transition in a pure gauge sector. In equa-
tion (2) we already used the constraint that the expectation value of the
Polyakov loops 〈Φ〉, 〈Φ∗〉 are real [16] which gives Φ = Φ∗ at the mean field
level [3, 4]. The above treatment may be improved with fluctuations that
lead to a difference between the expectation values of the traced Polyakov
loops at non-zero baryon densities [17]. However, in the present work, as a
practical procedure, we consistently keep Φ = Φ∗. In the literature, one may
encounter also another approach. Fields Φ and Φ∗ are treated as independent
in the minimalization of the grand thermodynamic potential [18].

The coupling constant G = 5.024 GeV−2 and the three-dimensional mo-
mentum cut-off Λ = 0.653 GeV were used for regularization of the divergent
vacuum contribution which reproduce the correct values of the pion decay
constant and chiral condensate.

We are working at the mean field level with the chiral density wave
ansatz [12] 〈

ψ̄ψ
〉

= M cos ~q · ~x ,
〈
ψ̄iγ5τ3ψ

〉
= M sin ~q · ~x , (3)

where the third direction in isospin space was chosen arbitrarily. The colour
field in a Polyakov gauge creates a constant background field A4 = λ3φ which
is related to the Polyakov loop through the equation Φ = (1 + 2 cosφ)/3.

The standard procedure of the mean-field calculation in the Matsubara
formalism leads to the thermodynamic potential of the form

Ω

V
=
M2

4G
+ U(Φ, T )− T

2

∑
n

∫
d3p

(2π)3
Tr ln

[
S−1 (iωn, ~p)

]
, (4)

where ωn = (2n + 1)πT . The inverse propagator in Nambu–Gorkov space
reads
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S−1
± (iωn, ~p) =

[
S−1

+ 0
0 S−1

−

]
, (5)

where S−1
± (iωn, ~p) = iγ0(ωn ± A4 ± iµ) + ~γ

(
~p− 1

2γ5τ3~q
)

+ M and µ is a
quark chemical potential. After diagonalization of the propagator one finally
arrives at the formulae

Ω

V
= U(Φ, T ) +

M2

4G
+
M2F 2

π~q
2

2M2
0

− 12

Λ∫
d3p

(2π)3
E0

−2T
∑
i=±

Λ∫
d3p

(2π)3
{

ln
[
1 + 3Φe−(Ei−µ)/T

(
1 + e−(Ei−µ)/T

)
+ e−3(Ei−µ)/T

]
+ ln

[
1 + 3Φe−(Ei+µ)/T

(
1 + e−(Ei+µ)/T

)
+ e−3(Ei+µ)/T

]}
, (6)

whereM0 = 0.301 GeV is a constituent quark mass at zero temperature and
density. The regularization through the 3-dim momentum cut-off was intro-
duced after paper [13]. The energy eigenvalues are given by the expressions

E± =

√
~p2 +M2 +

~q 2

4
±
√

(~q · ~p)2 +M2~q 2 , E0 =
√
~p2 +M2 .

Let us notice that potential (6) reduces to NJL model prediction in the
deconfined limit Φ = 1 .

3. The phase diagram

The global minima of the potential (6) as a function of temperature
and baryon density describe the phase diagram of the strongly interacting
matter. This prescription leads to the self-consistent equations

∂Ω

∂M
=
∂Ω

∂Φ
=
∂Ω

∂|~q|
= 0 .

Fig. 1 shows the the PNJL model phase diagram including the inhomoge-
neous chiral density wave phase (CDW) marked with the grey colour. This
phase is surrounded by the line of the first order phase transition where there
are jumps in the values of the all order parameters M,Φ and |~q|. The jump
in Φ is induced by the first order phase transition in M and it is not a mark
of the transition to a deconfinement phase. One expects rather a crossover
here and the exact place of this transition is not fixed unambiguously. We
define the transition line as a place where the derivative dΦ/dT reaches its
maximum unless stated otherwise (see Subsection 3.2). Using our definition
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the lines of deconfinement phase transition are shown in Fig. 1 as dashed
curves. For the Polyakov loop potential parameter T0 = 270 MeV the chi-
ral and deconfinement transitions almost perfectly coincide at zero density,
however, they split around the point (T, µ) = (0.21, 0.12) GeV (left panel of
Fig. 1). It is interesting to note that this is also the place where the quarky-
onic phase appears. The boarder line for the quarkyonic matter is defined
as a place where the value of the quark chemical potential exceeds the value
of the constituent quark mass [6]. This line perfectly coincides with the first
order phase transition line of the CDW phase for µ > 0.12 GeV. It happens
because at the first order phase transition there is a large jump in the value
of the constituent quark massM which drops below the value of µ. One can
conclude that within the PNJL model the quarkyonic matter can be treated
as confined, however, spatially inhomogeneous phase.

Fig. 1. The phase diagram of the PNJL model with inhomogeneous chiral wave.
The dashed curves are lines of the deconfinement phase transition. The left
panel shows the diagram for the constant Polyakov loop potential parameter
T0 = 270 MeV, whereas the right panel for the density dependent parameter T0(µ)
given by equation (7). The grey colour describes the inhomogeneous CDW phase.
The dotted curves are lines of the transition to quarkyonic phase. These lines es-
sentially coincide with the lines of the first order phase transition to CDW phase
at higher density.

3.1. Deconfinement and the baryon density

It is important to remember that the critical temperature of the de-
confinement phase transition decreases with increasing baryon number den-
sity. This results in T0 parameter dependence on the quark chemical po-
tential [19]. It can be intuitively understood in the picture of overlapping
hadrons. At zero density the finite temperature causes fluctuations of mesons
and baryon–antibaryon pairs up to some critical value of Tc. Above this tem-
perature hadrons overlap with each other and there is a possibility of a colour
flow in space which one can interpret as the process of deconfinement. At
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higher baryon chemical potential there is already some number of hadrons
present in a medium. Then a new critical temperature, lower then Tc, is suf-
ficient to create appropriate number of hadrons which start to overlap. In
paper [20] Fukushima tried to estimate such dependence from the statistical
model data which we also adopted here

T0(µ) = T0 − 9bµ2 , (7)

where b = 1.39 × 10−4 MeV−1 and for T0(µ) < 1 MeV the phase is defined
as deconfined. In the right panel of Fig. 1 the dashed curve describes the
deconfinement phase transition for the density dependent parameter (7). As
expected the line bends toward the density axis, but still, there is a place for
the inhomogeneous phase in the quarkyonic region for temperatures below
0.16 GeV and chemical potential above 0.22 GeV. This needs to be confronted
with the statement that the existence of homogeneous quarkyonic phase is
inconsistent with the prediction of statistical model [20]. The introduction
of non-uniform phases opens up a window for realisation of the quarkyonic
matter (see also Fig. 4).

3.2. Deconfinement and the number of flavours

A value of the temperature parameter T0 depends also on the number
of active flavours. For the model which contains two degenerate flavours
one should reduce the temperature parameter to T0 = 208 MeV [2,19]. The
phase diagram for this parameter is shown in the left panel of Fig. 2. First of
all one looses a good coincidence between the chiral and deconfinement phase
transitions at zero density, nevertheless, the CDW phase remains intact. The
confined (quarkyonic), inhomogeneous phase appears at chemical potential
larger then µ = 0.21 GeV and temperatures below T = 0.16 GeV. For lower
baryon densities and higher temperatures the CDW phase still exists but it
is deconfined.

The phase diagram at T0 = 208 MeV is not satisfactory in a sense that
at zero density there is a mismatch between the chiral and deconfinement
phase transitions which contradicts the lattice results [21]. One can consider
a possibility that this problem is a consequence of the wrong value of the
coupling constant G at non-zero temperature. The effective coupling con-
stant G is in principle a function of temperature and density. It contains
contributions which follow from the integration of the gluonic degrees of free-
dom. At higher values of T gluons interaction with quarks weakens which
in turn influences the effective four-quark interaction in the same way. Thus
the coupling G decreases with increasing temperature which lowers the crit-
ical temperature of the chiral phase transition. If one attributes the whole
mismatch between the chiral and deconfinement transitions at zero density
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Fig. 2. The phase diagram of the PNJL model with inhomogeneous chiral wave
for the Polyakov loop potential parameter T0 = 208 MeV which corresponds to
Nf = 2 active degenerate flavours. In the left panel the NJL parameter is set to
G = 5.024 GeV−2. In the right panel the temperature dependence of the NJL
parameter G(T ) is taken into account according to equation (8). Behaviour of the
Polyakov loop is disturbed by the first order transitions into the inhomogeneous
phase and consequently deconfinement transition is determined with uncertainty
within the blue band.

to the wrong value of G then one can try, at least at the phenomenologi-
cal level, to re-establish the agreement changing its value into the new one
G(Tc) = Gc in such a way, that both transitions have the same critical tem-
perature Tc. We assume here that the coupling G is a linear function of
temperature

G(T ) = G(1− (T/Tc)) +Gc(T/Tc) , (8)
G = 5.024 GeV−2 , Gc = 4.221 GeV−2 , Tc = 167 MeV .

According to our fit the change in the constant G between zero temperature
and Tc is of the order of 15 per cent which is not much. Then one can treat
equation (8) as a series expansion in the temperature around T = 0. The
density dependence of G is neglected since it is less important at large Nc

limit where quarks decoupled from the gluonic degrees of freedom.
The right panel of Fig. 2 describes the phase diagram where the NJL

coupling constant G is given by the linear function from Eq. (8). It is
clearly seen that the chiral and deconfinement phase transitions coincide
at zero density to a good approximation. Let us mention that the usual
definition of the deconfinement transition line as a place where the derivative
dΦ/dT reaches its maximum is not quite useful in a situation where Φ is a
discontinues function of temperature and the points of discontinuity are close
to the expected maximum value of dΦ/dT . In such situations we define the
deconfinement transition as a place where the Polyakov loop Φ takes the
value 0.31 ± 0.07. This is rather a modest value, however, such range is
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suggested when one considers the deconfinement phase transition for the
homogeneous phases where the transition line is defined in a standard way.
Using our definition the line of deconfinement phase transition is shown in
Fig. 2 (later in Fig. 4) as a dark (blue) band. At low temperature and high
baryon density one recovers the results of the NJL model with a constant G
coupling.

3.3. Triple point

The concept of a triple point in the QCD phase diagram refers to various
situations. For instance, the existence of a triple point between hadronic,
colour–superconducting and quark–gluon sectors was discussed in Ref. [22].
In the context of the present work, we refer to a very recent idea, namely,
to the triple point in which hadronic, quarkyonic and quark–gluon phases
meet together. Such a possibility was emphasized in paper [23]. Although
in Figs. 1, 2 the CDW phase exists even at zero density region (there is no
space for triple point), the location of the inhomogeneous phase depends
on the regularization parameter Λ. In Figs. 1, 2 the cut-off parameter in
the temperature dependent part of the potential (6) was sent to infinity. If
one keeps this parameter at the constant value Λ = 0.653 GeV then the
phase diagram changes and it is shown in Fig. 3. In this case the triple
point actually appears at the point where the inhomogeneous phase ends
(T3, µ3) = (0.22, 0.2) GeV, what is in agreement with the results of Ref. [24].
However, one has to remember that the location of this point is strongly
dependent on the model parameters and the regularization method.

Fig. 3. The chiral phases of the PNJL model with inhomogeneous chiral wave. The
NJL model parameters are G = 5.024 GeV−2 and Λ = 0.653 GeV. The temperature
dependent part of the potential (6) is also regularized by the finite cut-off. In such
a regularization the CDW phase is limited to the high density region of the diagram.
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For the quark chemical potential below µ3 the phase line describes the
continuous phase transition whereas above µ3 the line is of the first order.
When a non-zero current quark mass is turned on then the continuous phase
transition changes into a smooth crossover and only the island of CDW phase
remains on the diagram.

4. Summary and conclusions

We have discussed the phase diagram of the strongly interacting matter
including the spatially dependent chiral density waves in the PNJL model.
It was shown that the inhomogeneous CDW phase exists and dominates over
the chirally restored phase in a large domain of the phase diagram. We have
also pointed out that the chiral density wave can be interpreted as a special
realisation of the quarkyonic matter. This is an interesting possibility, par-
ticularly, when the homogeneous quarkyonic phase was strongly constrained
by the results of the statistical model [20]. Indeed in a case of two flavours
the phase diagram with only homogeneous phases is shown in Fig. 4 (left
panel) where the effects of flavour and density dependence of the Polyakov
loop potential parameter T0(Nf , µ) as well as the temperature dependence
of the NJL coupling constant G(T ) were taken into account. This last de-
pendence reflects the fact that at higher temperature the four-point quark
interaction should weaken which in turn let the chiral and the deconfinement

Fig. 4. Left panel: the phase diagram of the PNJL model with homogeneous phases
only. Above the point (T, µ) = (0.085, 0.263), the nature of the chiral transition
changes from first to second order. Right panel: the phase diagram of the PNJL
model with inhomogeneous chiral density wave. The Polyakov loop potential pa-
rameter T0(µ) is given by (7) with T0 = 208 MeV. The finite 3-dim momentum
cut-off Λ = 0.653 GeV regularized the potential (6) and the NJL coupling con-
stant G(T ) depends on temperature through Eq. (8). The grey colour depicts the
CDW phase. The dark (blue) band shows a location of the deconfinement phase
transition.
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transitions stay at the same critical temperature at zero baryon density. In
the diagram the deconfinement phase transition precedes the chiral phase
transition almost in all the domain. Only at high density and low temper-
ature the transitions start to coincide. In such situation there is no space
left for quarkyonic matter in accordance with the conclusion of paper [20].
The phase diagram in the right panel of Fig. 4 sums up all physical effects
that we discussed in the previous sections and is the best candidate for the
QCD phase diagram. The left panel of Fig. 4 should be compared with the
right panel of the same figure. Let us notice a clear change in the order
of the phase transitions. The phase transition to the CDW phase precedes
the deconfinement phase transition. This fact also opens a window for the
quarkyonic matter. The transition into the quarkyonic phase is close to or
coincides with the first order phase transition into the CDW phase. Then
the matter is spatially inhomogeneous but still confined. Let us remind that
the details of the phase diagram depend on the temperature parametrisation
of the NJL coupling constant G(T ). Nevertheless, at low temperatures one
should expect the same pattern of phase transitions as given in Fig. 4.

For the model parameters we choose the CDW phase exists up to a
zero density line. However, the low density and high temperature region is
strongly affected by the temperature fluctuations which are neglected in the
mean field approximation. These fluctuations probably melt the “crystal”
structure of the CDW phase and the triple point is expected to appear on
the phase diagram eventually.

It is an interesting task for the future work to compare the phases of
the chiral density waves and the chiral spirals [14]. However, it requires the
implementation of the chiral spirals within the NJL model in the first place.
This is a subject of certain importance because the quarkyonic matter, if
exists, would be most probably of an inhomogeneous nature. One should
also check the dependence of the results against the regularization scheme
and the influence of the finite current quark mass [25]. Finally, it is of great
interest to consider more general ansatz then (3) to study the possibility of
the creation of different crystal structures.
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