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Nuclear matter equation of state and incompressibility are determined
utilizing the relativistic density dependent Hadron field theory. Nuclear
matter is studied at symmetric ground-state and at supernova collapse
conditions, and pressure density of isentropic nuclear matter is determined
as a function of the density at supernova collapse conditions. The value
of the ground-state nuclear matter incompressibility is within the interval
determined by isoscalar giant monopole resonance measurements and rel-
ativistic calculations, and the dependency of the coupling parameters on
density leads to results closer to the results of calculations used in the study
of supernova explosion than the results of other relativistic calculations.
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1. Introduction

Nuclear matter incompressibility is of interest in intermediate energy
heavy-ion collisions, neutron star structure, and supernova explosion calcu-
lations [1, 2]. The nuclear matter incompressibility may be deduced from
measurements of the isoscalar giant monopole resonance in medium and
heavy nuclei, but the resulting value turns out to be model dependent [3],
and hydrodynamical calculations of supernova explosions determine ranges
for the stiffness of the nuclear matter equation of state and incompressibil-
ity [4].

The relativistic Brueckner–Hartree–Fock theory (RBHF) is generally ac-
cepted as one of the most reliable and feasible microscopic methods for the
description of effective interactions in the nuclear medium [5, 6]. Unfortu-
nately, the application of the RBHF approach is highly complicated. In or-
der to overcome the complexity of RBHF calculations, attempts have been
made to use effective interactions with density dependent meson–nucleon
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couplings to describe the medium dependency of the nuclear interaction.
Density dependent meson coupling has been deduced in Ref. [7] from RBHF
calculations by reproducing the nucleon self-energy resulting from RBHF
calculations of symmetric nuclear matter, utilizing the one-boson-exchange
(OBE) potentials Bonn A, B, and C of Refs. [5, 6]. The parametrizations
of Ref. [7] have then been used by Ref. [8] in a relativistic density depen-
dent hadron field approach, with the result that the Bonn A parameters
reproduce experimental binding energies, charge radii, and measured charge
distributions of finite nuclei better than Bonn B and C parameters. The
parametrization given in Ref. [7] for the RBHF Bonn A potential has been
refined and extended in Refs. [9, 10] to reproduce the nucleon self-energy
resulting from RBHF nuclear matter calculations in the general case of dif-
ferent proton and neutron densities.

The idea of utilizing density dependent meson–nucleon couplings has
also been used to extend the relativistic mean field (RMF) framework in a
phenomenological approach, where the density dependent couplings are ad-
justed to the properties of a set of spherical nuclei and nuclear matter. See,
as an example, the DD-ME2 parametrization of Ref. [11]. RMF approaches
have the trend of predicting a rather stiff equation of state with a high value
for the incompressibility at supernova collapse conditions [12]. Nuclear equa-
tion of state and incompressibility are the basic input quantities necessary
for solving the stellar structure equations [13,14].

Nuclear matter equation of state and incompressibility are determined
in this work utilizing the relativistic density dependent hadron field theory
of Refs. [9, 10], where the dependency of the coupling parameters on the
density is deduced by reproducing the nucleon self-energy resulting from
RBHF nuclear matter calculations in the general case of different proton
and neutron densities.

Section 2 introduces the nuclear matter equation of state and incompress-
ibility. Section 3 reviews briefly the general theory of the effective nuclear
interaction with density dependent coupling parameters used in the rela-
tivistic density dependent hadron field theory of Refs. [9, 10]. The nuclear
matter equation of state and incompressibility are determined in Sec. 4 at
the ground-state of symmetric nuclear matter, and at supernova collapse
conditions, where a neutron to proton ratio of 2 stays almost constant dur-
ing the collapse time and one should consider an adiabatic process at the
constant value S = 1 for the entropy per particle in kB units [14]. The
pressure density as a function of the density is also determined in Sec. 4
at supernova collapse conditions. Results are compared with experimental
data, results of relativistic and non-relativistic calculations, and results of
hydrodynamical calculations of supernova explosions. The main conclusions
are summarized in the last section.
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2. Nuclear matter equation of state and incompressibility

The nuclear equation of state gives the nucleon energy e as a function
of the density ρ at definite values for the asymmetry parameter β and the
entropy per particle S

e = e(ρ)|β,S , (1)

where the density is the sum of the neutron and proton densities,

ρ = ρn + ρp , (2)

and the asymmetry parameter is defined by

β =
ρn − ρp

ρ
. (3)

The ground-state of nuclear matter is the state of symmetric nuclear matter
β = 0 at zero entropy S = 0. The neutron density is twice the proton
density at supernova collapse conditions ρn = 2ρp, and hence β = 0.33, and
since the collapse takes less than one second, it should be considered as an
adiabatic process at the constant entropy value S = 1, and the entropy is
used instead of the temperature in describing the collapse mechanism of the
supernova [12,14].

The incompressibility describes the curvature of the nuclear equation of
state at the nuclear matter saturation density under the defined conditions

K = 9
(
ρ2 ∂

2e

∂ρ2

)∣∣∣∣
ρs(β,S)

, (4)

where the nuclear matter saturation density under the defined conditions
ρs(β, S) is the nuclear matter density at which the nucleon energy takes
its minimum at the defined values for the asymmetry parameter β and the
entropy S, i.e.

∂e

∂ρ

∣∣∣∣
ρs(β,S)

= 0 . (5)

3. The effective density dependent interaction

The effective nucleon–nucleon interaction is described by the electromag-
netic field between protons and the exchange of four mesons: the isoscalar
scalar meson σ, the isoscalar vector meson ω, the isovector scalar meson δ,
and the isovector vector meson ρ. Density dependent coupling parameters
for the isoscalar mesons are introduced by

gi(ρ)
gi(ρ0)

− 1 = ai

(
exp

[
bi

(
1−

(
ρ

ρ0

)1/3
)]
− 1

)
, i = σ, ω , (6)
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where ρ0 is the symmetric nuclear matter saturation density and ai, bi, and
gi(ρ0) are the coefficients of the density dependent function gi(ρ). Density
dependent coupling parameters for the isovector mesons are introduced by

gi(ρ) = gi(ρ0) exp
[
bi

(
1− ρ

ρ0

)]
, i = δ, ρ , (7)

where bi and gi(ρ0) are the coefficients of the density dependent function
gi(ρ).

The coefficients ai, bi, and gi(ρ0) (i = σ, ω) and bi and gi(ρ0) (i = δ, ρ) are
adjusted to the outcome of the RBHF calculations of the nucleon self-energy
in nuclear matter of Refs. [15, 16]. The coefficients of the resulting density
dependent parametrization of the RBHF potential Bonn A [6] are given in
Table I. The masses mN , mσ, mω, mδ, and mρ and the saturation density
ρ0 are those of the Bonn A potential. See Refs. [9, 17], for instance, for a
detailed description of the relativistic density dependent hadron field theory,
and Refs. [12, 18] for more details on the introduction of the temperature
and the calculation of energy and entropy.

TABLE I

The density dependent parameter set. mi is the mass of the i-meson. ai, bi, and
gi(ρ0) are the coefficients of the parametrization of the density dependent coupling
parameters (i = σ, ω, δ, ρ). mN = 938.926 MeV is the average nucleon mass used
by Ref. [6] and ρ0 = 0.185 fm−3 is the saturation density resulting from the RBHF
potential Bonn A [6].

Meson i σ ω δ ρ

mi (MeV) 550 782.6 983 769
gi(ρ0) 9.297 11.269 4.701 2.370
ai 0.2941 0.3451 — —
bi 2.217 2.113 1.223 1.634

4. Results and discussion

Figure 1 shows the nuclear matter equation of state at ground-state con-
ditions (GS) (β = 0, S = 0) and at supernova collapse conditions (SC)
(β = 0.33, S = 1), and Table II summarizes nuclear matter saturation prop-
erties at each of these conditions, compared with the values given in Ref. [6]
for the nuclear matter ground-state resulting from RBHF calculations with
the Bonn A potential.
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Fig. 1. Nuclear matter equation of state at ground-state conditions GS: β = 0,
S = 0, and at supernova collapse conditions SC: β = 0.33, S = 1.

TABLE II

Nuclear matter saturation properties at ground-state conditions GS and at super-
nova collapse conditions SC resulting from this work, and ground-state nuclear
matter saturation properties resulting from RBHF calculations with the Bonn A
potential.

ρs(β, S) (1/fm3) e(ρs) (MeV) K (MeV)

RBHF / Bonn A GS 0.185 −15.59 290

This work GS 0.179 −15.60 264
SC 0.099 −9.78 137

The value of the GS nuclear matter incompressibility, deduced from mea-
surements of the isoscalar giant monopole resonance in medium and heavy
nuclei, is model dependent. The presently available experimental data set
does not limit the range of the GS incompressibility to better than 200–
300 MeV [3, 19]. Theoretical investigations show clear discrepancy between
the values of the GS nuclear matter incompressibility predicted by rela-
tivistic and non-relativistic models. Non-relativistic calculations predict the
value in the range 210–230 MeV [20], while relativistic 250–270 MeV [21].

The flattening of the nucleon energy curve e(ρ) around saturation den-
sity in the relativistic density dependent hadron field theory, as depicted in
Fig. 1, compensates the effect of the, in comparison with the experimental
value, larger value produced for the nuclear matter ground-state saturation
density, which enters quadratically in the relation determining the incom-
pressibility, see Eq. (4), such that the resulting value of the GS nuclear mat-
ter incompressibility lies within the ranges determined from measurements
of the isoscalar giant monopole resonance and from relativistic calculations.
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Table III compares the values resulting from this work for the nuclear
matter incompressibility at ground-state and at supernova collapse condi-
tions with the values determined from calculations used in supernova studies:
the lowest order constrained variational approach [22] with realistic poten-
tials like the AV18 potential [23] and the ∆-Reid coupled-channels model
with ∆-excitation [24], the finite temperature Brueckner–Bethe–Goldstone
approach with the Paris potential [25], and the hydrodynamical calcula-
tions [4].

TABLE III

Nuclear matter incompressibility values in the unit of MeV at ground-state GS
and at supernova collapse conditions SC resulting from this work, and the values
determined from calculations used in supernova studies.

GS SC

This work 264 137
AV18 258 132
∆-Reid 220 124
Paris 144 99
Hydrodynamics 90

Fig. 2. Nuclear matter pressure density at supernova collapse conditions β = 0.33
and S = 1, as a function of the density in the units of the nuclear matter saturation
density ρ0.33 at β = 0.33. The figure compares the results of this work with the
results of calculations used in supernova studies.
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Figure 2 compares the nuclear matter pressure density as a function of
the density at supernova collapse conditions, i.e.

p (ρ, β = 0.33, S = 1) /ρ = ρ
de

dρ

∣∣∣∣
β,S

, (8)

with the results from calculations used in supernova studies.
It can be inferred from Table III and Fig. 2 that the results obtained for

the nuclear matter incompressibility and pressure density using the relativis-
tic density dependent hadron field theory are closer to the results of calcula-
tions used in supernova studies than the results of other relativistic models
like the RMF theory, which produces values in the range of 150–175 MeV
for the incompressibility at supernova collapse conditions, as summarized in
Ref. [12].

5. Summary

Nuclear matter equation of state and incompressibility are determined
utilizing the relativistic density dependent hadron field theory, at nuclear
matter ground-state and at supernova collapse conditions. The pressure
density at supernova collapse conditions is also determined as a function of
the density.

The value of the ground-state nuclear matter incompressibility resulting
from the relativistic density dependent hadron field theory lies within the
interval determined by isoscalar giant monopole resonance measurements
and relativistic calculations. The comparison with the results of calcula-
tions used in supernova studies shows that the dependency of the coupling
parameters on density in the relativistic density dependent hadron field the-
ory, deduced by reproducing the nucleon self-energy resulting from RBHF
calculations, leads to results closer to the calculations used in supernova
studies than the results of other relativistic models like the RMF theory.

The author acknowledges support by the Atomic Energy Commission of
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REFERENCES

[1] F.D. Swesty, J.M. Lattimer, E.S. Myra, Astrophys. J. 425, 195 (1994).
[2] D.T. Khoa, G.R. Satchler, W. Van Oertzen, Phys. Rev. C56, 954 (1997).
[3] G. Colò et al., Phys. Rev. C70, 024307 (2004).
[4] E. Baron, J. Cooperstein, S. Kahana, Phys. Rev. Lett. 55, 126 (1985).

http://dx.doi.org/10.1086/173974
http://dx.doi.org/10.1103/PhysRevC.56.954
http://dx.doi.org/10.1103/PhysRevC.70.024307
http://dx.doi.org/10.1103/PhysRevLett.55.126


1324 S. Haddad

[5] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
[6] R. Brockmann, R. Machleidt, Phys. Rev. C42, 1965 (1990).
[7] S. Haddad, M.K. Weigel, Phys. Rev. C48, 2740 (1993).
[8] C. Fuchs, H. Lenske, H. H. Wolter, Phys. Rev. C52, 3043 (1995).
[9] S. Haddad, Acta Phys. Pol. B 38, 2121 (2007).
[10] S. Haddad, Europhys. Lett. 80, 62001 (2007).
[11] G.A. Lalazissis, T. Niks̆ić, D. Vretenar, P. Ring, Phys. Rev. C71, 024312

(2005).
[12] S. Haddad, Int. J. Mod. Phys. E12, 125 (2003).
[13] M. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972).
[14] H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990).
[15] L. Engvik et al., Phys. Rev. Lett. 73, 2650 (1994).
[16] O. Elgaroy et al., Phys. Rev. Lett. 76, 1994 (1996).
[17] M.K. Weigel, S. Haddad, F. Weber, J. Phys. G 17, 619 (1991).
[18] S. Haddad, M.K. Weigel, J. Phys. G 20, 593 (1994).
[19] D.H. Youngblood, H.L. Clark, Y.W. Lui, Phys. Rev. Lett. 82, 691 (1999).
[20] M. Farine, J.M. Pearson, F. Tondeur, Nucl. Phys. A615, 135 (1997).
[21] B.K. Agrawal, S. Shlomo, V. Kim Au, Phys. Rev. C68, 031304 (2003).
[22] M. Modarres, G.H. Bordbar, Phys. Rev. C58, 2781 (1998).
[23] R.B. Wiringa, V. Stocks, R. Schiavilla, Phys. Rev. C51, 38 (1995).
[24] A.M. Green, J.A. Niskanen, M.E. Sainio, J. Phys. G 4, 1055 (1978);

A.M. Green, P. Haapakoski, Nucl. Phys. A221, 429 (1974).
[25] I. Bombaci, T.T.S. Kuo, U. Lombardo, Phys. Rep. 242, 165 (1994).

http://dx.doi.org/10.1103/PhysRevC.42.1965
http://dx.doi.org/10.1103/PhysRevC.48.2740
http://dx.doi.org/10.1103/PhysRevC.52.3043
http://www.actaphys.uj.edu.pl/vol38/abs/v38p2121
http://dx.doi.org/10.1209/0295-5075/80/62001
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1142/S021830130300120X
http://dx.doi.org/10.1146/annurev.aa.10.090172.002235
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1103/PhysRevLett.73.2650
http://dx.doi.org/10.1103/PhysRevLett.76.1994
http://dx.doi.org/10.1088/0954-3899/17/5/010
http://dx.doi.org/10.1088/0954-3899/20/4/007
http://dx.doi.org/10.1103/PhysRevLett.82.691
http://dx.doi.org/10.1016/S0375-9474(96)00453-8
http://dx.doi.org/10.1103/PhysRevC.68.031304
http://dx.doi.org/10.1103/PhysRevC.58.2781
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1088/0305-4616/4/7/013
http://dx.doi.org/10.1016/0375-9474(74)90474-6
http://dx.doi.org/10.1016/0370-1573(94)90149-X

	1 Introduction
	2 Nuclear matter equation of state and incompressibility
	3 The effective density dependent interaction
	4 Results and discussion
	5 Summary

