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Feynman diagrams with two real partons contributing to the next-to-
leading-order singlet gluon—quark DGLAP kernel are analysed. The infra-
red singularities of unintegrated distributions are examined numerically.
The analytical formulae are also given in some cases. The role of the colour
coherence effects is found to be crucial for cancellations of the double- and
single-logarithmic infra-red singularities.
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1. Motivation

The study presented here is a part of the development of the fully ex-
clusive next-to-leading order (NLO) Parton Shower Monte Carlo (MC) for
precision QCD predictions for the LHC experiments, see [1,2,3]. DGLAP [4]
evolution of parton distribution functions (PDFs) is modelled in the Monte
Carlo within the unintegrated phase space. A methodology based on the
collinear factorisation theorems in physical gauge based on Refs. [5] and [6]
is used. MC program will simulate exactly NLO DGLAP evolution of PDFs
by itself, as opposed to using pretabulated PDFs, provided by the non-MC
programs like QCDNUM |[7]. For the construction of such a new NLO par-
ton shower MC program a new exclusive (fully unintegrated) NLO evolution
kernels are required in order to impose NLO corrections within a simpler
LO MC parton shower, by means of reweighting the LO distribution, as
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outlined in Ref. [3]'. In this method the LO MC parton shower has to be
reconstructed from the scratch, contrary to methodology of Ref. [11], where
at the price MC weights being non-positive, one is able to use standard LO
parton shower MC.

Very schematically, the corresponding MC weight reads

exact NLO diagram distribution

M ight =
C weig crude LO distribution

(1)

The potential problem is that a single Feynman diagram, or small subset of
diagrams, entering the exclusive NLO kernel (and the MC weight) generally
is not gauge-invariant and may feature uncancelled soft singularities. The
Monte Carlo weights may then explode, unless the crude distributions of the
LO MC already reproduces exactly soft singularities of NLO diagrams. It is
therefore very important to understand, in fine detail, the structure of soft
and collinear singularities in exclusive kernels, as implemented in LO MC
including also complete NLO corrections.

For the purpose of the MC we are going to analyse the example dia-
grams and their groups one by one, gaining the detailed knowledge about
the structure of collinear and soft singularities of each Feynman diagram
contributing to the NLO kernel and the interplay between diagrams. We
shall exploit tools and methods of the graphical analysis of the infra-red sin-
gularities which were already used for the non-singlet diagrams in Ref. [12].
Here, we will extend this study to a gauge invariant subset of two-real singlet
diagrams contributing to the Py, NLO DGLAP kernel. Let us stress that
the cancellations discussed in the following are not of the usual KLN [13] na-
ture, 7.e. between the real and virtual Feynman diagrams, but rather among
the real diagrams alone, and are governed by the spin and colour quantum
numbers. The contributions of the diagrams to the standard DGLAP (in-
clusive) kernels analysed in the following have been already defined and used
in Refs. [14] and [15]. Generally, we shall examine the structure of the soft
and collinear singularities of the unintegrated distributions related to these
NLO DGLAP evolution kernels.

2. Singlet diagrams considered

The singlet diagrams considered in this contribution originate from the
LO amplitude for splitting a gluon into quark (antiquark)

5

! In the complementary approach of Refs. [8,9,10] soft singularities are resummed first
and collinear resummation is added next.
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by means of adding the NLO corrections from the emission of an additional

gluon g+5+g&

Feynman diagrams contributing to the NLO kernel result from squaring
the above sum of amplitudes and are displayed in Fig. 1. It is worth noting,
that the ladder diagrams (the first and the third in the upper row in Fig. 1)
enter the NLO kernel supplemented with the so-called collinear countert-
erms that subtract off the leading-order contributions. In this contribution,
however, the counterterms will be included only at the end of the analysis,
and before that the leading-order singularities will be visible.

Fig. 1. Singlet gluon—quark diagrams; “1” denotes a quark and “2” — a gluon.

We will adopt the same approach as in Ref. [12| and analyse all distri-
butions in the logarithmic Sudakov variables (In(a;/a2),In(a1/az)), where
«; come from the Sudakov parametrisation of four-momenta of the emitted
particles: k; = a;p + o; n + k; | and a; are angular (rapidity-related) vari-

—
_ lkid]

ables, a; = . All contributions are normalised to the eikonal phase space

ap . o dovy day day. o)
o1 Qz ar az
with the angles integrated over. Moreover, we will ensure that at least one
emission is hard by constraining a1 + @9 = 1 —x > 0. Similarly, the maximal
angle is fixed to an arbitrary parameter. Hence, the ratios a;/as and aq/aq
will measure the relative hardness and angles of the two partons.
We will explore the soft limit of the diagrams in Fig. 1, namely the limit

where both |k:_T: | — 0 and o; — 0 (for a given @), but a; remains finite. In
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the logarithmic Sudakov variables the singularities will appear on the plots
as one- or two-dimensional infinite structures.

3. Results

Let us first consider the C’I% diagrams, corresponding to emission of a
gluon from a quark. The bremsstrahlung type diagram is displayed in Fig. 2,
left. It has a doubly-logarithmic singularity visible as the infinite trapezoidal

2
plateau, bordered by the lines a; = ap and Z—% = g—; (the line of equal “minus

lightcone variables” «; ). The second diagram, representing the amplitude-
squared of emission of a gluon from the emitted quark (Fig. 2, middle),
features a collinear singularity manifesting itself as the infinite ridge along
the line of equal angles. This singularity, however, is not related to the soft
limit (it is compensated by the virtual diagram) and will not be considered
here. This diagram has also a doubly-logarithmic singularity in the form
of a triangular plateau, bordered by the lines of equal angles and “minus
variables”. The sum of the two (the rightmost plot in Fig. 2) features two
equal-height plateaux with the canyon at the line of equal minus variables.
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Fig. 2. Amplitude-squared diagrams ~ C3.

The most singular terms from the distributions of the diagrams are nec-
essarily proportional to the products of the leading-order DGLAP kernels

[~ a i+ Ao (Z+ 0o o ®)

ala% q4(al7 612)

and ) ) o )
af+(1—a1)?z*+ (1 —aq)
Pyg(21)P, =Ci-L
a9(721) Fyq(22) F 5 1—aas

(4)
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where 21 =1 —ag and 22 = 5 _zal. Similarly
ooq (22 + (1 — 2)?) ata? 1
; ~ 2CVF 2 4 ) (5)
| % a? q*(ay,a2)

2+ (1-2)?(1-2)2+a2
Pag(21) Pyq(22) = % !

2 (1 —2)ae
2 (.2 2y @1
a0 CF (@ +(1—$))0727 (6)
where z1 =1 — 2 and 2z = (7.
In (3) and (6) we also used ¢?(ay,az) = %a% + %a% + 2a1az cos ¢

(the denominator of the most virtual quark) and a? = a2 + a3 — 2a;as cos ¢
(proportional to the invariant mass of the emitted quark and gluon).

The “canyon” structure in the plot, being the remaining singly-logarith-
mic singularity, however, spoils the soft limit regardless of the counterterm
employed. If we add now the interference diagram?, as shown in Fig. 3, the
canyon gets removed.
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Fig. 3. The infra-red cancellations among the diagrams ~ C3.

What remains is the uniform plateau bordered by a; = a2 collinear singu-
larity. The “minus variable” ordering, preferred by each diagram separately,
turns out to be irrelevant for the sum of diagrams!

From the above formulae it follows that the quadratic plateau represents
the leading-order contribution. In the NLO kernel it is removed by the
counterterm of the factorisation procedure equal to

(+(1-—)?*(af+(1—-m)?)) 1

22 (7)

CCF = 4C2
F a1ad(l —a1)2(1 — as) aja

2 This diagram’s colour coefficient is equal to C32 — CaCr/2. In this analysis we add
only its part ~ CZ, adding the other one ~ —CaCr/2 to the CAaCr diagrams.
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The doubly logarithmic singularity of the counterterm depends on the details
of factorisation procedure in use?.

The C'a CFk subset consists of diagrams that correspond to the emission of
a gluon from the incoming gluon. They include only one amplitude-squared
diagram. Displayed in Fig. 4, left, it has a doubly-logarithmic singularity
— the plateau stretching in the two regions: where the angle of the emitted
gluon is larger than the quark’s and wice versa. The diagram contributes
in the region of phase space where both emissions are ordered in the minus
variable. After adding to the interference diagram, the boundaries of the
resulting plateau are corrected and the sum contributes in the region of the
phase space, where the angle of the quark is larger than angle of the gluon.
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Fig.4. The cancellation of doubly-logarithmic singularities among diagrams

~ CpCh.
The collinear counterterm is given by

(a% + :c2) (404% — a3 —3as + 4) 1

. 8
103 (1 — aq)? a?a3 ®

COACF = 20\ Cp

While the C2 counterterm of Eq. (7) features the a; < ag ordering, the
ordering in the CACF counterterm of Eq. (8) is the opposite (a2 < a1) due
to a gluon being emitted before a quark.

The remaining CaCF interferences feature single-log singularities, seen
as infinite canyons/ridges along the line of equal minus-variables in Fig. 5
that cancel out when added. What remains is the little hill in the central
region, which leads to a finite contribution.

The sum of all singlet diagrams discussed in this contribution is presented

in Fig. 6. The left-hand side plot in this figure shows two leading-order

% The counterterm in Eq. (7) has additional theta function related to ordering of the
emissions (not shown explicitly), defining the boundaries of the LO plateaux. In the
following we will use the ordering in the angular variables a.



Colour Coherence of Soft Gluons in the Fully Unintegrated NLO Singlet ... 1603

Fig.5. The cancellation of singly-logarithmic singularities among interference dia-
grams ~ CpChy.

plateaux separated by the line of equal angles a; = as. The line represents
a collinear singularity and comes from the diagram, in which the additional
gluon is emitted from the emitted quark. The plateau on the left (in brown)
corresponds to the topologies in which a soft gluon is emitted from a quark.
The right-hand side plateau (navy-blue) represents contributions with a soft
gluon emitted from the incoming gluon. The relative height of both plateaux
is equal to C2/CrCy, as expected.
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Fig.6. All singlet gluon—quark contributions to the NLO kernel added together
(left) and with counterterms subtracted (right).
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In the right plot the same sum is presented, but with the leading order
singularities cancelled out by the factorisation counterterms of Eqs. (7)
and (8) on the left- and right-hand side of this plot, respectively. The plot
features the collinear singularity only.

4. Conclusions

We conclude that the restoration of gauge invariance (colour coherence)
is crucial in cancelling infra-red singularities. We understand the soft limits
of NLO exclusive kernels, observe and explain the cancellations of double-
and single-logarithmic soft singularities. The angular ordering is the pre-
ferred parametrisation of the phase space in view of the soft singularity
structure of the distributions from gauge-invariant subset of diagrams con-
tributing to NLO evolution kernels in the exclusive (unintegrated) form.
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