
Vol. 42 (2011) ACTA PHYSICA POLONICA B No 7

WINHAC++: THE OBJECT-ORIENTED MONTE CARLO
FOR THE CHARGED-CURRENT DRELL–YAN

PROCESS∗ ∗∗

Kamil Sobol

The Marian Smoluchowski Institute of Physics, Jagiellonian University
Reymonta 4, 30-059 Kraków, Poland.

(Received April 29, 2011)

This paper is devoted to the implementation of the generator WINHAC++.
This is a new, object-oriented version of the Monte Carlo generator WINHAC
written in Fortran, which is used to model the charged-current Drell–Yan
processes, taking into account the radiative corrections by exclusive Yennie–
Frautschi–Suura exponentiation. At present, the Born level and the final-
state radiation (FSR) has been included into the latest stable release. The
correctness of the implementation has been confirmed by a series of numer-
ical tests. The current stage of the development includes the implementa-
tion of standard event records and the integration with parton shower and
hadronization generators, such as Pythia.

DOI:10.5506/APhysPolB.42.1605
PACS numbers: 02.70.Uu, 07.05.Tp, 89.20.Ff

1. Introduction

1.1. Physical background

The process simulated by WINHAC++ is single W -boson production in
hadron–hadron collisions with multiphoton radiation [1]. Currently, the gen-
erator supports the final-state radiation (FSR) including electroweak correc-
tions, as can be seen in figure 1. The theoretical approach to the problem is
to take the YFS-exponentiated cross-section [2] at the partonic level, Eq. (1),
and perform a convolution with parton density functions (PDFs), Eq. (3).

∗ Presented at the Cracow Epiphany Conference on the First Year of the LHC, Cracow,
Poland, January 10–12, 2011.

∗∗ The work is partly supported by the Programme of the French–Polish Cooperation
between IN2P3 and COPIN No. 05-116.

(1605)



1606 K. Sobol

σYFS =
∞∑
n=0

∫
d3ql
q0
l

d3qν
q0
ν

ρ(1)
n (p1, p2, ql, qν , k1, . . . , kn) , (1)

where

ρ(1)
n = eY (Q,ql;ks)

1
n!

n∏
i=1

d3ki
k0
i

S̃(Q, ql, ki)θ
(
k0
i − ks

)
×δ(4)

(
p1 + p2 − ql − qν −

n∑
i=1

ki

)

×

[
β̄

(1)
0 (p1, p2, ql, qν) +

n∑
i=1

β̄
(1)
1 (p1, p2, ql, qν , ki)

S̃(Q, ql, ki)

]
, (2)

σ =
∑
q,q̄

∫
dx1dx2

(
fAq (x1)fBq̄ (x2) + (q ↔ q̄)

)
σ̂qq̄→lν̄ . (3)

Details, developed by Płaczek and Jadach, can be found in the paper [3].

Fig. 1. Multiphoton radiation in W decay [3].

1.2. Motivation

From the physical point of view the modelling of the charged-current
Drell–Yan (DY) process is very well motivated. First of all, this phenomenon
is very well visible at the LHC. It is a background for new physics searches.
It is also considered as a “standard candle” for other processes, this means
that other distributions can be normalized using DY and escape from large
luminosity errors, etc. As will be seen later, taking into account radiative
correction has a visible effect on distributions of observables, such as lepton’s
transverse momentum, W ’s transverse mass, etc. The second reason is a



WINHAC++: the Object-oriented Monte Carlo for the Charged-current . . . 1607

possibility to improve W mass prediction, which allows to check better the
consistency of the Standard Model and obtain a better constraint on the
Higgs-boson mass. The third reason is the investigation of the new physics,
e.g. by extending simulated model with W ′, KK or some other resonances.

Rewriting and remodelling the existing code to C++ and developing new
features using this platform is motivated by many factors. Firstly, the High
Energy Physics (HEP) community decided to migrate to the C++ platform.
There can be found rewritten packages, such as Pythia (version 8.x) [4],
Herwig++ [5]. Even the standard event record is implemented now in object-
oriented (OO) manner in the HepMC package [6]. This trend can be justified
by the following arguments. The code of a well-designed OO project is
more readable and has smaller volume than the same done in a procedural,
fortranic way. Today, it is easier to find C++ developers who will maintain and
develop the code. Nowadays hardware is no more restriction for computing
and the speed of programs is not so important. This particularly applies
to the Monte Carlo methods, because they easily allow to introduce the
parallel computing. The optimizers of C++ are doing a great job, causing
that OO programs are almost as fast as fortranic ones. The important
reason is the availability and multiplicity of tools and libraries supporting the
C++ platform, such as integrated development environments (IDE), modeling
tools, debuggers, profilers, etc. The C++ community has many members and
one can find a solution for his/her problem or ask a question and there is a
good chance that he/she will be answered. During development of WINHAC++
we have used such tools as: UML — modeling, Eclipse — IDE, Subversion
— a source code repository, CMake — automatization of build, Doxygen —
source code documentation, XercesC — an XML parser library, Boost —
a multipurpose library, Valgrind — a profiler.

2. Algorithm

The generator is based on a Monte Carlo algorithm. This is a result
of complicated formula of Eq. (1). The form of this formula, including the
sum to the infinity and the ρ(1)

n functions (can be found in [3]), is very
unfriendly for classical numerical approaches. Also the convolution formula,
Eq. (3), can be interpreted in the Monte Carlo manner giving a satisfactory
algorithm.

The algorithm has the following scheme. First of all, simplified (crude)
distributions are used to generate some random variables which are used
to construct an event. Next, in the opposite way to the simplification, a
set of correction weights is computed, as can be seen in Eq. (4). As a
result, a population of events is produced and can be used to fill histograms,
etc. Every event consists of information about generated particles (species



1608 K. Sobol

and four-momenta) and, in the case of weighted events, computed weights
(unweighted events have just a weight equal to one)

wevent
j = σcrude

∏
i

wcrude
i wmodel

j . (4)

Eq. (4) describes this algorithm very well. First of all, there is a total
crude cross-section (treated as a weight for convenience) which represents a
simplified model. It is common for all events generated in one run. Then,
there is a product of crude weights which come from quarks generation and
construction of kinematics. This product is common to all weights of the
event. Finally, there is a model weight which represents calculation of exact
matrix elements within some chosen model. By the models I mean different
theoretical schemes of obtaining exact matrix elements, e.g. Born, QED YFS
FSR, EW YFS FSR, fixed order FSR, etc. In the case of unweighted events
the elimination method is used to convert weighted events into weight = 1
events.

The crude cross-section is constructed in two steps. First of all, at the
partonic level, the cross-section, Eq. (1), is replaced by the Breit–Wigner
distribution, Eq. (5). This formula is convoluted, Eq. (3), with the chosen
PDFs in the numerical way using the FOAM package [7, 8], which integrates
it (during initialization phase) giving the total crude cross-section, and then
it is used to generate the Bjorken xs of quarks in the generation phase.

σcrude = N π

36

(
αeffV

CKM
ij

sin2 θW

)2
s

(s−M2
W )2 + γ(s)

, (5)

where

γ(s) =

{
(ΓWMW )2 fixed width scheme ,(
s ΓWMW

)2
running width scheme ,

(6)

αeff =

{
α in α scheme ,

αGµ =
√

2GµM2
W sin2 θW
π in Gµscheme .

(7)

During the event generation, this stage provides two crude weights:

• wFOAM — returned by FOAM when it generates the Bjorken xs; it cor-
rects the internal numerical calculations performed by this package,

• wkin — it is equal to 0 if some quark is out of the phase space (it
happens rarely and is a result of some approximations) or 1 in the
opposite case.



WINHAC++: the Object-oriented Monte Carlo for the Charged-current . . . 1609

In the next phase the construction of kinematics is performed. When
radiative corrections are switched off and the Born level is set, then this stage
gives no weights because it is accurate. In the opposite, more interesting case
the following crude weights are computed:

• wY — compensates for simplifications in the YFS form factor,

• wS — compensates for simplifications in S̃ — the soft-photon factor,

• wPS — corresponds to integration of the four-momentum conservation
δ-function over the phase space,

• wm — compensates for dropped lepton-mass terms during the gener-
ation of photon angles,

• wfin
kin = 0/1, if the event is out/in the phase space.

Then, the event is constructed. This is the time when model weights
are computed. At the Born level, only one model is considered — the Born
itself. The model weight is

wmodel
Born =

(
dσ(0)

dΩl

)
(
dσcrude

dΩl

) , (8)

where

dσcrude

dΩl
=

2
3

(
αeffV

CKM
ij

8 sin2 θW

)2
s(1−QW cos θl)2

(s−M2
W )2 + γ(s)

, (9)

dσ(0)

dΩl
=

1
8(2π)2s

1
12

∣∣∣M(0)
∣∣∣2 . (10)

When it comes to radiation the model weights are based on the β̄ functions,
which are present in Eq. (1). The following set of model weights is computed

• wmodel
YFS O(α) EW =

(
β̄

(1)
0(EW) + β̄

(1)
1

)/(
dσcrude

dΩl

)
⇒ the best one ,

• wmodel
YFS O(1) = β̄

(0)
0

/(
dσcrude

dΩl

)
,

• wmodel
YFS O(α) QED =

(
β̄

(1)
0(QED) + β̄

(1)
1

)/(
dσcrude

dΩl

)
,

• wmodel
LL O(α) QED =

(
β̄

(1)
0(LL) + β̄

(1)
1(LL)

)/(
dσcrude

dΩl

)
,



1610 K. Sobol

where

• β̄(0)
0 = dσ(0)

dΩl
,

• β̄(1)
0(QED) = β̄

(0)
0

(
1 + δQED

)
, QED corrections,

• β̄(1)
0(EW) = β̄

(0)
0

(
1 + δQED + δweak

)
, the full O(α) electroweak correc-

tions, δweak delivered by the SANC package [9],

• β̄(1)
0(LL) = β̄

(0)
0

(
1 + δLL

)
, the leading-log approximation,

• β̃(1)
1 =

∑n
i=1

β̄
(1)
1 (p1,p2,ql,qν ,ki)

S̃(Q,ql,ki)
,

• β̃(1)
1(LL) = β̄

(0)
0

n∑
i=1

z2i
2(1−zi) , zi = 2Eγi

E1+E2
.

Further details of these formulas are given in Ref. [3].
The scheme described above is implemented in the version of WINHAC++

released in June 2010. Currently, a new weight is added to the process.
When the event is made up by WINHAC++, then it will be passed to another
generator, e.g. Pythia8 [4], which will build up the initial-state QCD/QED
parton shower and perform hadronization. This external generator should
return a weight corresponding to the applied computations, and the events
weight will be multiplied by it.

3. Numerical results

A sample of numerical test (from the first stage) can be found in this
section. We have performed comparisons between WINHAC and WINHAC++.
These tests were done using a PC-farm and achieving statistics samples of
2× 109 events per run. Every run had different settings in order to cover as
many cases as possible.

The total cross-sections obtained for different processes on the Born level
can be found in Table I. This table contains also the relative corrections to
these cross-section corresponding to FSR in the YFS exponentiation scheme
(including the QED or EW correction level).

During the tests many distributions of various observables have been
obtained. In Figs. 2–4, the distributions of the transverse momentum of a
charged lepton are shown at the Born level and with the corrections from
multiphoton radiation, the QED and weak ones.

All the tests have shown that the new implementation works well and is
consistent with the original one.



WINHAC++: the Object-oriented Monte Carlo for the Charged-current . . . 1611

TABLE I

Comparisons of the total cross-sections obtained by WINHAC (WH) and WINHAC++
(WH++) for 2× 109 events.

Process Gen. σBorn [nb] δQED [%] δweak [%]

ud̄→W+ +X → e+νe , µ+νµ +X
WH 15.00753135(2) −0.0349(5) −0.2837(7)
WH++ 15.00753132(3) −0.0345(5) −0.2837(7)

pp→W +X → eνe , µνµ +X
WH 35.54376(5) −0.0368(5) −0.2837(7)
WH++ 35.54384(5) −0.0390(5) −0.2830(7)

pp→W− +X → e−ν̄e +X
WH 7.574157(12) −0.0352(6) −0.2794(8)
WH++ 7.574149(12) −0.0344(6) −0.2809(8)

pp→W+ +X → e+νe +X
WH 10.197775(16) −0.0349(6) −0.2794(8)
WH++ 10.197802(15) −0.0369(6) −0.2794(8)

pp→W− +X → µ−ν̄µ +X
WH 7.574150(12) −0.0326(5) −0.2880(7)
WH++ 7.574116(12) −0.0317(5) −0.2887(7)

pp→W+ +X → µ+νµ +X
WH 10.197765(16) −0.0328(5) −0.2880(7)
WH++ 10.197749(15) −0.0323(5) −0.2885(7)

pp→W− +X → τ−ν̄τ +X
WH 7.572035(12) −0.0793(5) −0.2928(7)
WH++ 7.572021(12) −0.0796(5) −0.2926(7)

pp→W+ +X → τ+ντ +X
WH 10.194957(16) −0.0799(5) −0.2928(7)
WH++ 10.194945(15) −0.0799(5) −0.2938(7)

(a) pp→W− +X → e−ν̄e +X (b) pp→W+ +X → e+νe +X

Fig. 2. Distributions of the transverse momentum of the electron (a) and the
positron (b) from W decays at the Born level.



1612 K. Sobol

(a) pp→W− +X → e−ν̄e +X (b) pp→W+ +X → e+νe +X

Fig. 3. Distributions of the transverse momentum of the electron (a) and the
positron (b) from W decays for the relative QED corrections.

(a) pp→W− +X → e−ν̄e +X (b) pp→W+ +X → e+νe +X

Fig. 4. Distributions of the transverse momentum of the electron (a) and the
positron (b) from W decays for the relative electroweak corrections.



WINHAC++: the Object-oriented Monte Carlo for the Charged-current . . . 1613

4. Summary and outlook

The object-oriented Monte Carlo event generator WINHAC++ is under de-
velopment. This process is divided into four stages. The first stable release
took place in June 2010 as a result of the first stage. It has the following fea-
tures: the Born level, multiphoton final-state radiation within the O(α) YFS
exclusive exponentiation scheme, the O(α) electroweak corrections in FSR,
the interface to parton distribution functions (PDFs) from the LHAPDF library
(with the help of the FOAM package). This implementation was checked by
high-statistics numerical tests (examples in the previous section).

Currently, at the second stage, the integration with the standard event
records (Les Houches Event Accord [10] and HepMC [6]) has been done.
This was immediately followed by applying the QCD/QED parton shower
and hadronization (by Pythia8 [4]), using the above interfaces. The other
work was done in the field of optimization (thanks to profiler results delivered
by P. Stecko) and currently the speed factor of 1.4 (C++ vs. Fortran) has
been achieved.

At the third stage we wish to include QED interferences with the initial-
state radiation (ISR), the full O(α) electroweak corrections. The feature of
polarized W bosons will be also included at this stage. After finishing this
part of development, WINHAC++ will cover all the functionalities of its base
program — WINHAC.

The last, fourth stage will involve some new research. We plan to develop
O(α2) QED FSR, add some new resonances (W ′, KK, . . . ), try to use the
KRKMC package (parton shower) developed by Jadach et al. [11]. This stage
is open for new ideas and could change in time.

The second stage is almost ready for testing. After completing tests, we
plan to issue a new stable release.

WINHAC++ has a dedicated Web page [12]. One can find there the releases
and other resources, such as documentation or related papers. The current
sources and its history (since June 2010) can be found in the SVN repository
located on the Google Code site [13].

I would like to thank people involved in the WINHAC++ project: Wiesław
Płaczek, Andrzej Siódmok and Piotr Stecko. Many thanks for your con-
tribution during design sessions and your research which is connected with
the project. Especially I wish to thank Wiesław Płaczek for supervising the
project and gathering the team together.



1614 K. Sobol

REFERENCES

[1] S.D. Drell, T.-M. Yan, Phys. Rev. Lett. 25, 316 (1970).
[2] D. Yennie, S. Frautschi, H. Suura, Ann. Phys. (NY) 13, 379 (1961).
[3] W. Płaczek, S. Jadach, Eur. Phys. J. C29, 325 (2003).
[4] T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852

(2008) [arXiv:0710.3820v1 [hep-ph]].
[5] S. Gieseke et al., J. High Energy Phys. 0402, 005 (2004)

[arXiv:hep-ph/0311208v2].
[6] M. Dobbs, J.B. Hansen, Comput. Phys. Commun. 134, 41 (2001).
[7] S. Jadach, Comput. Phys. Commun. 152, 55 (2003).
[8] S. Jadach, P. Sawicki, Comput. Phys. Commun. 177, 441 (2007).
[9] D. Bardin et al., Acta Phys. Pol. B 40, 75 (2009).
[10] J. Alwall et al., Comput. Phys. Commun. 176, 300 (2007),

[arXiv:hep-ph/0609017v1].
[11] S. Jadach, M. Skrzypek, A. Kusina, M. Slawinska, PoS RADCOR2009,

069 (2010) [arXiv:1002.0010v1 [hep-ph]], and refs. therein.
[12] K. Sobol, WINHAC++ Home Page,

http://th.if.uj.edu.pl/~sobol/index.php?action=winhac
[13] K. Sobol, WINHAC++ @ Google Code,

http://code.google.com/p/winhacplusplus/

http://dx.doi.org/10.1103/PhysRevLett.25.316
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1140/epjc/s2003-01223-4
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/ 10.1088/1126-6708/2004/02/005
http://dx.doi.org/10.1016/S0010-4655(00)00189-2
http://dx.doi.org/10.1016/S0010-4655(02)00755-5
http://dx.doi.org/10.1016/j.cpc.2007.02.112
http://www.actaphys.uj.edu.pl/vol40/abs/v40p0075
http://dx.doi.org/ 10.1016/j.cpc.2006.11.010

	1 Introduction
	1.1 Physical background
	1.2 Motivation

	2 Algorithm
	3 Numerical results
	4 Summary and outlook

