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We consider an integrable equation governing short waves in a long-
wave model, derived recently by Faquir et al. [M.J. Faquir, M.A. Manna,
A. Neveu, Proc. R. Soc. A463, 1939 (2007)]. The study is conducted in
presence of perturbation terms. The perturbation terms that are considered
are non-linear dispersion terms and fourth order dispersion. The solitary
wave Ansatz is used to carry out the integration of the considered perturbed
evolution equation. Both bright and dark solitons solutions are obtained.
The physical parameters in the soliton solutions are obtained as function
of the dependent model coefficients. The conditions of the existence of the
derived solitons are derived.
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1. Introduction

In the past decades, studies have been made on solutions and integra-
bility of different non-linear partial differential equations (NLPDEs), with
constant and variable coefficients. One main reason for giving such a great
interest is that this class of non-linear wave equations describes several phe-
nomena in non-linear systems in a variety of scientific applications. Under-
standing these phenomena is better with the help of exact solutions when
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these solutions exist. Besides, the application of non-linear systems com-
prises many physics areas such as non-linear optics, plasmas, fluid mechanics,
condensed matter, electro magnetic and many more. Therefore, finding ex-
plicit solutions offers a rich knowledge on the mechanism of the complicated
physical phenomena and dynamical processes modeled by these non-linear
evolution equations.

A large variety of powerful methods were developed for calculating exact
solutions of NLPDEs of all kinds e.g. the non-linear Schrödinger equation,
the Korteweg–de Vries equation, the Boussinesq equation and many others.
Among these methods, we can cite the coupled amplitude-phase formal-
ism [1, 2], the hyperbolic tangent method [3], Hirota bilinear method [4, 5],
the sub-ODE method [6, 7], the solitary wave Ansatz method [8, 9, 10, 11,
12, 13, 14] and other analytical methods as well. Moreover, several nu-
merical methods, such as the Petrov–Galerkin method [15], the collocation
method [16], were employed for numerical treatments of the non-linear prob-
lems. However, some of these analytical and numerical solutions methods
are not easy to use and sometimes suffer from tedious works and calcula-
tions [17,18].

It is then essential to use appropriate techniques that do not require com-
plicated calculations for the determination of explicit solutions of NLPDEs of
physical relevance. What is important here is whether the method is efficient
to construct closed form solutions of a given non-linear evolution equation.
The solitary wave Ansatz method [8,9,10,11,12,13,14], and other methods of
integrability have shown great success and progress in this area of research.
The solitary wave Ansatz method is rather heuristic and possesses significant
features that make it practical for the determination of soliton-type solutions
for a wide class of NLPDEs in a direct method. This technique has recently
been applied successfully to a wide range of NLPDEs [8,9,10,11,12,13,14].

Very recently, Faquir et al. [19] derived an integrable equation governing
short waves in a long-wave model in the form

uxt = u− uuxx −
1
2
u2
x +

γ

2
u2
xuxx , (1)

where u(x, t) is the fluid velocity at the surface, is a non-dimensional measure
of the surface tension, and subscripts denote partial derivatives. The inte-
grability of Eq. (1) for γ = 0 has already been discussed in Refs. [20,21,22].
More recently, Kraenkel and Senthilvelan [23] studied Lie symmetries and
similarly reductions of Eq. (1) and reported some particular solutions, in-
cluding static solution, traveling wave solution, and separable solution for
different values of the system parameter.
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In this work, we deal with the existence of exact soliton solutions for a
perturbed form of Eq. (1) as follows

uxt−u+uuxx+
1
2
u2
x−

γ

2
u2
xuxx = αu2u2

x+βu3uxx−δuxxxx , δ > 0 , (2)

where α, β and δ are constants. The first two perturbation terms on the
right-hand side of Eq. (2) may be regarded as a combination of non-linear
terms, while the last term represents the fourth-order dispersion term. To
our knowledge, the exact analytic soliton solutions of Eq. (2) have not been
previously obtained. It is always useful and desirable to construct exact
analytical solutions (in particular soliton solutions) by using appropriate
techniques. By applying the solitary wave Ansatz method, we find the exact
bright and dark soliton solutions for the considered model. All the physical
parameters in the soliton solutions are obtained as functions of the model
coefficients. It is worth noting that the existence or the non-existence of
solitary wave solutions depends on the dependent model coefficients, and
therefore on the specific non-linear and dispersive features of the medium.

2. Bright soliton solution

We start the analysis by assuming a solitary wave Ansatz of the form

u(x, t) =
A

coshp [B (x− vt)]
, (3)

where A, B and v are, respectively, the amplitude, the inverse width and
the velocity of the soliton. The exponents p is unknown at this point and
its value will fall out in the process of deriving the soliton solution of the
considered equation.

From Ansatz (3), one obtains

uxt = −Ap
2B2v

coshp τ
+
AB2vp (p+ 1)

coshp+2 τ
, (4)

uuxx =
A2p2B2

cosh2p τ
− A2B2p (p+ 1)

cosh2p+2 τ
, (5)

u2
x =

A2p2B2

cosh2p τ
− A2B2p2

cosh2p+2 τ
, (6)

u2
xuxx =

A3p4B4

cosh3p τ
− A3B4p3 (2p+ 1)

cosh3p+2 τ
+
A3B4p3 (p+ 1)

cosh3p+4 τ
, (7)

u2u2
x =

A4p2B2

cosh4p τ
− A4B2p2

cosh4p+2 τ
, (8)
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u3uxx =
A4p2B2

cosh4p τ
− A4B2p (p+ 1)

cosh4p+2 τ
, (9)

uxxxx =
Ap4B4

coshp τ
−
AB4p (p+ 1)

{
p2 + (p+ 2)2

}
coshp+2 τ

+
AB4p (p+ 1) (p+ 2) (p+ 3)

coshp+4 τ
, (10)

where
τ = B (x− vt) . (11)

Substituting Eqs. (3)–(11) into Eq. (2), we get

−Ap
2B2v

coshp τ
+
AB2vp (p+ 1)

coshp+2 τ
− A

coshp τ
+
A2p2B2

cosh2p τ

−A
2B2p (p+ 1)
cosh2p+2 τ

+
A2p2B2

2 cosh2p τ
− A2B2p2

2 cosh2p+2 τ

−γ
2

{
A3p4B4

cosh3p τ
− A3B4p3 (2p+ 1)

cosh3p+2 τ
+
A3B4p3 (p+ 1)

cosh3p+4 τ

}
= α

{
A4p2B2

cosh4p τ
− A4B2p2

cosh4p+2 τ

}
+ β

{
A4p2B2

cosh4p τ
− A4B2p (p+ 1)

cosh4p+2 τ

}

−δ

Ap4B4

coshp τ
−
AB4p (p+ 1)

{
p2 + (p+ 2)2

}
coshp+2 τ

+
AB4p (p+ 1) (p+ 2) (p+ 3)

coshp+4 τ

}
. (12)

From (12), equating the exponents 3p+ 4 and 4p+ 2 gives

3p+ 4 = 4p+ 2 (13)

so that
p = 2 (14)

which is also obtained by equating the exponents 3p+ 2 and 4p.
If we put p = 2 in Eq. (12), we can determine the soliton parameters

by setting the corresponding coefficients of 1
cosh2 τ

, 1
cosh4 τ

, 1
cosh6 τ

, 1
cosh8 τ

and
1

cosh10 τ
, respectively, to zero such that
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Ap2B2v +A = δAp4B4 , (15)

AB2vp (p+ 1) +A2p2B2 +
A2p2B2

2
= δAB4p(p+ 1)

{
p2 + (p+ 2)2

}
, (16)

A2B2p (p+ 1) +
A2B2p2

2
+
γ

2
A3p4B4 = δAB4p(p+ 1) (p+ 2) (p+ 3) , (17)

γ

2
A3B4p3 (2p+ 1) = αA4p2B2 + βA4p2B2 , (18)

γ

2
A3B4p3 (p+ 1) = αA4B2p2 + βA4B2p (p+ 1) . (19)

By multiplying (15) by p+1 and (16) by p, then extracting the resulting
two equations, we get the expression

3
2A

2p3B2 − (p+ 1)A = δAB4p2(p+ 1) (p+ 2)2 . (20)

This latter equation gives the inverse width B of the soliton pulse as

B2 =
3Ap2 ±

√
9A2p4 − 16δ(p+ 1)2 (p+ 2)2

4δp(p+ 1) (p+ 2)2
. (21)

Substituting p = 2 in equation (21) we find

B2 =
A±
√
A2 − 16δ
32δ

that gives

B =

√
A±
√
A2 − 16δ

4
√

2δ
, δ > 0 .

This equation shows that the relation between A and δ is given by

A2 ≥ 16δ , δ > 0 .

To examine the relation between A and B, we select for simplicity δ = 1,
then by graphing

B =

√
A+
√
A2 − 16

4
√

2

we can easily observe that B is an increasing function with respect to A,
where the lower bound for B = 0.35, and B → ∞, when A → ∞. This is
illustrated by Fig. 1.
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Fig. 1. The relation between the amplitude A and the inverse width B for the first
value of B.

However, by graphing the second expression for B

B =

√
A−
√
A2 − 16

4
√

2

we notice that the B is a decreasing function with respect to A, where the
upper bound for B = 0.35 and B approaches 0 as A goes to infinity. This
can be seen from Fig. 2.

Fig. 2. The relation between the amplitude A and the inverse width B for the
second value of B.
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Substituting (21) into (16), one gets the velocity v of the soliton as

v =

{
3Ap2 ±

√
9A2p4 − 16δ(p+ 1)2 (p+ 2)2

}{
p2 + (p+ 2)2

}
4(p+ 1) (p+ 2)2

− 3Ap
2 (p+ 1)

.

(22)
From (18), we have

γ

2
B2 =

A (α+ β)
p (2p+ 1)

. (23)

From (19), we find
γ

2
B2 =

A [αp+ β (p+ 1)]
p2 (p+ 1)

. (24)

Equating the two quantities gives the constraint condition

α

β
= −9

4
. (25)

Moreover, substituting p = 2 in (22) yields

v =
5
(
A±
√
A2 − 16δ

)
8

−A .

Graphing the first value of the velocity v, given by

v =
5
(
A+
√
A2 − 16

)
8

−A , δ = 1 ,

we notice that v is an increasing function with respect to A with lower limit
v = −1.5 as shown by Fig. 3.

However, by graphing the second value of v given by

v =
5
(
A−
√
A2 − 16

)
8

−A , δ = 1 ,

we notice that v is a decreasing function with respect to A with upper limit
v = −1.5 as shown below by Fig. 4.

For this case, there is a possibility that the velocity v may become 0. In
this case we find that

δ =
1
25
A2 .

Thus, finally, the bright soliton solution to the model (2) is given by

u(x, t) =
A

cosh2 [B (x− vt)]
, (26)
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Fig. 3. The relation between the amplitude A and the velocity v for the first
value of v.

Fig. 4. The relation between the amplitude A and the velocity v for the second
value of v.

where the relation between the free parameters A and B is given by (21) and
the velocity v of the soliton is given by (22). Finally, the constraint relation
between the full non-linear parameters α and β is displayed in (25).

The following remarks can be concluded from the discussion presented
above:

Remark 1. It is clear from the obtained results that the coefficient δ of the
dispersive term plays a major role in the results. However, the coefficients
α and β of the perturbation terms were found to have a constant ratio
as in (25). This means that this is not the unique generalization of (1).
Other dispersive terms can be used as well. From the results we obtained,
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equation (2) gives bright and dark soliton solutions. Other solitary waves
solutions such as compactons, peakons and cuspons do not exist for equa-
tion (2).

Remark 2. To show that (2) is integrable or not, we should find the Lax
pair for this equation. No Lax pairs can be found for this generalization
in (2). Based on this, the perturbation and the dispersive terms killed the
integrability of the original integrable equation (1).

3. Dark soliton solution

In this section, we are interested in finding the dark soliton solution (ex-
pressed as hyperbolic tangent function) for the considered equation (2). One
main reason for pursuing such a goal could be the possible applications of
dark solitons in such a system taking advantage of their interesting proper-
ties. Note that to date (to our knowledge) no dark soliton solution for the
equation (2) has been obtained.

For dark solitons, we assume an Ansatz solution of the form

u(x, t) = A tanhp [B (x− vt)] , (27)

where A, B and v are unknown dependent parameters representing the am-
plitude, the inverse width and the velocity of the soliton, respectively, that
will be determined. Also, the unknown exponent p will be determined during
the course of the derivation of the dark soliton solution to (2). Therefore,
from (27), we get after transforming sech terms to tanh terms the following
expressions:

uxt = −pvAB2
{
(p−1) tanhp−2 τ−2p tanhp τ+(p+1) tanhp+2 τ

}
, (28)

uuxx = pA2B2
{
(p−1) tanh2p−2 τ−2p tanh2p τ+(p+1) tanh2p+2 τ

}
, (29)

u2
x = p2A2B2

{
tanh2p−2 τ+tanh2p+2−2 tanh2p τ

}
, (30)

u2
xuxx = p3A3B4

{
(p−1) tanh3p−4 τ+(p+1) tanh3p+4 τ+6p tanh3p

−2(2p+1) tanh3p+2−2(2p−1) tanh3p−2
}
, (31)

u2u2
x = p2A4B2

{
tanh4p−2 τ+tanh4p+2−2 tanh4p τ

}
, (32)

u3uxx = pA4B2
{
(p−1) tanh4p−2 τ−2p tanh4p τ+(p+1) tanh4p+2 τ

}
, (33)

uxxxx = pAB4
{
(p−1)(p−2) (p−3) tanhp−4 +(p+1)(p+2) (p+3) tanhp+4

−2
{
p2+(p−2)2

}
{p−1} tanhp−2 τ−2

{
p2+(p+2)2

}
×{p+1} tanhp+2 τ+

{
4p3+(p−1)2(p−2)+(p+1)2(p+2)

}
tanhP

}
.

(34)



1752 H. Triki, A.-M. Wazwaz

Substituting Eqs. (28)–(34) into Eq. (2), we have

−pvAB2
{
(p− 1) tanhp−2 τ − 2p tanhp τ + (p+ 1) tanhp+2 τ

}
−A tanhp τ

+pA2B2
{
(p− 1) tanh2p−2 τ − 2p tanh2p τ + (p+ 1) tanh2p+2 τ

}
+1

2p
2A2B2

{
tanh2p−2 τ + tanh2p+2−2 tanh2p τ

}
−γ

2
p3A3B4

{
(p− 1) tanh3p−4 τ + (p+ 1) tanh3p+4 τ + 6p tanh3p

−2(2p+ 1) tanh3p+2−2(2p− 1) tanh3p−2
}

= αp2A4B2
{
tanh4p−2 τ + tanh4p+2−2 tanh4p τ

}
+βpA4B2

{
(p− 1) tanh4p−2 τ − 2p tanh4p τ + (p+ 1) tanh4p+2 τ

}
−δpAB4

{
(p− 1)(p− 2) (p− 3) tanhp−4 +(p+ 1)(p+ 2) (p+ 3) tanhp+4

−2
{
p2 + (p− 2)2

}
{p− 1} tanhp−2 τ − 2

{
p2 + (p+ 2)2

}
{p+ 1} tanhp+2 τ

+
{
4p3 + (p− 1)2(p− 2) + (p+ 1)2(p+ 2)

}
tanhP

}
. (35)

By equating the highest exponents of tanh3p+4 τ and tanh4p+2 τ terms in
(35), one gets

3p+ 4 = 4p+ 2 (36)

which yields the following value of p

p = 2 . (37)

It should be remarked that the same value (37) arises also from equating
the exponents of tanh3p+2 τ and tanh4p τ functions (35).

Setting the coefficients of tanh0 τ , tanh2 τ , tanh4 τ , tanh6 τ , tanh8 τ ,
tanh10 τ and tanh−2 τ functions, respectively, equal to zero, one obtains the
following equations

−pvAB2(p− 1) = 2δpAB4
{
p2 + (p− 2)2

}
{p− 1} , (38)

2p2vAB2 −A+ pA2B2(p− 1) + 1
2p

2A2B2 − γ

2
p3A3B4(p− 1)

= −δpAB4
{
4p3 + (p− 1)2(p− 2) + (p+ 1)2(p+ 2)

}
, (39)

−pvAB2(p+ 1)− 2p2A2B2 − p2A2B2 + γp3A3B4(2p− 1)
= 2δpAB4

{
p2 + (p+ 2)2

}
{p+ 1} , (40)

(p+ 1)pA2B2 + 1
2p

2A2B2 − 3γp4A3B4p = αp2A4B2 + βpA4B2(p− 1)

−δpAB4(p+ 1)(p+ 2) (p+ 3) , (41)
γp3A3B4(2p+ 1) = −2αp2A4B2 − 2pβpA4B2 , (42)

−γ
2
p3A3B4(p+ 1) = αp2A4B2 + (p+ 1)βpA4B2 , (43)

−δpAB4(p− 1)(p− 2) (p− 3) = 0 . (44)
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From (38) and (40), we get

B =

√
3pA

2δ(p+ 1) {(p− 2)2 − (p+ 2)2}+ γp2A2(2p− 1)
. (45)

Inserting (45) into (38), one obtains

v = −
6pAδ

{
p2 + (p− 2)2

}
2δ(p+ 1) {(p− 2)2 − (p+ 2)2}+ γp2A2(2p− 1)

. (46)

Eq. (44) is satisfied for p = 2 which coincides with the value of p in (37).
Inserting this value in (42) and (43), we get the condition

α

β
= −9

4
(47)

for the dark soliton to exist.
Lastly, we can determine the dark soliton solution for Eq. (2) as

u(x, t) = A tanh2 [B (x− vt)] , (48)

where the amplitude B is given by (45) and the velocity v of the soliton
pulse by (46). Note that this solution exists provided that the constraint
condition (47) is satisfied.

4. Conclusion

We have derived the exact bright and dark soliton solutions of an equa-
tion governing short waves in a long-wave model in the presence of additional
non-linear dispersive terms and fourth order dispersion term. The bright
and the dark soliton solutions have been derived by using the solitary wave
Ansatz method. The physical parameters in the obtained soliton solutions
are calculated in course of the derivation of the exact solutions as function
of the dependent model coefficients. Conditions for the existence of soliton
solutions have also been reported. We believe that the soliton solutions ob-
tained by the used Ansatze are entirely new and have not been previously
presented. Note that it is always useful and desirable to construct exact
analytical solutions for understanding most non-linear physical phenomena.
It should be noted that the research of new integrable models and their soli-
ton solutions is of great interest, because the soliton approach is universal in
different fields of modern physics. A more general model having higher-order
effects and time-dependent coefficients will be studied is the future works.
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