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We present a method for obtaining the quasi-exact solutions of the Rabi
Hamiltonian in the framework of the asymptotic iteration method (AIM).
The energy eigenvalues, the eigenfunctions and the associated Bender–
Dunne orthogonal polynomials are deduced. We show (i) that orthogonal
polynomials are generated from the upper limit (i.e., truncation limit) of
polynomial solutions deduced from AIM, and (ii) prove to have nonpositive
norm.
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1. Introduction: formal aspects

A new class of potentials which are intermediate to exactly solvable (ES)
ones and non solvable ones are called quasi-exactly solvable (QES) prob-
lems [1, 2, 3, 4]. It is well known that a part of their spectrum can be de-
termined algebraically but not the whole spectrum. One of an alternative
mathematical language for describing the QES systems is a remarkable set
of orthogonal polynomials introduced by Bender and Dunne [5]. These poly-
nomials satisfy the three-term recursion relation and, as a consequence, form
an orthogonal set with respect to some weight function ρ(E) depending of
the energy [6, 7]. The exact solution of the Schrödinger equation takes the
form

χ(x;E) =
∞∑
n=0

χn(x)Pn(E) , (1.1)

in which Pn(E) denotes certain polynomials of E and satisfy [8, 9, 10]

Pn(Ek) = 0 ; n ≥ Λ+ 1 , k = 0, 1, 2, . . . , Λ , (1.2)

(1755)
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where the parameter Λ is a positive integer value. It follows that Pn(E) are
orthogonal ∫

Pn(E)ρ(E)Pm(E)dE = pnpmδnm , (1.3)

where pn represent the norms of the orthogonal polynomials Pn(E). It is
possible to determine the norms pn (or squared norms γn = p2

n) by mul-
tiplying the recursion relation by En−1ρ(E) and to integrate with respect
to E.

However, the search of the orthogonal polynomials Pn(E) can be gen-
erated by means of the asymptotic iteration method (AIM) [11]. This
procedure was first introduced as an approximation in order to deduce
both energy eigenvalues and eigenfunctions, using some computer-algebra
systems. Due to the simplicity of the procedure, various aspects of the
method have been employed, successfully, to obtain both ES and QES prob-
lems [11, 12, 13, 14, 15, 16]. The systematic procedure of the AIM begins by
rewriting a second-order linear differential equation in the following form

χ′′(x) = r0(x)χ′(x) + s0(x)χ(x) (1.4)

with r0(x) and s0(x) being many times differentiable functions. In order
to find the solution of Eq. (1.4), we rely on the symmetric shape of the
right-hand side. Thus for (n + 1)th and (n + 2)th derivative of Eq. (1.4),
n = 1, 2, . . . , we get

rn(x) = r′n−1(x) + sn−1(x) + r0(x)rn−1(x) ,
sn(x) = s′n−1(x) + s0(x)rn−1(x) , (1.5)

where for sufficiently large iteration number n, the asymptotic behavior of
the procedure can be applied as

rn(x,E)
sn(x,E)

=
rn−1(x,E)
sn−1(x,E)

= α(E) , (1.6)

and which allows us, on the one hand, to calculate the energy eigenvalues
by iterations and, on the other hand, to express the so-called polynomial
solutions of Eq. (1.4).

Many interesting models are obtained by combining two fundamental
models of quantum mechanics; namely the two-level system and the har-
monic oscillator [17]. The Rabi Hamiltonian is one of the more studied
ones [18, 19, 20], and plays an important role in many areas of physics from
condensed matter and biophysics to quantum optics. Due to the elegance of
the model various aspects of the Hamiltonian have been studied analytically
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and numerically [21, 22, 23, 24, 25, 26]. The complete Hamiltonian of such
system is of the form

H = ~ωa†a+
~Ω
2
σ0 + λ(σ+ + σ−)

(
a† + a

)
, (1.7)

where the parameter ω is the boson field frequency, ~Ω is the atomic level
separation and λ is the atom-field coupling constant. Here, a† (a) is a cre-
ation (annihilation) operator for the field mode and the σ are the usual Pauli
spin matrices σx = σ+ + σ−, σy = −i(σ+ − σ−) and σz = σ0. Note that the
zero energy level was taken halfway between the two atomic levels, so that
the unperturbed atomic energies are ±~Ω

2 . The four terms appearing in the
interaction part of the Hamiltonian (1.7) have the following interpretation:
σ+a (σ−a†) represents an absorbed (emitted) photon and an excited (de-
excited) atom from state |1〉 to |2〉, while σ+a

† (σ−a) stands for one photon
which is emitted (absorbed) and an excited (de-excited) atom.

In this present paper, we propose an alternative approach to study the
Rabi Hamiltonian (1.7) based to the AIM procedure, to obtain both the
energy eigenvalues En, the eigenfunctions χ(x;E) and a set of orthogo-
nal polynomials Pn(E) explicitly constructed from the above procedure and
known to be orthogonal polynomials of Bender–Dunne of the genus one. We
show that polynomial solutions Yn(E;λ, β) deduced from AIM procedure
are a generating functions of Bender–Dunne orthogonal polynomials Pn(E).
In fact, and following our construction, the orthogonal polynomials Pn(E)
are deduced from the upper limit (i.e., truncation limit) of Yn(E;λ, β) for
nmax ≡ Λ = E + λ2; hence, the useful attribute to the method is that once
we get polynomial solutions of any model then its associated Bender–Dunne
orthogonal polynomials are easily deduced. We show also that orthogonal
polynomials Pn(E) are prone with a nonpositive definite norm, unless the
constraint n ≥ E + λ2 + 1 is checked.

The paper proceeds as the following. In the next section we introduce
a unitary transformation with an aim of making the Rabi Hamiltonian sim-
pler. By applying AIM procedure, we deduce the coefficients of the poly-
nomial solutions with the first four iterations. In Sec. 3 we clarify, through
an explicit construction, the relation between the calculated eigenfunctions
and the orthogonal polynomials leading to the three-term recursion relation
which enables us to deduce the orthogonal polynomials Pn(E). We show,
in Sec. 4, that the orthogonal polynomials are associated with a nonpositive
norm γn and the last section is devoted to our final conclusion.



1758 S.-A. Yahiaoui, M. Bentaiba

2. Solvability of the Rabi Hamiltonian

In Fock–Bargmann space, the system (1.7) is transformed into the third-
order differential equation which is not easy to solve. Therefore, the first step
to solve the system (1.7) is to reduce the order of the differential equation
using some transformations. The structure of the Rabi Hamiltonian is more
easily seen by applying the unitary transformation

H = U †HU = a†a+ β(σ+ + σ−) + λ
(
a† + a

)
, (2.1)

where U ≡ U † = 1√
2
(σ+ + σ− + σ0). Here, ~ and ω are set to unity, and

Ω = 2β. By performing a transition to a Fock–Bargmann space a† → x
and a → d

dx , and writing the stationary Schrödinger equation for the two-
component wave-function

(ψ1(x)
ψ2(x)

)
, we obtain a system of two first-order linear

differential equations for the functions ψ1(x) and ψ2(x) [22, 23]

dψ1(x)
dx

=
E − λx
x+ λ

ψ1(x)−
β

x+ λ
ψ2(x) ,

dψ2(x)
dx

= − β

x− λ
ψ1(x) +

E + λx

x− λ
ψ2(x) , (2.2)

where E are energy eigenvalues of H. The general solution of Eqs. (2.2) can
be obtained by transforming them into a second-order form(

x2 − λ2
)
ψ′′1(x)−

[
(E − λx− 1)(x− λ) + (x+ λ)(E + λx)

]
ψ′1(x)

−
[
β2 − E2 + λ2x2 − λ(x− λ)

]
ψ1(x) = 0 , (2.3)

and substituting

x = λ(2ξ − 1) , ψ1(x) = e−2λ2ξχ(ξ) , (2.4)

we obtain a second-order differential equation [22]

ξ(1− ξ)χ′′(ξ) +
[
λ2
(
4ξ2 − 2ξ − 1

)
+ E(2ξ − 1)− ξ + 1

]
χ′(ξ)

+
[
λ4(3− 4ξ) + 2Eλ2(1− 2ξ) + β2 − E2

]
χ(ξ) = 0 . (2.5)

Now this equation is similar to Eq. (1.4) and then it is in a suitable form for
application of AIM procedure; the initial r0(ξ) and s0(ξ) functions are given

r0(ξ) =
λ2
(
4ξ2 − 2ξ − 1

)
+ E(2ξ − 1)− ξ + 1

ξ(ξ − 1)
,

s0(ξ) =
λ4(3− 4ξ) + 2Eλ2(1− 2ξ) + β2 − E2

ξ(ξ − 1)
. (2.6)
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We may calculate rn(ξ) and sn(ξ) using a sequence of Eqs. (1.5) and the
calculated energy eigenvalues En by the mean of Eq. (1.6) should be inde-
pendent of the choice of the variable ξ.

We report below the factored form of the first four iterations of Eq. (2.5)
which lead to the coefficients of polynomial solutions. By convention n
represents the iteration number, while d refers to the degree of polynomial
solutions. The coefficients Yn(E;λ, β) are polynomials in the energy variable
En with an even higher-degree 2n+ 2.

Note that the energy eigenvalues index is the same as the iteration num-
ber.

n = 1 d = 2 C12 = 16λ4
(
−1 + E + λ2

) (
E + λ2

)
,

d = 1 C11 = 8λ2
(
−1 + E + λ2

)
Y0(E;λ, β) ,

d = 0 C10 =Y1(E;λ, β) ,

n = 2 d = 3 C23 = 64λ6
(
−2 + E + λ2

) (
−1 + E + λ2

) (
E + λ2

)
,

d = 2 C22 = 48λ4
(
−2 + E + λ2

) (
−1 + E + λ2

)
Y0 (E;λ, β) ,

d = 1 C21 = 12λ2
(
−2 + E + λ2

)
Y1 (E;λ, β) ,

d = 0 C20 =Y2(E;λ, β) ,

n = 3 d = 4 C34 = 256λ8
(
−3 + E + λ2

) (
−2 + E + λ2

) (
−1 + E + λ2

)
×
(
E + λ2

)
,

d = 3 C33 = 256λ6
(
−3 + E + λ2

) (
−2 + E + λ2

) (
−1 + E + λ2

)
× Y0(E;λ, β) ,

d = 2 C32 = 96λ4
(
−3 + E + λ2

) (
−2 + E + λ2

)
Y1(E;λ, β) ,

d = 1 C31 = 16λ2
(
−3 + E + λ2

)
Y2(E;λ, β) ,

d = 0 C30 =Y3(E;λ, β) ,

n = 4 d = 5 C45 = 1024λ10
(
−4 + E + λ2

) (
−3 + E + λ2

) (
−2 + E + λ2

)
×
(
−1 + E + λ2

) (
E + λ2

)
,

d = 4 C44 = 1280λ8
(
−4 + E + λ2

) (
−3 + E + λ2

) (
−2 + E + λ2

)
×
(
−1 + E + λ2

)
Y0(E;λ, β) ,

d = 3 C43 = 640λ6
(
−4 + E + λ2

) (
−3 + E + λ2

) (
−2 + E + λ2

)
× Y1(E;λ, β) ,

d = 2 C42 = 160λ4
(
−4 + E + λ2

) (
−3 + E + λ2

)
Y2(E;λ, β) ,

d = 1 C41 = 20λ2
(
−4 + E + λ2

)
Y3(E;λ, β) ,

d = 0 C40 =Y4(E;λ, β) .



1760 S.-A. Yahiaoui, M. Bentaiba

These polynomial solutions have some interesting properties. For example,
a polynomial set Yn(E;λ, β) can be generated successively for each a new
iteration with the constraint n = d + m, where 0 < m ≤ n. However, if
n = d (i.e., m = 0), then the associated polynomial solution is

Y0(E;λ, β) = E2 − 2λ2E − β2 − 3λ4 . (2.7)

The factor associated to the coefficient Cn,n+1 is (4λ2)n+1 and Cn0 ≡
Yn(E;λ, β), with n = 1, 2, . . . Furthermore, we will see that the polynomials
Yn(E;λ, β) lead to the Bender–Dunne orthogonal polynomials as reviewed
in the next section.

3. Bender–Dunne orthogonal polynomials

The search for a power series solution of Eq. (2.5), χ(ξ) =
∑∞

n=0 χn(ξ),
can be explicitly generated by means of the series expansion leading to the
three-term recursion relation.

Using the identities

χ(ξ) = ξq
∞∑
n=0

anξ
n ,

χ′(ξ) = ξq
∞∑
n=0

(n+ q)anξn−1 ,

χ′′(ξ) = ξq
∞∑
n=0

(n+ q)(n+ q − 1)anξn−2 , (3.1)

where the exponent q and the coefficients an are still undetermined, and by
substituting them into Eq. (2.5), we have

∞∑
n=0

4λ2
(
n+q−λ2−E

)
anξ

n+vq+1+
∞∑
n=0

[
3λ4 − E2 + β2+2Eλ2 + (n+q)

×
(
2E−1λ2−n−q

) ]
anξ

n+q+
∞∑
n=0

(n+q)
(
n+q−λ2

)
anξ

n+q−1 = 0 , (3.2)

where the coefficients of the left-hand side of Eq. (3.2) must vanish individ-
ually. The lowest power of ξ appearing in Eq. (3.2) is ξq−1, for n = 0 in
the last summation. The requirement that the coefficients vanish yields the
indicial equation q(q − λ2)a0 = 0; hence, we must require either q = 0 or
q = λ2, and a0 6= 0. Note that if the first summation vanishes, the energy
eigenvalues satisfy the constraint

En,q(λ) = n+ q − λ2 . (3.3)
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Therefore, if we replace n → j in the second summation and (n − 1) → j
in the last (they are independent summations), this results in the two-term
recursion relation

aj+1 = − β2

(j + q + 1) (j + q + 1− λ2)
aj . (3.4)

Substituting j by n and choosing the indicial equation root q = 0, the
mathematical induction leads us to write

an =
(−1)nβ2n

n!
Γ
(
1− λ2

)
Γ (n+ 1− λ2)

a0 , (3.5)

with a0 = 1. The solution of Eq. (2.5), following Eq. (1.1)

χ(ξ;E) =
∞∑
n=0

χn(ξ)Pn(E) =
∞∑
n=0

(−1)nβ2n

n!
Γ
(
1− λ2

)
Γ (n+ 1− λ2)

Pn(E)ξn , (3.6)

can be considered as the generating function for the polynomials Pn(E).
However, for positive integer values Λ, the series expansion in Eq. (3.6)
are truncated when E is a zero of PΛ(E). We know that Γ (n + 1 − λ2)
has simple poles at n = λ2 − 1, λ2 − 2, . . ., [27] and taking into account
the constraint (3.3) with q = 0, leading to the upper limit for n, i.e.,
nmax ≡ Λ = E + λ2 > 0. Indeed, this can be observed in the coefficients
Cn,d of the polynomial solutions as it was reported above. Therefore, the
corresponding exact eigenfunctions are given

χΛ(ξ;E) =
Λ∑
n=0

(−1)nβ2n

n!
Γ
(
1− λ2

)
Γ (n+ 1− λ2)

Pn(E)ξn . (3.7)

Substituting Eq. (3.7) into Eq. (2.5) leads, after some straightforward but
lengthy calculation, to the following three-term recursion relation for Pn(E)

4λ2
(
n− E − λ2

)
Pn+1(E) +

[(
n− E − λ2

) (
E − 3λ2 − n

)
− β2

]
×Pn(E) + 4λ2

(
n− E − λ2

)
Pn−1(E) = 0 (3.8)

with the normalization condition P0(E) = 1.
The polynomial Pn(E) vanishes for n ≥ E + λ2 + 1 as occurred in the

third term of Eq. (3.8). The recursion relation (3.8) generates a set of
polynomials, where the first five of them are reported below in Table I.
Actually, the deduced orthogonal polynomials are written as a product of
Pn(λ) by (−1)n−1β2. One can see that orthogonal polynomials Pn(E) of the
Table I are generated from polynomial solutions Yn(E;λ, β) deduced from



1762 S.-A. Yahiaoui, M. Bentaiba

AIM procedure. In fact, the orthogonal polynomials Pn(E) are deduced
from the upper limit (i.e., truncation limit) of Yn(E;λ, β) for nmax ≡ Λ =
E + λ2, i.e.,

lim
E→n−λ2

Yn(E;λ, β) = (−1)n−1β2Pn(E) . (3.9)

TABLE I

Bender–Dunne orthogonal polynomials for Rabi Hamiltonian and the associated
energy eigenvalues.

n E(λ) Pn(λ)

1 1− λ2 4λ2 + (β2 − 1)

2 2− λ2 32λ4 + 4(3β2 − 8)λ2 + (β2 − 1)(β2 − 4)

3 3− λ2 384λ6 + 16(11β2 − 54)λ4 + 8(3β4 − 29β2 + 54)λ2

+(β2 − 1)(β2 − 4)(β2 − 9)

4 4− λ2 6144λ8 + 128(25β2 − 192)λ6 + 16(35β4 − 542β2 + 1728)λ4

+8(5β6 − 115β4 + 722β2 − 1152)λ2

+(β2 − 1)(β2 − 4)(β2 − 9)(β2 − 16)

5 5− λ2 122880λ10 + 512(137β2 − 1500)λ8 + 64(225β4 − 5036β2

+24000)λ6 + 16(85β6 − 2867β4 + 27518β2 − 72000)λ4

+4(15β8 − 670β6 + 9551β4 − 49216β2 + 72000)λ2

+(β2 − 1)(β2 − 4)(β2 − 9)(β2 − 16)(β2 − 25)

These orthogonal polynomials are exactly similar to those obtained by
the Juddian isolated method and agree with the first roots of the Kuś series
[21, 22]. In other words, the system has energy En = n − λ2, n = 1, 2, . . . ,
only if the atomic-level separation 2β and the boson–atom field coupling λ
obey condition Pn(λ) = 0.

4. Norms of orthogonal polynomials

As the polynomials Pn(E) are orthogonal of a discrete variable En, it
is possible to determine their squared norms. The procedure is to apply
Eq. (1.3); i.e., multiplying the recursion relation (3.8) by En−1ρ(E), where
ρ(E) is the weight function, and to integrate with respect to E using the
fact that both Pn(E) and Ek, k < n, are orthogonal. We obtain

γn = 2λ2n− λ2

n+ λ2
γn−1 , (4.1)
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with γn = p2
n and γ0 = 1. It is obvious that by mathematical induction,

we get

γn =
n∏
k=1

2λ2k − λ2

k + λ2
γ0 = 2nλ2n

(
1− λ2

)
n

(1 + λ2)n
, (4.2)

where (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) are the often-used Pochhammer
symbol [27], with (a)0 = 1.

Using the well-known identity Γ (z)Γ (1− z) = π
sinπz , we have

γn = 2nλ2nf(λ)
Γ
(
n+ 1− λ2

)
Γ (n+ 1 + λ2)

. (4.3)

with f(λ) = sinπλ2

π Γ (λ2)Γ (1 + λ2).
This identity reveals an important result that the orthogonal polynomials

are associated with a nonpositive definite norm represented by Γ (n+1+λ2).
However, it shows in the Γ -function of the numerator that γn has in the com-
plex plan poles which are given at the negative integers N = 0,−1,−2, . . . ,
(or equivalently: n = λ2 − 1, λ2 − 2, . . .), leading to the upper limit Λ =
E + λ2 > 0 as conjectured above. Consequently, γn vanishes for each
n ≥ Λ+ 1.

5. Summary and conclusions

In this paper, we have shown that there exists another approach of intro-
ducing the Bender–Dunne orthogonal polynomials which characterizes the
quasi-exact solvable problems. The model given here is related to the AIM
procedure and we have taken a new look at the solution of the Rabi Hamilto-
nian in order to generate its energy eigenvalues as well as the eigenfunctions
and their Bender–Dunne orthogonal polynomials.

The main aim of this article was to consider the possibility of generating
the Bender–Dunne orthogonal polynomials Pn(λ) via another method dif-
ferent from the standard approach which consists in applying the eigenfunc-
tions to the three-term recursion relation. Our method enables us to gener-
ate them directly starting from polynomial solutions Yn(E;λ, β) deduced by
AIM procedure. In fact, we have shown that orthogonal polynomials Pn(λ)
are deduced from the upper limit (i.e., truncation limit) of polynomial so-
lutions Yn(E;λ, β) deduced from AIM procedure for nmax ≡ Λ = E + λ2.
Therefore Yn(E;λ, β) can be considered as a generating functions of Pn(λ).
In other words, this means that Pn(λ) and Yn(E;λ, β) are similar if the sys-
tem has the associated energy eigenvalues En = n − λ2, with n = 1, 2, . . . .
We have also shown that the orthogonal polynomials arising from a quasi-
exactly solvable Rabi model are associated with a nonpositive definite norm
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whose the iteration number n exceeds a critical value mentioned above, i.e.,
n ≥ Λ + 1. Consequently, the quasi-exact energy eigenvalues of the Rabi
Hamiltonian are the zeros of the polynomials Pn(λ).

For other applications, we believe that similar results can be obtained
via the approach worked out here to the various atomic systems such as
Jaynes–Cummings and E ⊗ ε Jahn–Teller Hamiltonian.

The authors are deeply indebted to the Referee for his helpful suggestions
and enlightening remarks regarding the paper. S.-A.Y. warmly thanks his
friend and colleague Leila Ouzeri for his invaluable help and assistance.
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