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Earlier research by Zel’manov and by Hönl and Dehnen has shown
how the geodesic equation for a charged test particle can be written as a
Lorentz force law in which the four-velocity ui of an observer in the physical
three-space γαβ = −gαβ + g0αg0β/g00 is regarded as a gravitational vector
potential. Analysing this analogy further, we write the four (i

0
) compo-

nents of the Einstein equations in a form resembling a non-linear Maxwell
system, which, for a stationary field, is most clearly understood from the
Kaluza–Klein perspective, the projection being from four dimensions to
three, rather than from five dimensions to four. For the vacuum the-
ory defined by vanishing energy-momentum tensor, Tij = 0, these equa-
tions exhibit the structure of a non-linear sigma model, found by Ernst,
and investigated by Gibbons and Hawking and by Sanchez, the scalar po-
tentials of which we here relate to the gravito-electromagnetic fields. The
non-stationary gravitational field is also considered in the normal coordi-
nate system introduced by de Donder and Lanczos, in which case a gravita-
tional displacement current occurs in the three (α

0
) field equations, convert-

ing the ((00)/g00) and (α
0
) components into a dynamical system. Finally,

we discuss the vacuum degeneracy of the superstring theory, arguing from
the quantum-gravitational path-integral method that Minkowski space is
favoured probabilistically over the stringy vacuum state, in agreement with
observation.
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1. Introduction

Energy conservation laws are very important in physics. It was empha-
sized by Einstein [1] that with the advent of the general theory of relativity,
the definition of energy becomes problematic, the concept of an integral,
global energy conservation law being superseded by local differential laws,
expressing rather the continuity of energy and momentum. Nevertheless, un-
der certain geometric conditions, the notion of global energy remains mean-
ingful, and as a first step to the mathematical formulation of this problem,
Einstein [2] introduced the energy-momentum pseudo-tensor t ji , whereby
the four-dimensional covariant energy conservation equation

T ji ;j = 0 , (1)

defined using the covariant derivatives ;j , is converted into the equation

(T j
i + t ji )

,j
= 0 (2)

expressed in terms of partial derivatives ,j alone and the densitized quantities
T j
i ≡ √−g T j

i and t ji ≡ √−gt ji , where gij is the metric and g = det gij .
Although the pseudo-tensor defining gravitational energy does not trans-

form covariantly under changes of the coordinate system, and is therefore
not a true tensor, Eq. (2) has the advantage over Eq. (1) that it can be
integrated, and thus converted into a statement about global energy.

This idea was put on a precise footing by a Nordström[3] (see also
Tolman[4]), who noted, in particular for a stationary gravitational field sat-
isfying gij,0 = 0, that

(T 0
i + t 0

i )
,0
= 0 , (3)

leading to the identification of the energy density as

ρN = 2 (T 0
0 + t00) . (4)

Assuming that T ji and tji are non-vanishing only within a finite bounded
region Ω, which is equivalent to assuming asymptotic flatness, we can then
define the total energy of the distribution of matter plus gravitational field
by the integral

MN = 2∫
Ω

d3x
√
−g (T 0

0 + t00) . (5)

Now the pseudo-tensor is defined in terms of the Ricci scalar R by
Eq. (20) of Ref. [2],

tji =
1

2κ2
⎛
⎝
Rδji −

∂R

∂gkl,j
gkl,i

⎞
⎠
, (6)
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where κ2 ≡ 8πGN is the gravitational coupling and GN is the Newton con-
stant, and hence for a stationary gravitational field we have

t00 =
1

2κ2
R = −1

2
T , (7)

substitution of which into Eq. (4) yields

ρN = 2T 0
0 − T = 2R0

0

κ2
, (8)

where Rij is the Ricci tensor. Thus, the total energy MN is given by an
integral over the matter distribution alone[3],

MN = ∫
Ω

d3x
√
−g (T 0

0 − Tαα ) , (9)

where α = 1,2,3.
The fact that we obtain a definite value for the energy can also be under-

stood quantum mechanically, from the Heisenberg[5] indeterminacy princi-
ple relating time and energy,

∆t∆E ∼ h̵ . (10)

A stationary gravitational field cannot be localized in time at all, so that
∆t =∞ and hence ∆E = 0, allowing a precise evaluation of MN.

Gravity is a spin-2 field obeying the principle of equivalence, according
to which the effect of an arbitrary gravitational field can be counteracted lo-
cally by transformation to an accelerating frame of reference, whilst remain-
ing invariant under transformation to a different frame moving at uniform
relative velocity. From the position-momentum indeterminacy relation

∆x∆p ∼ h̵ , (11)

it therefore follows that the gravitational field cannot be localized at all in
space either. For by choosing ∆p = 0, as implied by stationarity, we have
∆x = ∞, which explains heuristically why we are free to identify the con-
tribution to MN deriving from the gravitational field either with the matter
distribution Tij or with empty space.

Classically, of course, this spatial non-localizability of the gravitational
field energy reflects the non-tensorial character of the tij . In this regard,
gravitational energy differs from the energy of the spin-1 electromagnetic
field, which is defined uniquely by the distribution of the electric and mag-
netic fields, according to well-known formulae. It is of some interest to study
this phenomenon from the viewpoint of gravito-electromagnetism, which is
the subject of this paper.
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2. Gravito-electromagnetic fields

In order to understand why vector fields assume importance in gravity,
which is an intrinsically tensorial theory, let us first consider the force on
a test particle of rest mass m and electric charge e, in gravitational and
electromagnetic fields defined by four-tensor and four-vector potentials gij
and Ai, respectively, and the corresponding line element

ds2 = gijdxidxj . (12)

The force on the particle is obtained by applying the principle of least action
to the function

S=−∫ mds+∫ eAidx
i=∫ (−mds

dλ
+ eAi

dxi

dλ
)dλ =∫ dx0L(x0, xα, dx

α

dx0
) ,

(13)
where λ is an affine parameter.

We first write the line element in the form

ds2 = gijdx
idxj = h (dx0 − γαdxα)

2 + (gαβ − hγαγβ)dxαdxβ

= dx20 − γαβdxαdxβ = dτ2 − dl2, (14)

where h = g00, γα = −g0α/g00 and the physical three-metric defined on the
time-slice dx0 = 0 is

γαβ = −gαβ + hγαγβ . (15)

Tensor indices of three-dimensionally covariant quantities referred to γαβ
are raised by the inverse three-metric γαβ ≡ −gαβ , so that γα = −g0α and
g00 = h−1 − γαγα.

Thus, the Lagrangian function defined from the action (13) is (see also
Møller[6], p. 384)

L = −m [h (1 − γ ⋅ v)2 − v2]1/2 + e (A0 +A ⋅ v) , (16)

where vα ≡ dxα/dx0 is the coordinate velocity.
The path of the particle is given by δS = 0, which, since the integrand is

a homogeneous function of first degree of the four variables dxi/dλ, is equiv-
alent to a variational problem with only three dependent variables xα, and
with global time x0 as independent variable (see Courant and Hilbert [7]).
Therefore, the motion of the particle is determined by a Hamilton principle,
and we may now write

δ∫ dx0L (x0, xα, vα) = 0 . (17)
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Differentiation of L with respect to the velocities vα, keeping xα fixed, yields

∂L

∂vα
=mΓ (v) [vα + h (1 − γ ⋅ v)γα] + eAα , (18)

where the curved-space gamma factors are defined, setting β = dl/dτ , as

Γ (v) = dx
0

ds
= [h (1 − γ ⋅ v)2 − v2]−1/2 , γ(β) = dτ

ds
= (1 − β2)−1/2 . (19)

From expressions (16), (18) and (19), we obtain the Hamiltonian

H = vα
∂L

∂vα
−L =mhΓ (v) (1 − γ ⋅ v) − eA0 =m

√
hγ(β) − eA0

= εφ(g) + eφ , (20)

where ε ≡mγ(β) is the locally measured (rest-mass plus kinetic) energy, and
we have introduced the gravito-electric and electric scalar potentials

φ(g) =
√
h , φ = −A0 . (21)

For the application of expression (20) to the theory of a fermionic spin-1/2
particle, see Ref. [8].

The energy ε is chronometrically invariant, in the terminology of
Zel’manov (see Appendix A), that is it remains invariant under the action
of the group of coordinate transformations

x0 → x
′0 (xi) , xα → x

′α (xβ) , (22)

the time coordinate x0 transforming arbitrarily, while the spatial coordi-
nates xα transform only amongst themselves. The three-metric γαβ is the
fundamental chronometrically covariant tensor, but the metric component
g00 ≡ h is not a chronometrically invariant scalar, and therefore the Hamil-
tonian (20) is not chronometrically invariant either. In a stationary grav-
itational field, however, the Noether conservation theorem implies that H
is constant, as noted by Landau and Lifschitz[10] for the purely gravita-
tional case φ = 0, confirming the physical significance of expression (20) and
the interpretation of

√
h as the gravito-electric potential φ(g) on the same

footing as the electric scalar potential φ, just as the chronometrically invari-
ant energy ε is analogous to the charge e.

This symmetry of expression (20) between gravity and electromagnetism,
together with the metrical origin of φ(g), suggests an explanation via the the-
ory of Kaluza[11] and Klein[12], in which the electric scalar potential φ is also
given a metrical interpretation. We shall return to this observation below.
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Here, we note that the five-dimensional line element written in Kaluza–Klein
(4+1)-dimensional form,

dŝ2 = ĝABdx
AdxB = ĝ44 (dx4 − αidxi)

2 + (ĝij − αiαj ĝ44)dxidxj

= dx24 + gijdxidxj , (23)

is the analogue of the (3+1)-dimensional form (14) of the four-dimensional
line element. Thus, the four-vector potential Ai ≡

√
ĝ44/2κ2αi plays the

same rôle in the (4+1)-dimensional metric (23) as
√
hγα plays in the (3+1)-

dimensional metric (14). While the electric scalar potential is defined from
expression (23) as φ = −A0 = ĝ04/

√
2κ2ĝ44, however, its gravito-electric coun-

terpart defined from expression (14) is φ(g) = √
g00, the different functional

dependences on the metric components reflecting the fact that the four-
Hamiltonian (20) is canonically conjugate to x0, not x4.

In this paper, we shall clarify the precise nature of this analogy. The
starting point for this discussion is the expression for the force fα on the
test particle, obtained from the equation of motion

d

dx0
( ∂L
∂vα

) − ∂L

∂xα
= 0 . (24)

Differentiating Eqs. (16) and (18) appropriately, we have

∂L

∂xα
= −mΓ (v){

√
h (1 − γ ⋅ v)2 ∂

√
h

∂xα
− h (1 − γ ⋅ v) vβ

∂γβ

∂xα
− 1

2v
βvγ

∂γβγ

∂xα
}

+e(∂A0

∂xα
+ vβ

∂Aβ

∂xα
) (25)

and

d

dx0
( ∂L
∂vα

) = d

dx0
[mΓ (v)vα] +

√
hγα

d

dx0
[mΓ (v)

√
h (1 − γ ⋅ v)]

+mΓ (v)
√
h (1 − γ ⋅ v) d

dx0
(
√
hγα) + e

dAα
dx0

. (26)

Upon substitution of expressions (25) and (26) into Eq. (24), recalling that

d

dx0
= ∂

∂x0
+ vβ ∂

∂xβ
(27)

and that the three-dimensional covariant derivative with respect to x0 of a
vector Xα is therefore

DXα

dx0
= dXα

dx0
− 1

2
[
∂γγβ

∂xα
+
∂γαβ

∂xγ
−
∂γαγ

∂xβ
]Xβvγ , (28)
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after some rearrangement we obtain for the coordinate force the expression

fα ≡ D [mΓ (v)vα]
dx0

+
√
hγα

dε

dx0

= ε [−∂
√
h

∂xα
− ∂(

√
hγα)

∂x0
+ vβ (

∂(
√
hγβ)

∂xα
− ∂(

√
hγα)

∂xβ
)]

+e [− ∂φ

∂xα
− ∂Aα
∂x0

+ vβ (
∂Aβ

∂xα
− ∂Aα
∂xβ

)] . (29)

The term
√
hγαdε/dx0 is placed on the left-hand side of Eq. (29), as part of

the force, rather than on the right-hand side, in order to secure the correct
special relativistic limit.

Expression (29) suggests that the quantities
√
h and

√
hγα are on a

par with the potentials of electricity. Generalizing Eqs. (21), we make the
identifications

√
h = φ(g) = −A(g)

0 ,
√
hγα = A(g)

α , (30)

from which we see that the four-vector A(g)
i implicit in the definitions (30) is

simply (minus) the unit vector ui normal to the time lines, that describes an
arbitrary observer in the physical three-space (assuming the space-time to
admit a time foliation at every point). For in time-(three-space) notation,
we have

ui = −A(g)i = (1/
√
h,Oα) , ui = −A(g)

i = (
√
h,−

√
hγα) , (31)

such that uiui = 1, and hence also

A
(g)
i A(g)i = 1 . (32)

In this way we are led to introduce the three-dimensional vectors E(g)

and B(g) as gravitational analogues of the electromagnetic fields E and B,
these four quantities being

E(g) = −∇φ(g) − ∂A(g)/∂x0 , B(g) = curlA(g) (33)

and
E = −∇φ − ∂A/∂x0 , B = curlA , (34)

respectively, whereupon Eq. (29) takes the three-vector form

f = ε (E(g) + v ×B(g)) + e (E + v ×B) . (35)
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Eq. (35), which is equivalent to Eq. (3.5) of Hönl and Dehnen[13], is
valid for an arbitrary gravitational field. It not only illustrates how the
Lorentz law for the electromagnetic force on a charged test particle remains
unchanged in the presence of a gravitational field, but also shows the way in
which the influence of the gravitational field itself on the particle is described
by a law of force of the familiar Lorentz form. In this connexion the energy
ε of the particle takes the place of the electric charge e, as it does also in the
expression (20) for the Hamiltonian, while E and B are replaced by E(g)

and B(g), respectively.
Although e is constant, note that the energy ε is not constant in general

— only H is constant, in a stationary gravitational field, as remarked above.
Note also that the abbreviations ∇, div and curl will always refer to the

three-dimensional space γαβ , in which they are defined for arbitrary scalar
ξ and three-vector X by

∇αξ =
∂ξ

∂xα
, ∇αξ = γαβ ∂ξ

∂xβ
, (36)

divX = 1
√
γ

∂

∂xα
(√γXα) (37)

and
(curlX)α = εαβγγ

βδγγε
∂Xε

∂xδ
, (curlX)α = εαβγ

∂Xγ

∂xβ
, (38)

where εαβγ is defined in terms of the Levi–Civita three-index symbol δαβγ ,
whose values are ±1 or 0, by εαβγ =

√
γδαβγ , εαβγ = δαβγ/

√
γ.

3. The connexion between three-dimensional and
four-dimensional field equations

The vector and tensor equations of the first Maxwell system of electro-
magnetism are

divB = 0 , curlE + 1
√
γ

∂(√γB)
∂x0

= 0 (39)

and
F[ij;k] = 0 , (40)

respectively, where Fij ≡ ∂Aj/∂xi−∂Ai/∂xj is the electromagnetic field ten-
sor and

Eα = −F0α , Bα = 1
2ε
αβγFβγ . (41)
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Prior to writing down the second Maxwell system, we have to introduce
the electric current four-vector J i. Consider an element of electrical charge
dq confined to a spatial volume which is dV̊ as reckoned in a local rest frame
and dV in a global frame. The corresponding measures of electrical charge
density are ρ̊ = dq/dV̊ and ρ = dq/dV , and therefore the four-current may be
expressed as

J i = ρ̊dxi/ds = ρdxi/
√
hdx0 . (42)

The volume elements dV̊ and dV are related as
√
γdx̊1dx̊2dx̊3ds = √

γ dV̊ ds =
√
−gdV dx0 , (43)

which, since
√−g =

√
h
√
γ and dx0/ds = Γ (v), becomes

dV̊ =
√
hΓ (v)dV . (44)

The tensorial second Maxwell system relates F ij to the source J i as

1
√−g

∂(√−gF ik)
∂xk

= 4πJ i . (45)

Comparison of Eqs. (42) and (45) shows that in order to retrieve the familiar
three-dimensional equations, we have to define the vectors of displacement
current and magnetic intensity as

Dα =
√
hF 0α , Hα = 1

2εαβγ
√
hF βγ , (46)

respectively, for then Eqs. (45) yield

divD = 4πρ , curlH = 1
√
γ

∂(√γD)
∂x0

+ 4πρv , (47)

while the current conservation equation

1
√−g

∂(√−gJk)
∂xk

= 0 , (48)

which is a consequence of the anti-symmetry of F ij , reduces to

div(ρv) + 1
√
γ

∂(√γρ)
∂x0

= 0 . (49)

Re-expressing the electric field as

Eα = −F0α = −g0igαjF ij = −g00gαβF 0β − gα0gβ0F β0 + gαβg0γF βγ

= g00γαβF
0β − γαβg0γF βγ (50)
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and using the definitions (46), we have

Eα =
√
h (Dα + εαβγγβHγ) . (51)

Similarly, the magnetic field can be expanded as

Bα = 1
2ε
αβγFβγ = 1

2ε
αβγgβigγjF

ij

= 1
2ε
αβγ (gβδgγεF δε + gβ0gγεF 0ε + gβδgγ0F δ0)

= εαβγ [12γβδγγεF
δε + gβ0 (−γγεF 0ε + γδγγεF δε)] , (52)

or, again using the definitions of D and H,

Bα = 1√
h
Hα +

√
h εαβγγβ (Dγ + εγδεγδHε) . (53)

Eqs. (51) and (53) may be written as the vector equations (see §90 of Ref. 10)

D = 1√
h
E − γ ×H , B = 1√

h
H + γ ×E . (54)

4. The Einstein field equations

The density and motion of electricity at each point in space-time are
described by the four-current J i, which is the source for the second system of
Maxwell equations (45). Matter-energy, on the other hand, is represented by
the four-tensor Tij , which acts as the source for the ten Einstein equations

Rij − 1
2Rgij = κ

2Tij , (55)

which we do not expect to be completely equivalent to a four-component
Maxwellian system. Due to the similarity with electromagnetism manifest
in the Hamiltonian (20) and in the law of force (35) on a massive charged
test particle, however, it becomes of interest to study the form taken by
these equations when written, as far as possible, in terms of the gravito-
electromagnetic fields E(g), B(g) and the corresponding intensities D(g),
H(g), defined analogously to Eqs. (54) for D and H, namely

D(g) = 1√
h
E(g) − γ ×H(g) , B(g) = 1√

h
H(g) + γ ×E(g) . (56)

The first thing to note is that the Einstein equations (55) do not contain
a gravitational term corresponding to the displacement current ∂D/∂x0 of
electromagnetism. For D(g) is constructed from the metric components g00
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and g0α, time derivatives of which do not occur in the (0
0
) or (0

α
) compo-

nents of Eq. (55) — see §95 of Ref. [10]. Such a term can only be introduced
into the equations of gravitation upon imposition of a coordinate (that is, a
gauge) condition, as discussed in Sec. 8. Therefore, in the following exposi-
tion we shall initially specialize to the case of time-independence.

It is straightforward to obtain these equations in coordinate form. From
the equations and definitions of chronometrically invariant quantities given
in Ref. [9], for example, we find, in the stationary space-time satisfying
∂ [gij(xk)] /∂x0 = 0, that the h−1(00) and (α

0
) components of Eqs. (55) are

div (h−
1
2E(g)) = h−1 (E(g)2 + 1

2H
(g)2) − 4πGN (ρ(m) + σ) (57)

and
curlH(g) = h−

1
2E(g) ×H(g) − 16πGN j

(m) , (58)

respectively, where the chronometrically invariant density, stress tensor and
stress scalar of matter energy, and the matter current density, are defined
as

ρ(m) = T00/h , σαβ = Tαβ , σ = γαβσαβ , j(m)α = Tα0 . (59)

Keeping in mind the definitions (56) of D(g) andH(g), we see that addition
to both sides of Eq. (57) of the quantity

div (−γ ×H(g)) = −h−
1
2B(g) ⋅H(g)+2h−

1
2γ ⋅E(g)×H(g)−16πGN γ ⋅j(m) (60)

yields the equation

divD(g) = h−
1
2D(g) ⋅E(g) − 1

2h
−1H(g)2 − 4πGN (ρ(m) + σ + 4γ ⋅ j(m)) . (61)

Note that Eq. (58) for curlH(g) contains the Poynting-vector source-
current h−

1
2E(g)×H(g), non-linear in the fields, that we might have guessed

at for gravity on the basis of analogy, whereas Eq. (61) for divD(g) does not
contain precisely the non-linear field density h−

1
2 (D(g) ⋅E(g) +B(g) ⋅H(g))

that we might have predicted. Here we re-encounter the problem of non-
localizability of the energy of the gravitational field.

The situation becomes completely clear if we introduce the modified field
D̄

(g), defined as

D̄
(g) ≡D(g) − h−

1
2E(g) = −γ ×H(g) , (62)

and if we also rescale the fields D̄(g) and H(g) as

D̄
(g) → D̃(g) = D̄(g)/4GN , H(g) → H̃(g) =H(g)/4GN . (63)
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Including electromagnetism in the source Tij , we can then write Eqs. (61)
and (58), after some substitution, as

divD̃
(g)

= 1
2
h−

1
2 [(D̃

(g)
⋅E(g)+B(g) ⋅ H̃

(g)
)−(D ⋅E+B ⋅H)] + 1

4
G−1N P − 4πρ(mat)

(64)
and

curlH̃
(g) = h−

1
2 [E(g) × H̃(g) −E ×H] − 4πj(mat) , (65)

where
ρ(mat) = T 0

(mat)0 , jα(mat) = T
α
(mat)0 , (66)

the suffix (mat) denoting all non-electromagnetic matter.
Eqs. (64) and (65) show precisely how far the analogy between grav-

itation and electromagnetism is valid, for a stationary gravitational field.
Note that in addition to the material source term Tij , Eq. (64) contains
the geometrical quantity P ≡ Pαβγαβ ≡ −3

2h
−1H(g)2 +16πGNρ

(m), where the
three-dimensional Ricci curvature tensor Pαβ is defined from γαβ in exactly
the same way as Rij is defined from gij , and which cannot be expressed in

terms of E(g) or D̃
(g)

. Note also that D̃
(g)

vanishes when either γ or H(g)

vanishes.
Assuming the space-time to admit a foliation by time lines at each point,

we recall the definition (31) of the unit time-like vector ui, from which it is
possible to define the tensor

hij = gij − uiuj = (0 0
0 −γαβ

) , hij = −(γ
2 γα

γα γαβ
) . (67)

From the four-dimensional viewpoint, hij is a tensor projecting into the
three-space γαβ , with the properties

dethij = 0 , hiju
j = 0 , hijh

ij = γαβγαβ = 3 . (68)

Now we can see that the fields D̃
(g)

and H̃
(g)

are in fact combined into
the projected field tensor defined as

f
(g)
ij = 1

4G
−1
N hikhjlF

(g)kl , (69)

in the same way that the fields D andH of electromagnetism are combined
into Fij . Therefore, Eqs. (64) and (65) can be written in the alternative
form

f
(g)ij

;j = [ − (f (g)ikF
(g)
jk −

1
4δ
i
jf

(g)klF
(g)
kl ) + (F ikFjk − 1

4δ
i
jF

klFkl)

+1
4G

−1
N Pδ

i
j − 4πT i(mat)j]u

j . (70)

This result is best understood from the Kaluza–Klein perspective.
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The conciseness and non-linearity of Eqs. (70) also recall the fact that
the stationary vacuum Einstein equations admit a non-linear sigma-model
structure, analysed by Gibbons and Hawking[14], and which has been used
by Sanchez[15] to determine new solutions to these equations (generalized
in Ref. [16] to non-stationary space-times). We shall describe this formalism
in the next section, relating the potentials of the non-linear sigma model to
the gravito-electromagnetic fields.

5. The stationary vacuum gravitational field
as a non-linear sigma model

A space-time possessing one time-like Killing vector field ξ(0) ≡ ∂/∂x0
can be represented by a metric in the canonical form[14]

ds2 = h (dx0 − γαdxα)
2 − h−1γ̃αβdxαdxβ ≡ dx20 − h−1γ̃αβdxαdxβ . (71)

For mathematical reasons, it is convenient to work in the three-space γ̃αβ ,
which is related to the physical three-space γαβ by the conformal transfor-
mation

γ̃αβ = hγαβ , γ̃αβ = h−1γαβ . (72)

If we introduce the scalar potentials Φ and Ψ , so defined that

Φ = h , ∇̃Ψ = Φ2c̃urlγ , (73)

where the tilda-ed operators are defined in the three-metric γ̃αβ , then it can
be shown that the vacuum Einstein equations reduce to[15, 16]

∇̃2 (Φ + iΨ) −Φ−1 [∇̃ (Φ + iΨ)]2 = 0 (74)

and
P̃αβ −Φ−2 [(∇̃αΦ) (∇̃βΦ) − (∇̃αΨ) (∇̃βΨ)] = 0 . (75)

Eq. (74) contains the equations R00 = R0α = 0. It is the Ernst[17] equa-
tion, and describes an O(2,1) non-linear sigma model for the complex po-
tential V ≡ Φ + iΨ . Note that no significant generalization of Eq. (74) is
known for an arbitrary space-time (in particular a stationary electro-vac
space-time), the sigma-model form requiring both time independence and
source freedom.

In order to understand the physical meaning of this result, it is inter-
esting to examine the potential structure of the vacuum theory from the
gravito-electromagnetic standpoint. For a stationary gravitational field, the
(α
0
) component of the Einstein equations, given by Eq. (58), reads

curlH(g) = −∇ (ln
√
h) ×H(g) − 16πGNj

(m) . (76)
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As we have emphasized earlier, the density and the flow of gravitational
energy are not localizable in space, and therefore it is possible to absorb
the gravitational Poynting vector E(g) ×H(g)/

√
h into the left-hand side of

Eq. (76), which we rewrite as

curl (
√
hH(g)) = −16πGN

√
hj(m) . (77)

Thus, in vacuo the stationary gravito-magnetic intensity satisfies the equa-
tion

curl (
√
hH(g)) = 0 , (78)

which can be re-expressed in terms of the scalar potential Ψ defined by
√
hH(g) = ∇Ψ . (79)

As usually formulated, the Einstein gravitational theory contains no
gravito-magnetic monopoles (see also the next section), consistent with the
definition (33) of B(g) in terms of the gravito-vector potential A(g) ≡

√
hγ.

From the second of Eqs. (56), we obtain the relationship between the scalar
and vector gravito-potentials, viz.

curlγ = h−3/2∇Ψ . (80)

Using the scaling laws (72), we can rewrite Eq. (80) in the conformal space
γ̃αβ as

c̃urlγ = h−2∇̃Ψ , (81)

in agreement with Eqs. (73). Thus, Ψ is essentially the gravito-magnetostatic
potential.

The auxiliary vector potential γ can now be eliminated to yield equa-
tions for the two scalar potentials Φ and Ψ , via the equations for divD(g)

and divB(g). In a stationary gravitational field, for the first of Eqs. (56), af-
ter substitution for E(g) from Eqs. (30) and (33) and forH(g) from Eq. (79),
we have

D(g) = − 1√
h
(∇

√
h + γ ×∇Ψ) , (82)

while Eq. (61) in the stationary vacuum case yields

divD(g) = − 1√
h
D(g) ⋅∇

√
h − 1

2h2
(∇Ψ)2 . (83)

As with Eq. (76) for curlH(g), the first term on the right-hand side can be
absorbed into the left-hand side to give

div (
√
hD(g)) = − 1

2h3/2
(∇Ψ)2 . (84)
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Substituting for
√
hD(g) from Eq. (82), we have

∇2
√
h + div (γ ×∇Ψ) = 1

2h3/2
(∇Ψ)2 . (85)

The second term on the left-hand side of Eq. (85) can be expanded to yield

div (γ ×∇Ψ) = −γ ⋅ curl (∇Ψ) +∇Ψ ⋅ curlγ = h−3/2 (∇Ψ)2 , (86)

as the result of which Eq. (85) reads

∇
2
√
h + 1

2h3/2
(∇Ψ)2 = 0 , (87)

which is easily shown to be equivalent to the real part of Eq. (74).
Note, when Ψ = 0, that is for an irrotational space-time with γ = 0, that

Eq. (87) reduces to the linear Laplace equation for
√
h, formulated in the

space γαβ ,
∇

2
√
h = 0 , (88)

whereas the non-linear sigma model yields the equivalent non-linear equa-
tion formulated in the space γ̃αβ ,

∇̃
2
Φ −Φ−1 (∇̃Φ)2 = 0 . (89)

Next, consider the equation

divB(g) = 0 , (90)

which is an identity in the Einstein gravitational theory. By successive ap-
plication of Eq. (80), we have

∇
2Ψ = div (h3/2curlγ) = 3√

h
∇

√
h ⋅∇Ψ , (91)

which is readily shown to be equivalent to the imaginary part of Eq. (74).
Thus, Eq. (74) is a restatement of the stationary vacuum Eqs. (83) and

(90) in terms of the potentials Φ ≡ h and Ψ .

6. The gravito-electromagnetic four-vector potential A(g)
i

The part of the action functional (13) that deals with the interaction of a
test particle with the electromagnetic field is ∫ eAidxi, and therefore, given
a gravitational four-vector potential A(g)

i and a ‘gravitational charge’ ε, we
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are led to ask what rôle the action integral ∫ εA
(g)
i dxi plays. In pursuance

of this enquiry, we try rewriting the action functional (13) as

S = −∫ (mds + εA(g)
i dxi) + ∫ εA

(g)
i dxi + ∫ eAidx

i . (92)

Obviously, the homogeneity condition is still satisfied, so that expression
(92) implies a rearranged Lagrangian, which, substituting expressions (19)
and (30) into expression (16), can be written as

L = Lp +Lg +Le , (93)

where

Lp =mΓ (v)v2 , Lg = ε (A(g)
0 +A(g) ⋅ v) , Le = e (A0 +A ⋅ v) . (94)

Notice that the expressions for Lg and Le are formally identical, with ε,
A

(g)
i in the first replacing e, Ai, respectively, in the second. The terms Lp

and Lg in the Lagrangian provide separate descriptions of, respectively, the
response of the particle to the gravitational and electromagnetic fields, and
its interaction with the gravitational field.

The contribution Lg shows that the potential A(g)
i has a meaning in its

own right. Our understanding of non-local aspects of quantum mechanics,
in particular the Aharonov–Bohm effect, implies a physical significance for
the electromagnetic four-potential Ai.

The classical gravitational analogue of this effect was discussed by Ford
and Vilenkin[18]. Starting from the observation that the rôles of gravi-
tational potential and field strength are played by the metric gij and the
Riemann–Christoffel curvature tensor Rijkl, respectively, it was then shown
that a test particle can experience non-local effects due to the curvature at
the classical level, even if it moves solely in a region where Rijkl = 0, due to
topological influences.

As emphasized in Ref. [18], the Aharonov–Bohm effect proper is a qua-
ntum-mechanical effect, dependent on h̵. Frolov et al. [19] analysed the
behaviour of a spin-zero field ζ of rest-mass m, obeying the Klein–Gordon
equation

◻ζ +m2ζ = 0 , (95)

in the weak gravitational field of a slowly rotating massive body, showing
that the energy spectrum and wave function of the particle depend upon the
angular momentum of the rotating body, even if the quantum system tra-
verses only a flat region of space-time. This effect is a gravitational analogue
of the Aharonov–Bohm effect, in which the gravito-magnetic flux depends
not on m, but on the total energy of the particle ε, so that Φ(g) = 2π/ε,
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and is therefore not universal, whereas the quantum of magnetic flux is
Φ(m) = 2π/e. This gravitational application thus confirms that ε does in-
deed play the rôle of ‘gravitational charge’ analogous to electrical charge,
precisely as expected from Eqs. (94).

Regarding γ and v as small quantities to be retained only up to second
order, we see that there is only one term in L proportional to εA(g) ⋅v. The
corresponding action can be rewritten as the line integral

S0 = ∳ εA(g) ⋅ dx . (96)

Expression (96) is the basis of the speculation by Zee[20, 21] that gravito-
magnetic monopoles may exist, analogously to the magnetic monopoles of
electromagnetism. For in the post-Newtonian limit that (1 − h) is also a
small quantity, we have

S0 ≈m∳ A(g) ⋅ dx =m∫ B(g) ⋅ dΣ =m∫ divB(g)dV , (97)

and if we further assume, following Refs. [20, 21], that the second of Eqs. (33)
is modified in such a way that

divB(g) = µδ3(x) , (98)

where µ is the strength of the gravito-magnetic monopole, then it follows
that mass is quantized in units of 2πh̵/µ to ensure continuity of the quantum-
mechanical wave function,

Ψ0 ≈ eiS0/h̵ ≈ e2nπi , (99)

This is the argument originally used by Dirac[22] in the case of magnetic
monopoles.

It seems, however, that this argument breaks down in the presence of
a stronger gravitational field, because the constant charge e of electromag-
netism is replaced by the non-universal energy ε, rather then by the constant
m. This presumably reflects the non-covariant nature of Eq. (98) and forces
us to set µ = 0.

7. The stationary non-vacuum gravitational field

In the presence of matter, the non-linear sigma-model structure of the
gravitational field described in Sec. 5 no longer holds. Thus, if there is a
matter current j(m), then the potential Ψ cannot be defined, but the quantity√
hH(g) retains a meaning — in place of the electromagnetic Ampère law

(47), which in a stationary gravitational field reads
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curlH = 4πj , (100)

where j = ρv, we have Eq. (77), in which the effect of the gravitational-
energy current is associated entirely with the matter source j(m).

We have seen in Sec. 1 that the total energy of a matter distribution
that is non-zero only within a finite bounded region Ω can be expressed as
the integral (9) over the matter source alone, and it is therefore of interest
to obtain the differential gravito-electromagnetic form of this equation.

In Sec. 4, we found that the quantity divD(g) is given in the time-
independent case by the sum of Eqs. (57) and (60). To generate the matter
source density (T 0

0 − Tαα ) identified by Nordström [3], however, we have in-
stead to form the sum [Eq. (57) +1

2 Eq. (60)], which yields

div [h−
1
2E(g) − 1

2γ ×H
(g)] = h−1E(g)2 + 1

2h
−
1
2γ ⋅E(g) ×H(g)

−4πGN (T 0
0 − Tαα ) . (101)

Multiplying through by h1/2, we find, as expected, that the non-linear gravi-
tational-energy terms on the right-hand side of Eq. (101) can be completely
absorbed into the divergence, to yield

div (E(g) − 1
2

√
hγ ×H(g)) = −4πGN

√
h (T 0

0 − Tαα ) . (102)

Spatial integration of (−√γ/4πGN) times Eq. (102) yields

− 1

4πGN
∫ d3x

∂[√γ (E(g) − 1
2

√
hγ ×H(g))]α

∂xα
= ∫

√
−g (T 0

0 − Tαα ) =MN ,

(103)
the left-hand side of which can be converted into a surface integral by the
application of Gauss’s theorem, so that the energy is given by

MN = − 1

4πGN
∫ dΣ ⋅ (E(g) − 1

2

√
hγ ×H(g)) . (104)

Note, firstly, that the right-hand side of Eq. (104) can be evaluated over
any two-surface that completely encloses the matter distribution. If we allow
this surface to go to infinity, where the terms in γ are ignorable, we have

MN = 1

GN
lim
r→∞

(r
2∂

√
h

∂r
) , (105)

in agreement with the standard asymptotic mass-energy formula

h = 1 − 2GNMN/r +O (1/r2) + . . . . (106)
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Secondly, the integrand of expression (104) can be expanded, substitut-
ing for H(g) from Eqs. (33) and (56), as

E(g) − 1
2

√
hγ ×H(g)) = E(g) − 1

2h
3
2γ × curlγ . (107)

Expression (107) is linear in E(g), but quadratic in γ, which implies that a
linearly perturbative analysis of any finite system will yield a change in en-
ergy gravito-electrically, but no change gravito-magnetically. It is therefore
interesting that this is exactly what was found by Sorge[23, 24] in his micro-
scopic analysis of the Casimir effect from the gravito-electromagnetic point
of view.

8. Coordinate conditions and the gravitational
displacement current

We have already mentioned above in Sec. 4 the fact that no term cor-
responding to Maxwell’s displacement current ∂D/∂x0 enters the Einstein
equations as initially written. Such a term can be brought causally into
the gravitational equations, however, if we impose coordinate conditions of
a suitable kind.

Consider, in particular, the de Donder[25]–Lanczos[26] (see also Ref. [27])
coordinate conditions, called “harmonic” by Fock[28]. This system of coor-
dinates is defined by the equivalent conditions on the metric derivatives and
the Christoffel connexion,

(
√
−ggij)

,j
≡ −Γ ijkg

jk = 0 . (108)

This identity is given by Eq. [14] of Note 2 on p. 220 and its vanishing
by Eq. (117), on p. 110 of Ref. [25], being a generalization of the linear
approximation introduced by Einstein[29] to formulate the propagation of
gravitational waves.

Let us first examine the (0) component of Eq. (108). Upon expansion,
and after substitution from Eqs. (30), this equation takes the form

divA(g) − 1
√
γ

∂

∂x0
[√γ ( 1

φ(g)
− γ2φ(g))] = 0 , (109)

where (A(g))α = γαβA(g)
α = −

√
hg0α, which generalizes the familiar Lorenz

gauge condition of electromagnetic theory in flat space-time,

divA + ∂φ

∂x0
= 0 . (110)
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In the stationary limit, Eq. (109) reduces without approximation to the
gravitational Coulomb gauge

divA(g) = 0 . (111)

Next, consider the three spatial components (α) of Eq. (108), which, on
multiplication by

√
h, can be expanded as

E(g)α

√
h

= 1
√
γ

∂(√γγαβ)
∂xβ

−
γβ√
γ

∂(√γγαβ)
∂x0

. (112)

While Eqs. (108) are not four-dimensionally covariant, note that Eq. (112)
can be written in the chronometrically invariant form

∗E(g)α = 1
√
γ

∗∂ (√γγαβ)
∂xβ

, (113)

where ∗E(g) is the chronometrically invariant gravito-electric field defined
by Eq. (A.10) of the Appendix, which also shows that these three conditions
fix the reference system.

Operating on Eq. (113) with ∗∂
√
γ/√γ∂t, then applying the first of the

commutation relations (A.9), we obtain the equation

1
√
γ

∗∂ (√γ ∗E(g)α)
∂t

= 1
√
γ

∗∂2 (√γγαβ)
∂t∂xβ

= 1
√
γ

∗∂2 (√γγαβ)
∂xβ∂t

(114)

−∗E(g)
β

1
√
γ

∗∂ (√γγαβ)
∂t

,

that is

1
√
γ

∗∂ (√γ ∗E(g)α)
∂t

= 1
√
γ

∗∂ [√γ (γαβK − 2Kαβ)]
∂xβ

−∗E(g)
β (γαβK − 2Kαβ) ,

(115)
where Kαβ and K are defined by Eqs. (A.16).

For the sake of simplicity, assume that the spatial metric changes isotrop-
ically with time, that is to say

Kαβ = 1
3Kγαβ , (116)

in which case Eq. (115) reads

1
√
γ

∗∂ (√γ ∗E(g)α)
∂t

= 1
√
γ

∗∂ (√γKαβ)
∂xβ

− ∗E
(g)
β Kαβ . (117)
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Now the chronometrically invariant components h−1( 0 0 ) and h−1/2(α0)
of the Einstein equations (55), expressed in the form

Rij = κ2 (Tij − 1
2Tgij) , (118)

are [9]

1
√
γ

∗∂ (√γ ∗E(g)α)
∂xα

= ∗E(g)
α

∗E(g)α + 1
4
∗H

(g)
αβ

∗H(g)αβ −KαβK
αβ

−
∗∂K

∂t
− 4πGN (ρ(m) + σ) (119)

and

1
√
γ

∗∂(√γ ∗H(g)αβ)
∂xβ

= 2 ∗E
(g)
β

∗H(g)αβ+2 (γαβK −Kαβ)∗
∶β
−16πGN

∗j(m)α ,

(120)
respectively, where the chronometrically invariant covariant derivative is de-
noted by ∗

∶ and ∗j(m)α = Tα0 /
√
h, which generalize Eqs. (57) and (58) to the

time-dependent gravitational field.
Under the assumption (116), Eqs. (119) and (120) simplify to

1
√
γ

∗∂ (√γ ∗E(g)α)
∂xα

= ∗E(g)
α

∗E(g)α + 1
4
∗H

(g)
αβ

∗H(g)αβ

−1
3K

2 −
∗∂K

∂t
− 4πGN (ρ(m) + σ) (121)

and

1
√
γ

∗∂ (√γ ∗H(g)αβ)
∂xβ

= 2 ∗E
(g)
β

∗H(g)αβ + 4
√
γ

∗∂ (√γKαβ)
∂xβ

− 16πGN
∗j(m)α ,

(122)
respectively. Substitution from (four times) Eq. (117) into Eq. (122) then
yields the equation

1
√
γ

∗∂ (√γ ∗H(g)αβ)
∂xβ

− 4
√
γ

∗∂ (√γ ∗E(g)α)
∂t

= 2∗E
(g)
β (∗H(g)αβ + 2Kαβ)

−16πGN
∗j(m)α , (123)

in which a gravitational displacement-current term appears.
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Suppose, further, the following two restrictions: firstly, that the grav-
itational field is weak, in the sense that quadratic terms in ∗E(g), ∗H(g)

and K are ignorable, together with derivatives of K with respect to time
(but not space); and secondly, that the stresses are small, so that σ may
be ignored by comparison with ρ(m). Then the correspondingly simplified
forms of Eqs. (121) and (123) are

1
√
γ

∗∂ (√γ ∗E(g)α)
∂xα

= −4πGNρ
(m) (124)

and

1
√
γ

∗∂ (√γ ∗H(g)αβ)
∂xβ

− 4
√
γ

∗∂ (√γ ∗E(g)α)
∂t

= −16πGN
∗j(m)α , (125)

respectively.
Eqs. (124) and (125) constitute a dynamical system. To within the

present approximations, they imply the continuity equation

∗div∗j(m) + 1
√
γ

∗∂ (√γρ(m))
∂t

= 0 , (126)

that is in accord with the appropriate limit of the (
0
) component of Eq. (1)

from which we began. Written in terms of chronometrically invariant quan-
tities, this is Eq. (11) of Ref. [9], namely

∗Div ∗j(m) + 1
√
γ

∗∂ (√γρ(m))
∂t

− ∗E(g) ⋅ ∗j(m) +Kαβσ
αβ = 0 , (127)

where the chronometrically invariant physical divergence is defined as[9]

∗DivX = ∗divX − ∗E(g) ⋅X (128)

for an arbitrary vector X. Note, in general, by comparison with Eq. (126),
that Eq. (127) contains additional terms which describe the interaction be-
tween the gravitational field, represented by E(g) and Kαβ , and the matter
sources ∗j(m) and σαβ , respectively.

9. The superstring vacuum

The foregoing analysis has been chiefly concerned with the classical Ein-
stein theory, starting from Eq. (1), which describes the continuity of energy
and momentum and for a stationary gravitational field can be reformulated
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via the energy-momentum pseudo-tensor t ji as the differential energy con-
servation law (3). After integration over the three-space, this results in
the Nordström global energy (9), which can be re-expressed in terms of the
gravito-electromagnetic fields E(g) andH(g) as the two-dimensional surface
integral (104).

Eq. (9) is an integral over the matter source distribution alone, imply-
ing an a priori multifold degeneracy due to the fact that different energy-
momentum tensors Tij which give rise to the same integral of the densitized
Nordström energy-density

√−gρN yield the same total energy MN. This
feature of the theory results in particular in a classical degeneracy of the
vacuum, for consider a perfect-fluid source characterized by energy density
ρ and pressure p, linked through the relativistic equation of state

p = (n − 1)ρ , (129)

where n is the adiabatic index. The energy-momentum tensor is

Tij = ρ [nuiuj − (n − 1)gij] , (130)

from which we find that
ρN = (3n − 2)ρ . (131)

As discussed previously[30, 31], the equation

ρN = 0 (132)

possesses the two solutions

ρ = 0 , ρ ≠ 0 , n = 2/3 , (133)

the first of which includes most importantly Minkowski space, while the
second defines matter with the stringy equation of state.

Thus, if the fundamental theory of the Universe is a string theory, for
self-consistency the heterotic superstring theory of Gross et al. [32–34], the
question arises as to the precise status of this string vacuum state, which
was argued by Dabholkar et al. [35] to be the most basic classical solution to
the low-energy field-theory limit, and which was shown in Ref. [31] to be the
chronometrically invariant vacuum state, in which, in the stationary case,
a three-dimensional de Sitter space is embedded in four-dimensional space-
time.

Application of the Nordström expression (9) presupposes a stationary
space-time, and therefore we consider this limit of the Friedmann line-
element

ds2 = dt2 − a2(t)dx2 , (134)
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where t is comoving time and a(t) ≡ a0eα(t) is the radius function of the
three-space dx2, in the non-trivial case of a closed Universe. The Friedmann
and Raychaudhuri equations then read

α̇2 = 1

3
κ2ρ0 −

1

a20
= 0 , α̈ = 1

2nκ
2ρ0 −

1

a20
= 0 , (135)

respectively, where ● ≡ d/dt and ρ0 is the constant energy density, which can
only be non-zero if n = 2/3, yielding the stringy solution (133) with

ρ0 = 3/κ2a20 . (136)

From Ref. [31] we find that this matter can be simulated by the string
field ξ, for which the energy density and pressure are defined by

ρξ = −3pξ = 1
2
[(∇ξ)2]−1 . (137)

The effective Lagrangian is therefore

L = − R

2κ2
− 1

6
[(∇ξ)2]−1 , (138)

yielding the energy-momentum tensor

Tij = 1
3ρξ (2uiuj + gij) =

1
3
[(∇ξ)2]−2 [ξ,iξ,j + 1

2 (∇ξ)2 gij] (139)

and the non-linear equation of motion

∂j (
∂L
∂ξ,j

) = [(∇ξ)2]−2 {◻ξ − 4 [(∇ξ)2]−1 ξ,i,jξ,iξ,j} = 0 (140)

(see Eqs. (81)–(84) of Ref. [31]).
In the stationary string metric (135), the solution to Eq. (140) is

ξ = ξ0t , ∇ξ = (ξ0,0) , ◻ξ = ξ,i,j = 0 , (141)

where ξ0 = κ0a0/
√

6, substitution of which into expressions (138) and (139),
setting ρξ = ρ0, results in the Lagrangian

L = 2
3ρ0 . (142)

The finite three-volume is ∫ d3x
√
γ = 2π2a30, and therefore the action is

S = 4
√

3π2

κ3
√
ρ0
t . (143)
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Classically, the two vacua (133) appear to be equivalent from the ener-
getic standpoint, regarding both the spatial integral (9) and the mass func-
tion defined from the gravito-electric field through Eq. (106). This raises the
question why strings are totally absent in the vacuum state that we actually
perceive, especially since the superstring world sheet is supersymmetric if,
and only if, one or other of the solutions (133) holds [30].

The situation is reminiscent of the more familiar paradox of why the
cosmological constant Λ vanishes, suggesting an answer along similar lines.
Hawking[36, 37] pointed out that the Euclidean action of the de Sitter in-
stanton generated by a positive semi-definite Λ is

SE = ∫ d4x
√
−g (R + 2Λ

2κ2
) = − 3π

GNΛ
. (144)

In the path-integral approach to quantum gravity, the wave function is
given by

Ψ ≈ Ψ0 exp (iS) ≈ Ψ0 exp (−SE) , (145)

where the Euclideanization is brought about by Wick rotation of the time
coordinate,

t→ −iτ . (146)

This is so designed that matter kinetic terms are positive in both S and SE,
since

iS = i∫ dtd3x
√
−g ( ζ̇

2

2
+ . . .)→ −∫ dτd3x

√
−g (ζ

′2

2
+ . . .) ≡ −SE , (147)

where ζ is a typical matter field, ● ≡ d/dt and ′ ≡ d/dτ .
Assuming that ΨΨ∗ can be interpreted as a probability density, it then

follows that the most probable configuration is obtained by maximizing
(−SE), and is therefore given by

Λ = 0 , (148)

as we have also discussed in Ref. [38].
Now let us apply this idea to the string vacuum solution (135), (136).

Performing the Wick rotation (146) in expression (143), we obtain the Eu-
clidean string action

SE = −4
√

3π2τ

κ3
√
ρ0

. (149)

Since t, and hence also τ , are bounded by the age of the Universe, and
therefore finite, the exponent (−SE) in expression (145) is maximized by
setting
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ρ0 = 0 , (150)

in analogy to expression (148), thus explaining why the true vacuum state
of the Universe is devoid of strings, being Minkowski space.

The interpretation of ΨΨ∗ as a probability density is justified by the in-
clusion in the superstring effective Lagrangian of quadratic higher-derivative
gravitational termsR2, obtained by reduction of the ten-dimensional quartic
terms R̂4. The Wheeler–DeWitt equation[39, 40] for the wave function
of the Universe Ψ then takes the form of a Schrödinger equation[41, 42],
from which a conserved probability current can be defined in the Fried-
mann space-time (134) or mini-superspace approximation.

Appendix A

Chronometric invariance

We shall first prove Theorem I, due to Zel’manov[9], that given a world
tensor Y αβγ...

000... of rank m with all the superscripts different from zero and all
the subscripts, numbering n, equal to zero, then the quantities ∗Zαβγ...000... ≡
h−

n
2 Y αβγ...

000... form a three-dimensional contravariant tensor of rank (m − n)
which is chronometrically invariant.

Applying the transformations (22) to Y αβγ...
000... , in the new coordinate sys-

tem we have

Y ′αβγ...
000... = ∂x

′α

∂xρ
∂x

′β

∂xσ
∂x

′γ

∂xτ
⋯( ∂x

0

∂x′0
)
n

Y ρστ...
000... , (A.1)

or, since
∂x0

∂x′0
= (g

′
00

g00
)
1/2

, (A.2)

(g′00)
−n/2

Y ′αβγ...
000... = ∂x

′α

∂xρ
∂x

′β

∂xσ
∂x

′γ

∂xτ
⋯ (g00)−n/2 Y ρστ...

000... . (A.3)

Thus, the quantities
∗Zαβγ...000... ≡ h−n/2Y αβγ...

000... (A.4)

transform according to the law for three-dimensional tensors, which proves
the theorem, and are denoted with an asterisk to indicate chronometric
invariance.
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In particular, the contravariant components of the chronometrically in-
variant three-metric, are ∗γαβ = γαβ = −gαβ , the covariant components
satisfying ∗γασ∗γσβ = δαβ . Thus, ∗γαβ is the physical three-metric γαβ ,
defined from the line element in the form (14) first introduced by von
Weyssenhoff[43, 44], who also identified the group of coordinate transformations
(22) under which γαβ remains invariant (see p. 66 of Ref. [44]).

Chronometrically invariant differential operators can be established by
consideration of the effect of the transformations (22) upon normal partial
differential operators. Thus ∂/∂x0 and ∂/∂xα transform as

∂

∂x0
= ∂x

′0

∂x0
∂

∂x′0
= (g00

g′00
)

1
2 ∂

∂x′0
(A.5)

and
∂

∂xα
= ∂x

′β

∂xα
∂

∂x′β
+ ∂x

′0

∂xα
∂

∂x′0
, (A.6)

respectively. In order to deal with expression (A.6), we form the transfor-
mation of γα ≡ −g0α/g00,

γα =
∂x

′β

∂xα
∂x0

∂x′0
γ′β −

∂x
′0

∂xα
∂x0

∂x′0
. (A.7)

From the relations (A.5)–(A.7), we find that
∗∂

∂t
= h−1/2 ∂

∂x0
,

∗∂

∂xα
= ∂

∂xα
+ γα

∂

∂x0
. (A.8)

These chronometrically invariant operators do not generally commute
with one another. Rather, their commutators define two important quanti-
ties. We have

∗∂2

∂xα∂t
−

∗∂2

∂t∂xα
= ∗E(g)

α

∗ ∂

∂t
,

∗∂2

∂xα∂xβ
−

∗∂2

∂xβ∂xα
=
∗

H
(g)
αβ

∗ ∂

∂t
, (A.9)

where
∗E(g)

α =
−∗∂ (ln

√
h)

∂xα
− ∂

∂x0
γα =

1√
h
E(g)
α (A.10)

and

∗H
(g)
αβ =

√
h(

∗∂

∂xα
γβ −

∗∂

∂xβ
γα) =

1√
h
H

(g)
αβ = 1√

h
εαβγH

(g)γ (A.11)

are the chronometrically invariant three-tensors formed from the gravito-
electric field E(g) defined in Eq. (33) and the gravito-magnetic field intensity
H(g) defined in Eq. (56), respectively.
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Here it is interesting to recall that the law of force on a test particle,
Eq. (35), involves the gravito-electromagnetic fields E(g), B(g) contained in
the covariant tensor F (g)

ij , which obeys the first gravito-Maxwellian system
of equations

F
(g)
[ij;k]

= 0 , (A.12)

while the Einstein equations (55) are formulated primarily in terms of the
fields D(g), H(g) contained in the contravariant tensor f (g)ij, which, in
the stationary case, obeys the analogue of the second Maxwellian system
Eq. (45) for the source, namely Eq. (70).

For the commutators (A.9) involve one field from each of these two pairs,
that is the two fieldsE(g),H(g). The factor of 1/

√
h occurring in Eqs. (A.10)

and (A.11) can be understood from Theorem I, setting n = 1 in Eq. (A.4).
The contravariant components of the gravito-electric field E(g) are

E(g)α = γαβE(g)
β = −γαβF (g)

0β = F (g)α
0 , (A.13)

leading to Eq. (A.10), and the gravito-magnetic intensity H(g) can be ex-
pressed via the dual field strength

F̃
(g)
ij = 1

2ηijklF
(g)kl , (A.14)

where ηijkl =
√−gδijkl, as

H(g)
α = 1

2 εαβγ
√
hF (g)βγ = 1

2 η0αkl F
(g)kl = F̃ (g)

0α , (A.15)

leading to Eq. (A.11).
Note, geometrically, that the space-time metric cross-terms g0α can

only be made to vanish everywhere by means of the transformations (22)
if H(g) = 0, that is if H(g)

αβ = 0, which is the condition obtained by von
Weyssenhoff[44] (see also p. 284 of Ref. [6]).

Finally, there is a third chronometrically invariant field which enters the
equations of gravitation when they are time dependent. This is the chrono-
metrically invariant time derivative of the three-metric, defined such that

Kαβ = 1
2

∗∂

∂t
γαβ , Kαβ = −1

2

∗∂

∂t
γαβ , K ≡ γαβKαβ =

∗∂ (ln
√
γ)

∂t
.

(A.16)

This paper was written at the University of Cambridge, Cambridge,
England.
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Appendix B

*
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