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using the method of trace operators. Taking into account a decomposition
of matrices related to the embedding F4 ⊃ so(9), subgroup scalars for the
corresponding state labelling problem are determined as traces of powers
of the components, enabling us to propose an orthonormal basis of states
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eigenstates for the IRREP [1000] of F4 is explicitly given.
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1. Introduction

In contrast to the classical groups, which emerged naturally in the quan-
tum mechanical formalism and in nuclear physics, exceptional Lie groups
entered physics relatively late, with the pioneering work of Racah on the
classification of fn electron configurations and the computation of matrix
elements in the spin-orbit interaction [1, 2]. The deep relation between G2

and the rotation group SO(7), in connection with their representation the-
ory and their underlying branching rules, motivated a closer analysis of the
exceptional groups as symmetry groups in physical phenomena. In this con-
text, besides the role of G2 in atomic spectroscopy (of rare earths) [3], the
Ei-series comprising the exceptional groups E6, E7 and E8 has become an
important object in high energy physics [4], notably in the context of Grand
Unified Theories of the fundamental interactions [5].

The remaining exceptional group F4, although less known and exploited
[6], also has played an indirect role in various physical problems, like the
classification of the states of N -electron configurations [6], the study of the
atomic f -shell [7], or even recent interpretations of the Standard Model [8].
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The main interest of F4 in these problems resides in the fact that it contains
various groups relevant to the specific physical problem under analysis, like
the chain F4 ⊃ G2×SOI(3) enlarging Racah’s ansatz [2]. Another suggesting
chain involving this group is for example E6 ⊃ F4×G2 ⊃ SO(9)×G2, which
essentially makes reference to the reduction F4 ⊃ SO(9). Enlarging the
latter chain we obtain the embedding F4 ⊃ SO(9) ⊃ SO(8), a case that
has been applied to study the branching rules used in [7] for the so-called
“quark” model of atomic spectroscopy by means of the triality of SO(8).

The purpose of this work is twofold: on the one hand we reformulate the
problem of the Casimir operators of F4 by means of the trace method de-
veloped by Gruber and O’Raifeartaigh [9], but using a basis of F4 obtained
from expansion of a basis of the maximal subgroup SO(9) of F4. This will
enable us to simultaneously construct the invariants of F4, SO(9) and to
derive subgroup scalars for the labelling problem (MLP) corresponding to
the embedding SO(9) ⊂ F4. Explicitly, these subgroup scalars will emerge
as the traces of products of successive powers of the components. Once a
complete set of commuting labelling operators is constructed, we are able
to construct an orthonormal basis of states for each generic irreducible rep-
resentation of F4. As an illustration, the basis of eigenstates is explicitly
computed for the 26-dimensional fundamental representation of F4.

2. Casimir operators of F4 as trace operators

Using only the structure tensor of the Lie algebra, and generalizing the
approach by Casimir [10], Racah developed a method to construct invari-
ant operators of arbitrary order that commute with all the generators of a
semisimple Lie algebra [1]. His construction essentially made use of the prop-
erties of the adjoint representation of Lie algebras. However, it was observed
that this construction does not, in general, lead to a complete set of inde-
pendent operators. A significant advance in this direction was obtained by
Gruber and O’Raifeartaigh [9], who considered themselves a generalization
of the Casimir invariants based on the characters of products of generators
in irreducible representations of (compact) semisimple Lie groups. For the
special case of the adjoint representation, their result essentially recovered
the already known constructions of the Casimir operators [1]. Moreover,
they showed that in order to extract a compete set of invariants, the repre-
sentations to be considered are essentially the fundamental representations
of the Lie algebra s. In this way, a systematical way to describe the Casimir
operators of semisimple Lie algebras of arbitrary rank was given.

For completeness, we briefly recall here the main features of the pro-
cedure. Let [Xi, Xj ] = CkijXk be the basis of a (compact) semisimple Lie
algebra s of dimension n and rank l. It is well known [1] that operators of
the shape
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Fp = Cσ1
ισ2
Cσ2
jσ3
Cσ3
kσ4

. . . C
σp
ρσ1XiXjXk . . . Xρ

constitute an order p invariant of s, i.e., [Fp, X] = 0 for any X ∈ s. Using
the adjoint representation ad (s), the latter operator can be rewritten as

Fp = Tr (ad (Xi) ad (Xj) ad (Xk) . . . ad (Xρ))XiXjXk . . . Xρ . (1)

As observed, the operators (1) will usually not provide a set of l independent
(Casimir) operators, thus are insufficient to construct the invariants of s.
Gruber and O’Raifeartaigh [9] reformulated the results of Racah in terms of
tensor products of the l fundamental representations of s and showed that for
any (compact) semisimple Lie algebra s we can always find an appropriate
(fundamental) representation Γ and an associated polynomial matrix

M =
n∑
j=1

(Xj ⊗ Γ (Xj)) , (2)

such that from the quantities

Ip = Tr (Mp) , p ≥ 2 (3)

we can extract exactly l independent invariants of the Lie algebra, which
correspond naturally to the l Casimir operators of s [9]. Explicit expres-
sions of the polynomial matrixM for the series of classical Lie algebras were
given in that work. In this manner, the Casimir operators appear naturally
as trace operators, inheriting an intrinsic meaning in terms of representa-
tions, and clarifying their significance in the labelling of multiplets. For the
corresponding non-compact real forms of these Lie algebras, the Casimir
operators can be also constructed along the previous method, with slight
variations in the choice of the representation and the basis1.

In the following, we will apply the Gruber–O’Raifeartaigh procedure to
the exceptional Lie algebra F4. As far as the author is aware, this has
not been done previously for this group, although alternative constructions
have been considered [18]. However, we will introduce a further reaching
variation into the ansatz. We are not only interested in computing the
four Casimir operators of F4 as trace operators, but also in obtaining the
labelling operators for the reduction chain F4 ⊃ so (9). In order to do this,
we will have to consider a basis of F4 expanded from a basis of so (9), i.e.,
we need the branching rules of representations [12,13,14]. In particular, the

1 The trace method, relying on the structure of semisimple Lie algebras, cannot in
general be generalized to non-semisimple Lie algebras. In particular, for solvable Lie
algebras it is of no use, as the IRREPs are all one-dimensional.
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embedding F4 ⊃ so (9) implies that the adjoint representation of F4 must
decompose as follows as a sum of so(9) representations2

[1000] ⊃ (0100) + (0001) , (4)

where (0100) is the adjoint representation of so(9) and (0001) corresponds to
the spinor representation. This means, in particular, that we can find a basis
B = {Hi, Ej , Fk, Sl, Tl} of F4, where i = 1, . . . , 4, j = 1, . . . , 16, l = 1, . . . , 8,
such that {Hi, Ej , Fk} constitutes a basis of so (9) and {Tl, Sl} is a basis
of the spinor representation (0001) of so (9)3. The generators H1, . . . ,H4

correspond to the Cartan subalgebra of F4, which is simultaneously the
Cartan subalgebra of the subalgebra so (9).

As the exceptional algebra F4 possesses four primitive Casimir operators
of degrees 2, 6, 8 and 12 respectively [11]4, we must find an appropriate (fun-
damental) representation Γ and a polynomial matrix of type (2) such that
the traces of the second, sixth, eighth and twelfth powers are functionally
independent invariants. To this extent, we consider the fundamental repre-
sentation Γ = [1000] of dimension 26. As the basis of F4 has been obtained
using the branching rule (4), the polynomial matrix of (2) will decompose
as a sum

M = U +R , (5)

where the matrices are defined as

U =
4∑
i=1

(Hi ⊗ Γ (Hi)) +
16∑
k=1

(Ek ⊗ Γ (Ek)) +
16∑
k=1

(Fk ⊗ Γ (Fk)) ,

R =
8∑

k=1

(Sk ⊗ Γ (Sk)) +
8∑

k=1

(Tk ⊗ Γ (Tk)) . (6)

The structure constants of F4 over the preceding basis B is easily obtained
from the commutation relations of the (scalar) matrices Γ (Hi), Γ (Ek),
Γ (Fk), Γ (Sk) and Γ (Tk).

Denoting j = exp(iπ/3), the two matrices U and R are explicitly given
by:

2 In the following, we will always use the notations for the labelling of representations
as done in [13].

3 Without loss of generality we can further chose the generators Ej , Fj , Sj , Tj such
that Fj = E†

j , Tj = S†j .
4 By primitive, we mean that the Casimir operators cannot be obtained as polynomials
of lower order invariants.
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The Ki denote the following linear combinations of the Cartan genera-
tors Hi:

K1 = (H1+H2+H3+H4)
2 , K2 = (H1+H2+H3−H4)

2 ,

K3 = (H1+H2−H3+H4)
2 , K4 = (H1+H2−H3−H4)

2 ,

K5 = (H1−H2+H3+H4)
2 , K6 = (H1−H2+H3−H4)

2 ,

K7 = (H1−H2−H3+H4)
2 , K8 = (H1−H2−H3−H4)

2 ,

K9 = (−H1+H2+H3+H4)
2 , K10 = (−H1+H2+H3−H4)

2 ,

K11 = (−H1+H2−H3+H4)
2 , K12 = (−H1+H2−H3−H4)

2 ,

K13 = (−H1−H2+H3+H4)
2 , K14 = (−H1−H2+H3−H4)

2 ,

K15 = (−H1−H2−H3+H4)
2 , K16 = − (H1+H2+H3+H4)

2 .

From the construction of M we clearly have that Tr [M ] = 0, as both
summands are zero trace matrices. We claim that the traces of Mk for
k = 2, 6, 8, 12 provide the primitive Casimir operators of F4.

In order to evaluate the traces of higher powers of M , we make use of
the identity

Tr
[
Mk
]

= Tr
[
(U +R)k

]
. (7)

Expanding the sum in the right-hand side of (7) we arrive at sums of products
of the type

Ua1Rb1 . . . UasRbs , (8)

where ai, bj ≥ 0 are integers such that
∑s

i=1 ai + bi = k. The traces of such
terms can be further simplified using the elementary properties of traces

Tr
[
Ua1Rb1 . . . UasRbs

]
= Tr

[
RUa1Rb1 . . . UasRbs−1

]
= . . .

· · · = Tr
[
Rbs−1Ua1Rb1 . . . UasR

]
= Tr

[
RbsUa1Rb1 . . . Uas

]
. (9)

The matrices U and R can be further decomposed, which will allow
us to analyse their properties more closely. More precisely, we decompose
the matrices as follows: U = D + N1 + N2 and R = P1 + P2, where D
is the diagonal matrix having the Hi,Kj as entries, N1, P1 are the upper
triangular matrices having as entries the Ei and Tj respectively, and N2, P2

are the lower triangular having as entries the Fi and Sj respectively5. Using
this decomposition and the fact that N1, N2, P1, P2 are nilpotent [15], it is
straightforward to verify that

Tr
[
Uk
]

= Tr
[
Rk
]

= 0 (10)

5 Observe that this decomposition is consistent with the fact that Fi and Sj are the
Hermitean conjugates of Ei and Tj respectively.
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for any odd value of k. Further, as the matrices N1, N2 and P1, P2 are related
by Hermitean conjugation, and that commutators of nilpotent matrices are
nilpotent [15], a cumbersome but routine computation shows that

Tr
[
Ua1Rb1 . . . UasRbs

]
= 0 , (11)

whenever either
∑s

i=1 ai = 2p+ 1 or
∑s

i=1 bi = 2p+ 1 holds for some p ≥ 0.
From (11) we can, in particular, deduce that for odd values of k we obtain the
identity Tr

[
Mk
]

= 0. Therefore, only the even powers M2p for 1 ≤ p ≤ 6
have to be considered. This fact is in agreement with the non-existence of
odd order Casimir operators for F4.

Using (9) and (11) we considerably simplify the computation of the
traces of even powers of M . According to (7) and (11), for k = 2 the
trace reduces to

Tr
[
M2
]

= Tr
[
U2
]
+ Tr

[
R2
]
. (12)

In terms of the generators, this operator has the expression

Tr
[
M2
]

=
(
H2

1 +H2
2 +H2

3 +H2
4

)
+

16∑
i=1

(EiFi + FiSi)+
8∑
j=1

(SjTj + TjSj) .

(13)
It is straightforward to verify that it commutes with all generators of F4,
thus it can be taken as the quadratic Casimir operator in its symmetric rep-
resentative. As expected, for the fourth power of M the trace is dependent
on (13)

Tr
[
M4
]

=
1
12

(
Tr
[
M2
] )2

. (14)

For the sixth and eight powers, equation (7) provides the decomposition

Tr
[
M6
]
= Tr

[
U6
]
+ 6Tr

[
U4R2

]
+ 6Tr

[
U3RUR

]
+ 3Tr

[(
U2R

)2]
+6Tr

[
U2R4

]
+ 6Tr

[
URUR3

]
+ 3Tr

[
(UR)2

]
+ Tr

[
R6
]
,

Tr
[
M8
]
= Tr

[
U8
]
+ 8Tr

[(
UR3

)2]+ 8Tr
[
U5RUR

]
+ 8Tr

[
U4RU2R

]
+4Tr

[(
U3R

)2]+ 8Tr
[
U4R4

]
+ 8Tr

[
U3RUR3

]
+ Tr

[
R8
]

+8Tr
[
U3R3UR

]
+ 8Tr

[
U2RU2R3

]
+ 8Tr

[
U2 (RU)2R2

]
+8Tr

[
U2RUR2UR

]
+ 4Tr

[
U2R2 (UR)2

]
+ 2Tr

[
(UR)4

]
+8Tr

[
U2R6

]
+ 8Tr

[
URUR5

]
+ 8Tr

[
UR2UR4

]
+ 8Tr

[
U6R2

]
.

(15)
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To show that Tr
[
M6
]
and Tr

[
M8
]
are, respectively, a sixth and eight

order Casimir operator of F4, we can make use of the analytical approach
to the invariant problem [16, 17]. Actually, in both cases it suffices to show
that [

Ei,Tr
[
Mk
]]

=
[
Fi,Tr

[
Mk
]]

=
[
Tj ,Tr

[
Mk
]]

= 0 , (16)

for i = 1, . . . , 4, j = 1, . . . , 8 and k = 6, 8, as the remaining relations follow
automatically from the commutators of the generators6. Equation (15) also
shows that Tr

[
M2
]
, Tr

[
M6
]
and Tr

[
M8
]
are independent operators. This

is a consequence of the independence of the operators Tr
[
U2
]
, Tr

[
U6
]
and

Tr
[
U8
]
, which can be easily verified.

As any invariant of F4 having order ten is a polynomial of lower degree
Casimir operators [11], it should be expected that the trace of M10 is a
function of the preceding traces. In fact, taking into account that Tr

[
M4
]

is a power of Tr
[
M2
]
, we arrive at the following dependence relation

Tr
[
M10

]
= 3

8Tr
[
M8
]
Tr
[
M2
]− 7

144Tr
[
M6
]
Tr
[
M2
]2 + 7

41472Tr
[
M2
]5
.

(17)
It remains to compute the trace of M12. Using (9) and (11) leads to the

expression

Tr
[
M12

]
= Tr

[
U12

]
+Θ[10,2]+Θ[8,4]+Θ[6,6]+Θ[4,8]+Θ[2,10]+Tr

[
R12

]
, (18)

where7

Θ[a,b] =
∑

a1+···+as=a
b1+···+bs=b

Tr
[
Ua1Rb1 . . . UasRbs

]
. (19)

As before, it suffices to show that Tr
[
M12

]
commutes with Ei, Fi and

Tj for i = 1, . . . , 4; j = 1, . . . , 8. Further, its independence from the lower
order traces follows again from the functional independence of the operators
Tr
[
U2
]
, Tr

[
U6
]
, Tr

[
U8
]
and Tr

[
U12

]
. With this construction we have

therefore shown the following result:

Proposition 1 The primitive Casimir operators of the exceptional Lie al-
gebra F4 are given by the trace operators Tr

[
M2
]
, Tr

[
M6
]
, Tr

[
M8
]

and
Tr
[
M12

]
associated to the polynomial matrix M .

6 This is a consequence of the fact that for differential operators X, Y and scalar fields
f the identity X(f) = Y (f) = 0 implies that [X, Y ] (f) = 0.

7 We avoid the explicit expression in terms of the traces, as the sum involves more than
140 component traces.
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In this context, it should be mentioned that in [18] the Casimir operators
of F4 were obtained using the chain SO(9) ⊂ F4 ⊂ SO(26), by means of a
projection method of SO(26)-generators into F4. Both the basis and the
procedure differ from that chosen here, as we have expanded the Casimir
operators of the maximal subalgebra so(9) by means of trace operators, in
contrast to the projection technique. This also implies that the particular
representatives for the invariants obtained here differ from those in [18].

As we mentioned above, the operators Tr
[
U2
]
, Tr

[
U6
]
, Tr

[
U8
]
and

Tr
[
U12

]
are independent. Actually, it follows at once from the decomposi-

tion that they commute with the generators of so(9), and therefore constitute
Casimir operators of this subalgebra. As the primitive invariants of so (9)
have degrees d = 2, 4, 6, 8 [11], there should exist an order four operator C4

that jointly with the traces Tr
[
U2
]
, Tr

[
U6
]
and Tr

[
U8
]
provides a poly-

nomial dependence relation for Tr
[
U12

]
. With some heavy computations it

can be shown that such an operator can be extracted from the equation

Tr
[
U12

]
= 59

576Tr
[
U8
]
Tr
[
U2
]2 − 49

2592Tr
[
U6
]
Tr
[
U2
]3 + 17

248832Tr
[
U2
]2

× 1
18Tr

[
U6
]2 +

(
1
4Tr

[
U6
]
Tr
[
U2
]− 9

8Tr
[
U8
])
C4

− 5
64Tr

[
U2
]2
C2

4 + 15
8 C

3
4 . (20)

The reason that C4 does not appear as a trace lies in the fact that we
have constructed the matrix M in such manner that the traces of successive
powers reproduce the Casimir operators of F4, and that the latter Lie algebra
does not have an order four invariant independent from its quadratic one.

3. Applications to the labelling problem SO(9) ⊂ F4

The trace method used to obtain the Casimir operators of F4 has a
remarkable advantage to the explicit expressions of the invariants. Since
we have used generators of F4 in a so(9)-basis, we naturally recover the
embedding F4 ⊃ so(9) and the corresponding labelling problem. It will turn
out that the traces of operators of the type (8) will provide subgroup scalars
for this embedding, i.e., operators in the generators of F4 that commute with
all generators of so(9). As known, the l eigenvalues of the Casimir operators
of a semisimple Lie algebra s of rank l label irreducible representations [1],
while the Cartan subalgebra can be used identify states within a multiplet.
Nonetheless, these operators are often not enough to completely separate
multiplicities. The total number of internal labels required is

i = 1
2(dim s− l) . (21)

An analogous situation holds when a subalgebra s′ of rank l′ is used
to label the basis states of irreducible representations of s. The subgroup



Trace Operators for the State Labelling Problem in the Exceptional . . . 1807

provides 1
2(dim s′ + l′) − l0 labels, where l0 is the number of invariants of

s that depend only on generators of the subalgebra s′ [16]. To distinguish
elements within a (generic) IRREP of s, we need to find

n = 1
2

(
dim s− l − dim s′ − l′)+ l0 (22)

additional operators, called missing label operators or subgroup scalars.
These operators, belonging to the enveloping algebra of s, commute with
all generators of the subalgebra s′. The total number of available opera-
tors is m = 2n [16, 19]. For n > 1, the labelling operators must moreover
commute with each other.

According to (22), for F4 ⊃ so(9) we need to find n= 1
2 (52−4−36−4)=4

subgroup scalars that commute with each other and the Casimir operators
of F4 and so(9).

Starting from equations (15) and (18), we group together all traces oper-
ators Tr[Ua1Rb1 . . . UasRbs ] having the same degree in the so(9) and spinor
representation generators. The operators Tr

[
Uk
]
are discarded, since we

have seen that they are the Casimir operators of so(9). Ignoring for the
moment the traces Tr

[
Rk
]
, we are led to the following operators

Θ[4,2] = 6Tr
[
U4R2

]
+ 6Tr

[
U3RUR

]
+ 3Tr

[(
U2R

)2]
,

Θ[2,4] = 6Tr
[
U2R4

]
+ 6Tr

[
URUR3

]
+ 3Tr

[
(UR)2

]
,

Θ[6,2] = 8Tr
[
U6R2

]
+ 8Tr

[
U5RUR

]
+ 8Tr

[
U4RU2R

]
+ 4Tr

[(
U3R

)2]
,

Θ[4,4] = 8Tr
[
U4R4

]
+ 8Tr

[
U3RUR3

]
+ 8Tr

[
U3R2UR2

]
+ 8Tr

[
U3R3UR

]
+8Tr

[
U2RU2R3

]
+ 8Tr

[
U2RURUR2

]
+ 4Tr

[
U2R2 (UR)2

]
+8Tr

[
U2RUR2UR

]
+ 2Tr

[
(UR)4

]
,

Θ[2,6] = 8Tr
[
U2R6

]
+ 8Tr

[
URUR5

]
+ 8Tr

[
UR2UR4

]
+ 8Tr

[(
UR3

)2]
,

as well as the degree twelve operators from (19). Observe that the bi-index
[p, q] of Θ[p,q] denotes the degree in the so(9) and representation generators
respectively. Using analytical methods, it has been shown in general that
operators of this kind arising from decomposed Casimir operators always
provide subgroup scalars (see [20] and references therein). Therefore, the
Θ[p,q] constitute subgroup scalars for the reduction so(9) ⊂ F4.

In order to be useful for the labelling of representations, we need n = 4
subgroup scalars Θ[p,q], which must commute with each other to avoid in-
teraction. The problem of finding adequate combinations of labelling op-
erators for general reduction of groups is still an unsolved one, although
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some criteria and methods have been developed to avoid direct computa-
tion [17, 21]. Even for degenerate representations8, which usually require
less labels, no general method has been developed yet.

However, for the case under analysis, the decomposition (15) and (18)
provides some useful information to chose commuting labelling operators.
To this extent, we recall how the commutator of two subgroup scalars of the
type Θ[p,q] decomposes as a sum of subgroup scalars[

Θ[p,q], Θ[r,s]
]

= Θ[p+r−1,q+s] +Θ[p+r,q+s−1] +Θ[p+r+1,q+s−2] . (23)

In [20], the preceding formula (23) was used to analyse the precise struc-
ture of subgroup scalars. Two criteria for the commutativity of labelling
operators were extracted, that we recall briefly:

Criterion A: If Cp decomposes as Cp = λΘ[p,0] + Θ[p−α,α] + Θ[p−β,β] +
Θ[p−β−2,β+2] with |β − α| ≤ 2 and λ = 0, 1, then[

Θ[p−α,α], Θ[p−β,β]
]

=
[
Θ[p−α,α], Θ[p−β−2,β+2]

]
=
[
Θ[p−β,β], Θ[p−β−2,β+2]

]
= 0 . (24)

In this criterion, operators of the type Θ[p,0] simply correspond to Casimir
invariants of the subalgebra.

Criterion B: Let Cp = Θ[p−α,α] + Θ[p−β,β] + Θ[p−γ,γ] (0 6= α < β < γ)
be a Casimir operator of s with γ − α ≥ 3. If Θ[r,s] is a subgroup scalar
of s′ ⊂ s such that

[
Θ[r,s], Θ[p−β,β]

]
= 0, then

[
Θ[r,s], Θ[p−α,α]

]
= 0 and[

Θ[r,s], Θ[p−γ,γ]] = 0.

By (13), for any generator X of F4 we have the identity[
X,Tr

[
M2
]]

=
[
X,Tr

[
U2
]
+ Tr

[
R2
]]

= 0 , (25)

as the Casimir operators commute with all generators. In particular, if
Θ[p,q] is a subgroup scalar of degree p in the so (9) generators and q in the
generators of the spinor representation, the previous identity implies that[

Θ[p,q],Tr
[
M2
]]

=
[
Θ[p,q],Tr

[
R2
]]

= 0 . (26)

8 According to [19], we call an IRREP degenerate if one or more of the Dynkin labels
vanishes.
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Now, as Tr
[
R6
]

= 1
96Tr

[
R2
]3
, Tr

[
R8
]

= 11
6912Tr

[
R2
]4 and Tr

[
R12

]
=

19
442368Tr

[
R2
]6, we obtain that for any subgroup scalar Θ[p,q] the following

identity holds9 [
Θ[p,q],Tr

[
R2r
]]

= 0 , r = 1, 3, 4, 6 . (27)

It follows at once from Criterion A that[
Θ[4,2],Tr

[
M6
]]

=
[
Θ[4,2], Θ[4,2] +Θ[2,4]

]
=
[
Θ[4,2], Θ[2,4]

]
= 0 .

Similarly, taking into account the decomposition of the order eight Casimir
operator Tr

[
M8
]
, and discarding the terms depending only on so(9) or the

representation generators, we obtain that[
Θ[4,4],Tr

[
U8
]
+Θ[6,2] +Θ[4,4] +Θ[2,6] + Tr

[
R8
]]

= 0 .

Since
[
Θ[4,4],Tr

[
U8
]]

=
[
Θ[4,4],Tr

[
R8
]]

= 0 by the preceding observations,
we again conclude by Criterion A that[

Θ[4,4], Θ[6,2]
]

=
[
Θ[4,4], Θ[2,6]

]
=
[
Θ[6,2], Θ[2,6]

]
= 0 .

For Tr
[
M12

]
the criterion is not directly applicable to the isolated subgroup

scalars, although we obtain that[
Θ[6,6], Θ[10,2] +Θ[8,4]

]
=
[
Θ[6,6], Θ[4,8] +Θ[2,10]

]
= 0 .

The commutators
[
Θ[6,6], Θ[10,2]

]
=
[
Θ[6,6], Θ[4,8]

]
= 0 must be computed di-

rectly. As we only need four (independent) labelling operators, we chose the
simplest possible ones. Taking e.g.,

{
Θ[4,2], Θ[6,2], Θ[4,4], Θ[2,6]

}
, it remains

to see that
[
Θ[4,2], Θ[4,4]

]
= 0 to conclude, by means of Criterion B, that[

Θ[4,2], Θ[6,2]
]

=
[
Θ[4,2], Θ[2,6]

]
= 0 .

A lengthy direct computation shows that
[
Θ[4,2], Θ[4,4]

]
= 0 actually holds.

As a consequence, the four operators
{
Θ[4,2], Θ[6,2], Θ[4,4], Θ[2,6]

}
can be

taken as labelling operators for the reduction F4 ⊃ so (9).
By (21), we need f = 20 internal labels to specify states in a IRREP of

F4. The trace method based on the polynomial matrix M has allowed us to
obtain 16 of these 20 labels, divided into the four following types:

9 The dependence of the previous traces on Tr
ˆ
R2

˜
is the reason for which we left them

out from the construction of labelling operators.
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• the four Casimir operators Tr
[
M2
]
, Tr

[
M6
]
, Tr

[
M8
]
, Tr

[
M12

]
of F4,

• the four Casimir operators Tr
[
U2
]
, Tr

[
U6
]
, Tr

[
U8
]
, Tr

[
U12

]
of so (9),

• the four missing label operators Θ[2,4], Θ[6,2], Θ[4,4] and Θ[2,6],
• the four internal operators H1, . . . ,H4 of the Cartan subalgebra.

In general, for a generic irreducible representation we still need four
internal subgroup operators, that can be obtained easily by the classical
procedures, like the Gel’fand–Tseitlin method [11]. Observe that these inter-
nal labels automatically commute with the Casimir and labelling operators,
as they are formed by generators of so (9). As known, the four eigenvalues
ρ1, . . . , ρ4 of the Casimir operators Tr

[
M2
]
, Tr

[
M6
]
, Tr

[
M8
]
and Tr

[
M12

]
specify the IRREP [α1, α2, α3, α4] of F4, while the remaining operators will
be used to separate degeneracies and states [19,20]. Now denote by:

• λ1, . . . , λ4 : eigenvalues of Tr
[
U2
]
, Tr

[
U6
]
, Tr

[
U8
]
and Tr

[
U12

]10,
• ξ1, . . . , ξ4 : eigenvalues of Θ[2,4], Θ[6,2], Θ[4,4] and Θ[2,6],
• ϕ1,. . ., ϕ8 : eigenvalues of the internal operators H1,. . ., H4, Φ1,. . ., Φ4.

As these 20 operators commute with each other, and they are diagonaliz-
able, we can always find a basis where they are all simultaneously diagonal-
izable [20]. As a consequence, the states of [α1, α2, α3, α4] are determined
by a basis of eigenstates of the form

|λ1, . . . , λ4; ξ1, . . . , ξ4; ϕ1, . . . , ϕ8〉 . (28)

This basis is valid for generic irreducible representations. For degenerate
representations (or some multiplicity free reductions), some of the previous
labels may be redundant [19], and the basis of eigenstates must be accord-
ingly modified to avoid dependence of the operators. However, these special
cases must be analysed case by case, as there are nowadays no general meth-
ods to conclude the dependence of labelling operators whenever we deal with
degenerate IRREPs. Although some special cases have been analysed in de-
tail [19], the state labelling for degenerate multiplets remains incomplete.

As an illustration of the procedure we consider the fundamental repre-
sentation [1000] considered for the construction of the labelling operators.
By the branching rule (4), there is no degeneracy, i.e., the representations of
so (9) appearing in the decomposition all have multiplicity one. In this sit-
uation, according to [19], it is expected that some of the labelling operators
will be dependent. Actually, for this case, the operators Θ[6,2], Θ[4,4] and
Θ[2,6] are all scalar multiples of Θ[2,4], and thus redundant for the labelling
of states. Only one labelling operator is needed, that we chose Θ[2,4] for sim-
plicity. As the representation is a fundamental one, only four of the eight

10 Due to the dependence relation (20), we can also use the eigenvalue of C′
4 instead of

that of Tr
ˆ
U12

˜
.



Trace Operators for the State Labelling Problem in the Exceptional . . . 1811

internal labels are needed. Therefore, a basis of eigenstates is determined by

|λ1, λ2, λ3, λ4; ξ1;ϕ1, ϕ2, ϕ3, ϕ4〉 , (29)

with the λi the eigenvalues of the so (9) Casimir operators C ′2i, ξ1 that
of Θ[2,4] and ϕi the eigenvalues of the Cartan generators, which suffice as
internal labels. The eigenvalues of the operators are given in Table I.

TABLE I
Basis of eigenstates for Γ = [1000]†.

H1 H2 H3 H4 C ′2 C ′4 C ′6 C ′8 Θ[2,4]

|v1〉 1
2

1
2

1
2

1
2 9 537

2 10539 5821461 1753
80

|v2〉 1
2

1
2

1
2 − 1

2 9 537
2 10539 5821461 1753

80

|v3〉 1
2

1
2 − 1

2
1
2 9 537

2 10539 5821461 1753
80

|v4〉 1
2

1
2 − 1

2 − 1
2 9 537

2 10539 5821461 1753
80

|v5〉 1
2 − 1

2
1
2

1
2 9 537

2 10539 5821461 1753
80

|v6〉 1
2 − 1

2
1
2 − 1

2 9 537
2 10539 5821461 1753

80

|v7〉 1
2 − 1

2 − 1
2

1
2 9 537

2 10539 5821461 1753
80

|v8〉 1
2 − 1

2 − 1
2 − 1

2 9 537
2 10539 5821461 1753

80

|v9〉 − 1
2

1
2

1
2

1
2 9 537

2 10539 5821461 1753
80

|v10〉 − 1
2

1
2

1
2 − 1

2 9 537
2 10539 5821461 1753

80

|v11〉 − 1
2

1
2 − 1

2
1
2 9 537

2 10539 5821461 1753
80

|v12〉 − 1
2

1
2 − 1

2 − 1
2 9 537

2 10539 5821461 1753
80

|v13〉 − 1
2 − 1

2
1
2

1
2 9 537

2 10539 5821461 1753
80

|v14〉 − 1
2 − 1

2
1
2 − 1

2 9 537
2 10539 5821461 1753

80

|v15〉 − 1
2 − 1

2 − 1
2

1
2 9 537

2 10539 5821461 1753
80

|v16〉 − 1
2 − 1

2 − 1
2 − 1

2 9 537
2 10539 5821461 1753

80

|v17〉 1 0 0 0 12 232 14568 932072 349
30

|v18〉 0 1 0 0 12 232 14568 932072 349
30

|v19〉 0 0 1 0 12 232 14568 932072 349
30

|v20〉 0 0 0 1 12 232 14568 932072 349
30

|v21〉 −1 0 0 0 12 232 14568 932072 349
30

|v22〉 0 −1 0 0 12 232 14568 932072 349
30

|v23〉 0 0 −1 0 12 232 14568 932072 349
30

|v24〉 0 0 0 −1 12 232 14568 932072 349
30

|v25〉 0 0 0 0 12 232 14568 932072 349
30

|v26〉 0 0 0 0 0 0 0 0 39
4

†As the eigenvalues of the Casimir operators of F4 coincide for all states, we
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skip them from the orthonormal basis.

4. Conclusions

Using a convenient reformulation of the Gruber–O’Raifeartaigh method
[9], we have extended the ansatz of [18] in order to obtain a trace formula
that allows to express the Casimir operators of the exceptional Lie alge-
bra F4 as sums of the Casimir operators of the maximal subalgebra so(9)
and subgroup scalars for the reduction F4 ⊃ so(9). Basing on a decompo-
sition of the Casimir operators induced by the embedding of the algebras,
the labelling operators arise as traces of powers of the components of the
decomposed matrix. Moreover, using some criteria on the commutativity of
subgroup scalars, developed in [20], we were able to establish a set of com-
muting labelling operators for representations of F4. A possible orthonormal
basis of states constructed along these lines has been proposed, and for the
IRREP [1000] of F4, the basis of eigenstates has been explicitly constructed.
Bases of this type can be useful in the context of branching rules and their
applications to the atomic f -shell [22]. In fact, as the reduction considered
here can be easily extended to the relevant chain F4 ⊃ SO(9) ⊃ SO(8) [7],
the labelling operators obtained in the previous section can be further de-
composed into SO(8) scalars, which may provide additional labels that recall
atomic properties. The main difficulty at this stage is merely computational,
due to the enormous number of terms of the labelling operators and the high
dimension of F4-representations exhibiting some degeneracy. Whether this
approach is useful for the analysis of vanishing matrix elements [3,22] is still
an unanswered question that deserves a more detailed study.

Another open question concerns the possibility of extending this proce-
dure for the remaining exceptional Lie algebras of the Ei-series. The main
constraints in this problem are the quite large dimension of the fundamental
representations and the high degrees of the corresponding Casimir operators,
which imply severe computational difficulties in the manipulation of traces
of powers of matrices of type (2). A solution in this direction would also pro-
vide candidates for the state labelling problem, as well as provide additional
structural tools for their applications to the unified gauge theories [4, 5].

The author was partially supported by the research grant MTM2010-
18556 of the Ministerio de Ciencia e Innovación. The author expresses his
gratitude to the Referee for suggesting several improvements of the manu-
script.
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