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The application of the Jucys–Murphy operators, generating a maxi-
mal Abelian subalgebra in the group algebra of the symmetric group, in
the process of immediate diagonalisation of the one-dimensional Hubbard
Hamiltonian is demonstrated. The way of construction of appropriate pro-
jection operators of the Young orthogonal basis is pointed out, and the fact
that these operators play a role of eigenvectors for Jucys–Murphy operators
in the group algebra of the symmetric group is underlined. It is indicated
that this operator technique is competitive to the Kostka matrix at the level
of bases, which yields matrices of appropriate Clebsh–Gordan coefficients.
The permutational symmetry of the lattice chain with N sites occupied by
two electrons is discussed in detail.

DOI:10.5506/APhysPolB.42.1825
PACS numbers: 02.20.–a, 71.10.Li, 75.10.Pq

1. Introduction

The single-band Hubbard model [1] allows to understand many interest-
ing phenomena of the solid state physics like ferromagnetism, antiferromag-
netism, the Mott transition, etc. That is why many research groups from
over the world are still involved in this bottomless topic. The strongly de-
veloping theory of quantum dots and generally nanostructures of properties
very similar to the finite set of objects, induces to look closer on the models
simulating such systems. In the present paper we consider one-dimensional
Hubbard model, which is great for its possible generalizations to higher di-
mensions, and as one of the exactly solvable models [2, 3]. Lieb and Wu [4]
solved the one-dimensional Hubbard model in the year 1968, and after them
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many authors have tried to improve the theory with the book of Essler et al.
[5] as the proper summary and supplement of their work. Although many
highly sophisticated papers of tremendous importance were published in this
area, the problem is still far from full understanding. In the present paper we
give the application of the Jucys–Murphy operators [6,7,8], and the Schur–
Weyl transform [9, 10, 11] in one-dimensional Hubbard model, resulting in
reducing significantly the size of an effective Hamiltonian matrix through
dividing it into blocks related with given permutational symmetry of the
nodes of the one-dimensional lattice chain.

2. The symmetries of the model

The one-dimensional Hubbard model of a finite chain of N atoms has
dynamics given by the Hubbard Hamiltonian in the following form

Ĥ = −t
∑
i∈2̃

∑
j∈Ñ

(
â†jiâj+1i + â†j+1iâji

)
+ U

∑
j∈Ñ

n̂j+n̂j , (1)

where Ñ = {j = 1, 2, . . . , N} denotes the set of nodes of the chain, 2̃ =
{i = +,−}, n̂ji = â†jiâji, and finally â†ji, âji are the canonical Fermi op-
erators, that is creation and anihilation operators of electron of spin i, on
the site j. The Hamiltonian (1) apart from the obvious translational sym-
metry (âN+1i = â1i) has two independent SU(2) symmetries [5,12,13], that
is SU(2) × SU(2), involving the spin and charge degrees of freedom. There
are many ways of constructing the Hilbert space H for Ne particles, moving
along the ring with N nodes. One can start from defining the single-node
space hj , with the basis consisting of the vectors denoting all possible occu-
pations of one node. Since we are dealing with fermions

dimhj = 4 , hj = lcC{∅,+,−,±} , (2)

where ∅ denotes the empty node, + and − stand for one-node spin projection
equal to 1/2 and −1/2 respectively, ± denotes the double occupation of the
one node by the two electrons with different spin projections, and lcCA
stands for the linear closure of a set A over the field C. One can obtain the
final space H of all quantum states of the system in the following way

H =
N∏
j=1

⊗hj , H =
2N∑
Ne=0

⊕HNe , (3)

where HNe denotes the space with fixed number of electrons Ne. The set
4̃ = {∅,+,−,±} can be decomposed into two parts, where first, being the
set 2̃ = {+,−}, is related with the first factor of the cartesian product
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SU(2)×SU(2) of the symmetry groups of the system, reflecting the invariance
of Ĥ under the spin rotation, and the second 2̃′ = {∅,±} is related with the
remaining factor. Thus one has two sets of generators, {Ŝz, Ŝ+, Ŝ−} and
{Ĵz, Ĵ+, Ĵ−}, for spin and charge space, respectively. These generators can
be written in the following forms

Ŝz = 1
2

∑
j∈Ñ

(
â†j+âj+ − â

†
j−âj−

)
, Ŝ+ = Ŝ†− =

∑
j∈Ñ

â†j+âj− , (4)

Ĵz = 1
2

∑
j∈Ñ

(
â†j+âj+ + â†j−âj− − 1

)
, Ĵ+ = Ĵ†− = (−1)j

∑
j∈Ñ

â†j+âj− ,

(5)

and the transfer between these two sets is known as the Shiba transforma-
tion [4, 5]. The total number of particles Ne, taken as the eigenvalue of the
operator N̂e =

∑
j∈Ñ (n̂j+ + n̂j−), together with the number of particles Ni,

with given one-node spin projection i ∈ {+,−}, taken as the eigenvalues of
the operators N̂i =

∑
j∈Ñ n̂ji, are the good quantum numbers, this mean

the conservation of the total magnetization M given as the eigenvalue of
the operator M̂ ≡ Ŝz. As the result, we have four good quantum numbers
(Sz = M,Jz, S, J) related with the operators from Eqs. (4), (5).

3. The electron configuration

The electron configuration f : Ñ −→ 4̃, with 4̃ ≡ {∅,+,−,±}, is the
N -sequence of the elements from the set 4̃

|f〉 = |f(1)f(2) . . . f(N)〉 = |i1i2 . . . iN 〉 , ij ∈ 4̃ , j ∈ Ñ , (6)

with
4̃Ñ =

{
f : Ñ −→ 4̃

}
, H = lcC4̃Ñ . (7)

The action A : ΣN × 4̃Ñ −→ 4̃Ñ of the symmetric group ΣN on the set 4̃Ñ

provides us with orbits Oµ of the group ΣN labelled by the weight µ, which
is a sequence of non-negative integers µ = (µ1, µ2, µ3, µ4), with relation∑

i∈4̃ µi = N , defined by the following equation

µi =
∣∣∣{ij = i|j ∈ Ñ

}∣∣∣ , i ∈ 4̃ . (8)

Such an orbit constitutes the transitive representation RΣN :Σµ of the group
ΣN with the stabilizer

Σµ = Σµ1 ×Σµ2 ×Σµ3 ×Σµ4 , (9)
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given as the Young subgroup for the appropriate f ∈ Oµ. The stratum S(ν)
of the action A, is labelled by the sequence ν

ν = (ν0, ν1, ν2, . . . , νN ) ,
N∑
l=0

lνl = N , (10)

where
νl =

∣∣{µi = l|i ∈ 4̃
}∣∣ , l ∈ Ñ , (11)

and
ν0 = 4−

∑
l∈4̃

νl . (12)

The stratification of the set 4̃Ñ of all electron configurations under the action
A of the symmetric group is the following

4̃Ñ

A
=
⋃
ν

S(ν) (13)

with

|S(ν)| = 4!
ν0!
∏
l∈Ñ νl!

, |Oµ| =
N !∏
i∈4̃ µi!

, 4N =
∑
ν

|S(ν)| · |Oµ| .

(14)
The stratification of the set 4̃Ñ under the action of the symmetric group
ΣN , for the chain with N = 4 nodes is presented in Table I.

TABLE I

The stratification of the set 4̃4̃ of all electron configurations under the action of the
symmetric group Σ4.

µ ν | Oµ | | S(ν) | | S(ν) | · | Oµ |
0 1 2 3 4

4 0 0 0 3 0 0 0 1 1 4 4
3 1 0 0 2 1 0 1 0 4 12 48
2 2 0 0 2 0 2 0 0 6 6 36
2 1 1 0 1 2 1 0 0 12 12 144
1 1 1 1 0 4 0 0 0 24 1 24

——
44 = 256
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4. Jucys–Murphy operators

The operators M̂j [14, 15], defined within the symmetric group algebra
C[ΣN ] as the sum of all transpositions (j, j′) of the node j ∈ Ñ with pre-
ceding nodes j′ < j, are introduced by Jucys [6, 7] and independently by
Murphy [8], thus they are called Jucys–Murphy operators. These N − 1
Hermitian operators of the form

M̂j =
∑

1≤j′<j
(j, j′) , j = 2, 3, . . . , N , (15)

constitute a complete set of commuting operators along the general Dirac for-
malism of quantum mechanics [16]. The standard Young tableaux |λ y〉 [17]
of the shape λ ` N , i.e. the tableaux of this shape in the alphabet Ñ of
nodes, with strictly increasing entries in rows and columns, constitutes the
common eigenvector |λ y〉 of the set of M̂j operators [18,19], that is

M̂j |λ y〉 = mj(y) |λ y〉 , (16)

with eigenvalues
mj(y) = cj(y)− rj(y) , (17)

where the pair of positive integers (cj(y), rj(y)) gives the position (the col-
umn and the row) of the number j in tableaux |λ y〉. In this, way each basis
function of the irreducible representation (irrep) ∆λ of the symmetric group
ΣN , labelled by the Young tableaux |λ y〉, can be completely determined
by the sequence m(y) = (m1 = 0,m2, . . . ,mN ) of eigenvalues (17). The
realization of each such irreducible vector within the group algebra C[ΣN ]
is given via the projector operator eλyy of the well known Young orthogonal
basis [6,7,8,10,11], where the remarkable significance of the Jucys–Murphy
operators is underlined.

5. The irreducible basis

Now we are going to construct the multi-electron basis in HNe , reflect-
ing the permutational symmetry of the N nodes of the lattice chain, using
the theory of representations of the symmetric group ΣN . This technique
reduced significantly the size of the Hubbard Hamiltonian by decomposing
it into blocks. We start with only one electron on the ring, and with the
initial basis of HNe=1 being the orbits Oµ=(3100) and Oµ=(3010) of the sym-
metric group ΣN , with elements taken as the subsets of the set 4̃Ñ of all
electron configurations. Such orbits are invariant under the action of the
symmetric group ΣN and form the carrier spaces of the transitive represen-
tations RΣN :Σµ , with the stabilizers Σµ being the Young subgroups (9), and



1830 D. Jakubczyk, P. Jakubczyk

× denotes the Cartesian product. One can obtain the states with definite
permutational symmetry of the Ne particles by taking the irreducible basis
of the appropriate irreps ∆λ of the symmetric group ΣN , where λ ` N , in
the tensor product of Ne transitive representations RΣN :Σµ , along with the
appropriate decomposition

RΣN :Σµ ∼=
∑
λ�µ

Kλµ∆
λ . (18)

The Kλµ denotes Kostka numbers [20], and the sum runs over all partitions
λ greater than, or equal to µ in the dominance order [21]. Combinatorially,
Kλµ denotes the number of all standard Young tableaux of the shape λ and
weight µ. Decomposition (18) can be written at the level of bases [10,11] in
the form

|µλ t y〉 =
∑
f∈Oµ

[
µ λ t
f y

]
|f〉 , y ∈ SYT(λ) , t ∈WT(λñ) ,

(19)
where SYT(λ) denotes a standard basis vectors of the irreps of the sym-
metric group, that is the set of all standard Young tableaux of the shape λ,
WT(λ, ñ) denotes a standard basis vectors of the irreps of the unitary group
U(n), that is the set of all Weyl tableaux (or semi-standard Young tableaux)
of the shape λ in the alphabet ñ, i.e. with entries increasing weakly in rows,
and strictly in columns. The symbols in square brackets denote an element
of the Kostka matrix, with µ denoting the matrix, f its rows, and the triple
(λ t y) its columns. That is the way of finding the irreducible basis of the
symmetric and the unitary groups for the case with any dimension n of
single-node space hj and any number of electrons Ne. The equally efficient
way for providing such basis leads through using the Jucys–Murphy opera-
tors, what we present in details on the example of Ne = 2 and N = n = 4.
In order to obtain Young orthogonal basis [6, 7, 8] of the tensor product
of the appropriate transitive representations (we will omit the zeros in the
weight µ) (

RΣN :Σ(N−1,1)
)⊗2

, (20)

with the decomposition into irreps ∆λ given by the Eq. (18), we are going
to create the projection operators

eλyy = |λwy〉〈λwy| (21)

in the space of the tensor product H2 = lcC|λ1λ2λwy〉, where w denote
appropriate repetition label. Thus we have



On the Permutational Symmetry of the Hubbard Model 1831

eλyy =
N∏
j=2

∏
{yj−1|y+j−1 6=yj}

M̂j −mj

(
y+
j−1

)
Î

mj(y)−mj

(
y+
j−1

) , (22)

where y ∈ SYT(λ), yj denotes the tableaux obtained from y by extracting
the set {j + 1, j + 2, . . . N} of numbers, y+

j−1 is created from yj−1 by adding
to its entries the number j in a regular way, and Î stands for the appro-
priate unit operator. Let us briefly remind that within the group algebra
C[ΣN ], spanned linearly on N ! Young operators eλyy′ , λ = shy = shy′, each
eigenvalue mj(y) of the Jucys–Murphy operators is realised in terms of the
corresponding operator eλyy. This operators satisfy

eλy1y2e
λ′

y′1y
′
2

= δλλ′δy2y′1e
λ
y1y′2

, (23)

σeλy1y2 =
∑

y′1∈SYT(λ)

∆λ
y′1y1

(σ)eλy′1y2 , σ ∈ ΣN , (24)

and
M̂je

λ
yy = mj(y)eλyy . (25)

Eq. (23) implies that

C[ΣN ] ∼=
∑
λ`N

gl
(
dim ∆λ,C

)
, (26)

i.e. the group algebra C[ΣN ] is the direct sum of simple matrix algebras
gl(dim ∆λ,C), corresponding to each irrep ∆λ of ΣN , with the bases eλyy′ .
Eq. (24) displays the fact that each set {eλy1y2 |y1 ∈ SYT(λ)} with fixed
tableau y2 spans a carrier space of the irrep ∆λ when ΣN acts on C[ΣN ]
by the left multiplication, so that y1 and y2 in eλy1y2 serve as labels of the
standard irreducible basis and multiplicity, respectively. Eq. (25) proves
that each diagonal element eλyy, λ ` N, y ∈ SYT(λ), is the eigenvector of all
Jucys–Murphy operators, specified by the sequence m(y) = (m1,m2 . . .mN )
given by Eq. (17). At the same time, it is a representative element of the
group algebra C[ΣN ].

6. The example

Tables II–IV present the decompositions of the irreducible basis for the
case N = 4 and Ne = 2 onto the electron configurations f for the tensor
product

RΣ4:Σ(3,1) ⊗RΣ4:Σ(3,1)
= RΣ4:Σ(3,1) ⊕RΣ4:Σ(2,12)

(27)
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of the transitive representations with appropriate decomposition into irre-
ducible representations ∆λ given as follows

RΣ4:Σ(3,1)
= ∆{4} ⊕∆{3,1} , (28)

and(
∆{4} ⊕∆{3,1}

)
⊗
(
∆{4} ⊕∆{3,1}

)
= 2∆{4} ⊕ 3∆{3,1} ⊕∆{22} ⊕∆{2,12} .

(29)

TABLE II

The irreducible basis of the representation ∆{3,1} in the tensor product space H2.

f

1 3 4
2 sd

1 3 4
2 st

1 3 4
2 a

1 2 4
3 sd

1 2 4
3 st

1 2 4
3 a

± ∅ ∅ ∅ 1√
2

0 0 1√
6

0 0
∅ ± ∅ ∅ −1√

2
0 0 1√

6
0 0

∅ ∅ ± ∅ 0 0 0 −
√

(2)√
3

0 0
∅ ∅ ∅ ± 0 0 0 0 0 0
+ − ∅ ∅ 0 0 1

2 0 1√
6

0

+ ∅ − ∅ 0 1
2
√

2
1
4 0 −1

2
√

6
−
√

3
4

+ ∅ ∅ − 0 1
2
√

2
1
4 0 1

2
√

6
−1
4
√

3

− + ∅ ∅ 0 0 −1
2 0 1√

6
0

∅ + − ∅ 0 −1
2
√

2
−1
4 0 −1

2
√

6
−
√

3
4

∅ + ∅ − 0 −1
2
√

2
−1
4 0 1

2
√

6
−1
4
√

3

− ∅ + ∅ 0 1
2
√

2
−1
4 0 −1

2
√

6

√
3

4

∅ − + ∅ 0 −1
2
√

2
1
4 0 −1

2
√

6

√
3

4

∅ ∅ + − 0 0 0 0 −1√
6

1
2
√

3

− ∅ ∅ + 0 1
2
√

2
−1
4 0 1

2
√

6
1

4
√

3

∅ − ∅ + 0 −1
2
√

2
1
4 0 1

2
√

6
1

4
√

3

∅ ∅ − + 0 0 0 0 −1√
6

−1
2
√

3

The irreducible basis can be marked by additional repetition label due to
the symmetry of the system of two particles. The states related with the first
component of the r.h.s. of the tensor product in decomposition (27) describe
the situation when two particles occupy the same atom (repetition label sd
in Tables II and III). The transitive representation RΣ4:Σ(2,12) contains the
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symmetric (repetition label st in Tables II and III)(
RΣ4:Σ(2,12)

)
st

= ∆{4} ⊕∆{3,1} ⊕∆{22} , (30)

and the antisymmetric (repetition label a in Tables II and III)(
RΣ4:Σ(2,12)

)
a

= ∆{3,1} ⊕∆{2,12} , (31)

part of the tensor product (27).

TABLE III

The irreducible basis of the representation ∆{3,1} and ∆{4} in the tensor product
space H2.

f

1 2 3
4 sd

1 2 3
4 st

1 2 3
4 a 1 2 3 4 sd 1 2 3 4 st

± ∅ ∅ ∅ 1
2
√

3
0 0 1

2 0
∅ ± ∅ ∅ 1

2
√

3
0 0 1

2 0
∅ ∅ ± ∅ 1

2
√

3
0 0 1

2 0

∅ ∅ ∅ ± −
√

3
2 0 0 1

2 0
+ − ∅ ∅ 0 1

2
√

3
0 0 1

3
√

2

+ ∅ − ∅ 0 1
2
√

3
0 0 1

3
√

2

+ ∅ ∅ − 0 −1
2
√

3
1√
6

0 1
3
√

2

− + ∅ ∅ 0 1
2
√

3
0 0 1

3
√

2

∅ + − ∅ 0 1
2
√

3
0 0 1

3
√

2

∅ + ∅ − 0 −1
2
√

3
1√
6

0 1
3
√

2

− ∅ + ∅ 0 1
2
√

3
0 0 1

3
√

2

∅ − + ∅ 0 1
2
√

3
0 0 1

3
√

2

∅ ∅ + − 0 −1
2
√

3
1√
6

0 1
3
√

2

− ∅ ∅ + 0 −1
2
√

3
−1√

6
0 1

3
√

2

∅ − ∅ + 0 −1
2
√

3
−1√

6
0 1

3
√

2

∅ ∅ − + 0 −1
2
√

3
−1√

6
0 1

3
√

2

First four rows of the Tables II–IV are labelled by electron configura-
tions which do not form the linear combinations with the twelve left. They
contribute to the symmetric part of the tensor product (27), and can be
treated separately like four atoms with single-node basis given by the set
2̃′ = {±, ∅} with the configurations of the weight µ = (1, 3).
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TABLE IV

The irreducible basis of the representation ∆{2
2} and ∆{2,1

2} in the tensor product
space H2.

f

1 3
2 4

1 2
3 4

1 2
3
4

1 3
2
4

1 4
2
3

± ∅ ∅ ∅ 0 0 0 0 0
∅ ± ∅ ∅ 0 0 0 0 0
∅ ∅ ± ∅ 0 0 0 0 0
∅ ∅ ∅ ± 0 0 0 0 0
+ − ∅ ∅ 0 1√

6
0 1

2
√

3
−1√

6

+ ∅ − ∅ 1
2
√

2
−1
2
√

6
1
4

1
4
√

3
1√
6

+ ∅ ∅ − −1
2
√

2
−1
2
√

6
−1
4

−
√

3
4 0

− + ∅ ∅ 0 1√
6

0 −1
2
√

3
1√
6

∅ + − ∅ −1
2
√

2
−1
2
√

6
1
4

−1
4
√

3
−1√

6

∅ + ∅ − 1
2
√

2
−1
2
√

6
−1
4

√
3

4 0
− ∅ + ∅ 1

2
√

2
−1
2
√

6
−1
4

−1
4
√

3
−1√

6

∅ − + ∅ −1
2
√

2
−1
2
√

6
−1
4

1
4
√

3
1√
6

∅ ∅ + − 0 1√
6

1
2 0 0

− ∅ ∅ + −1
2
√

2
−1
2
√

6
1
4

√
3

4 0

∅ − ∅ + 1
2
√

2
−1
2
√

6
1
4

−
√

3
4 0

∅ ∅ − + 0 1√
6

−1
2 0 0

7. Final remarks and conclusions

We have provided the efficient way of construction of the multi-electron,
orthonormal basis appropriate for the one-dimensional Hubbard model, us-
ing the Young idempotents expressed by the Jucys–Murphy operators. We
have found this method as being competitive to the Kostka matrix at the
level of bases. This approach reduces the size of the Hubbard Hamiltonian,
decomposing it into blocks which consist of some irreps of the permutational
symmetry group ΣN .

The matrix of the Hamiltonian given by the Eq. (1) for the case of gen-
eral N , Ne = 2 with N+ = N− = 1, in the irreducible basis of the symmetric
group ΣN , is quasidiagonal as expected. For example, of N = 4, (basis given
by the Tables II–IV), that is for the pair (Sz, Jz) equal to (0,−1), it turns
out to have four blocks on the diagonal. The first block is determined by
the states of the permutational symmetry given by the Young tableaux of
the shapes λ = {4} with the repetition labels sd and st, and λ = {22}.
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The symmetry of the second block is given by the shape λ = {31} with the
repetition labels sd and st, the third by λ = {31} too, but with the anti-
symmetric ones, and the fourth by λ = {212}. The case with two electrons
of the same spin projection, that is N = 4, Ne = 2 = N+, (Sz, Jz) = (1,−1)
(or Ne = 2 = N−, (Sz, Jz) = (−1,−1)), is reducible to blocks on the diago-
nal by using vectors from Tables II and III with the repetition label st only.
The first block is determined by the states of the permutational symmetry
given by the Young tableaux of the shapes λ = {4} with the repetition label
st, and λ = {22}, the symmetry of the second block is given by the shape
λ = {31} with the label st too.
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