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By using the variational approach, we have studied the strange, charmed
and beauty baryons masses. The considered potential is Coulomb as well
as linear confining terms and the spin–isospin dependent potential is re-
garded as a perturbation, too. Some numerical results are given for spectra
of heavy baryons and compared with experiments or other works.
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1. Introduction

The investigation of hadrons containing heavy quarks is of great interest
in understanding the dynamics of QCD at the hadronic scale. There is re-
newed interest both experimentally and theoretically in the static properties
of heavy flavor baryons such as mass and magnetic moments [1, 2, 3, 4, 5, 6].
Ebert et al. [7] calculated the masses of baryons with two heavy quarks in
the framework of the relativistic quasipotential quark model and computed
baryons with jp = 1

2

+
, 3

2

+. Using the hypercentral description of the three-
body problem, Patel et al. [8,9,10,11] studied heavy flavor baryons contain-
ing single and double charm (beauty) quarks with light flavor combinations
and assumed the confinement potential as hypercentral Coulomb plus power
potential with power index ν. Roncaglia et al. [12] studied baryons using
Feynman–Hellmann theorem and semi-empirical mass formula within the
framework of a non-relativistic constituent quark model.

(1849)
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Bowler et al. [13] presented the results of the first lattice study of semi-
leptonic decay of baryons containing a b quark and computed the Isgur–Wise
functions for heavy baryons. Kiselev and Likhoded [14] extended the effec-
tive theory of heavy quarks to systems with two heavy quarks and one light
quark and calculated the masses, decay widths and yields of doubly heavy
baryons. Aaltonen et al. [15] reported an observation of new bottom baryons
produced in pp collision at the Tevatron. Jenkins [16] calculated unknown
heavy baryons masses based on an expansion in 1

mQ
, 1
NC

and SU(3) breaking.
Bagan et al. [17] studied the masses and couplings of baryons made with
two heavy quarks using QCD spectral sum rules (QSSR). Ferabetti et al.
[18] presented evidence for Ω0

c in new mode Ω0
c −→ Σ+K−K−Π+. Ger-

shtein et al. [19] calculated the spectra of masses for families of doubly
heavy baryons in the framework of non-relativistic quark model with the
QCD potential of Buchmüller and Tye.

The purpose of this paper is to calculate the masses of the heavy baryons
in a simple approximation, developed in [20, 21, 22, 23, 24]. In this work,
the considered potential is a long-range linear confinement part as well as
a short-range potential, which is a coulomb one, depending on the color
charge. Extra non-confining interquark potential, which contains spin de-
pendent HS(x), isospin dependent HI(x) and spin–isospin dependent HSI(x)
parts, are also considered as perturbation terms [25, 26, 27]. Narodetskii
and Trusov [24] studied the similar work but only calculated the masses of
baryons containing two heavy quarks without spin–spin term. We extend it
to calculate masses of baryons containing one, two and three heavy quarks
with spin, isospin and spin–isospin dependent potential. However, isospin
and spin–isospin has no effect on the masses of baryons containing two or
three heavy quarks.

2. Interaction potential model

The Coulomb-plus-linear potential, V (x) = −a
x + bx, also known as

the Cornell potential, has received a great deal of attention both in particle
physics, more precisely in the context of meson spectroscopy where it is used
to describe systems of quark and antiquark bound states, and in atomic and
molecular physics where it represents a radial Stark effect in hydrogen. This
potential was used with considerable success in models describing systems
of bound heavy quarks [24, 28, 29]. The potential includes the short dis-
tance Coulombic interaction of quarks, known from perturbative quantum
chromodynamics (QCD), and the large distance quark confinement, known
from lattice QCD, via the linear term in a simple form. Coulombic term
alone is not sufficient because it would allow free quarks to ionize from the
system. All of our results presented in this work will be based on the Cornell
potential, i.e.
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V (x) = −a
x

+ bx , (1)

where a and b are constants and x is the hyperradius. The non-confining
potential contains a δ-like term that is modified by a Gaussian of the quark
pair relative distance [30]

HS = AS

(
1√
πσS

)3

exp
(
−x2

σ2
S

)(−→
S1 ·
−→
S2

)
, (2)

where −→Si is the spin operator of the i-th quark. The non-confining poten-
tial (2) is provided by the interaction with the Goldstone bosons, which
gives rise to a spin- and isospin-dependent part. This is good to describe
the spectrum for energies lower than 1.7 GeV [25, 26]. Recently, it has also
been pointed out that an isospin dependence of the quark potential can be
obtained by means of quark exchange [31]. More generally, one can expect
that the quark–quark pair production can lead to an effective quark interac-
tion containing an isospin- (or flavor-)dependent term [31, 32]. With these
motivations in mind, we have introduced isospin-dependent terms. Finally,
we have added two terms in the Hamiltonian quark–quark pairs with hyper-
fine interaction similar to Eq. (2). The first one depends on the isospin only
and has the form [30,33]

HI = AI

(
1√
πσI

)3

exp
(
−x2

σ2
I

)(−→
t1 · −→t2

)
, (3)

where −→ti is the isospin operator of the i-th quarks. The second one is a
spin–isospin interaction, given by

HSI = ASI

(
1√
πσSI

)3

exp
(
−x2

σ2
SI

)(−→
S1 ·
−→
S2

) (−→
t1 · −→t2

)
, (4)

where −→Si and −→ti are the spin and isospin operators of the i-th quark re-
spectively. Then from Eqs. (2), (3), (4), the hyperfine interaction or non-
confining potential is given by

Hint(x) = HS(x) +HI(x) +HSI . (5)

The values of the hyperfine interaction constants are displayed in Table I.
In the next section, we obtain the wave function and energy of system

in the framework of the simple approximation with Cornell potential (1).
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TABLE I

The values of the hyperfine interaction constants [30].

AS σS AI σI ASI σSI

67.4 (fm)2 2.87 fm 51.7 (fm)2 3.45 fm −106.2 (fm)2 2.31 fm

3. The wave function and energy for confining potential;
hyper central model

To describe the baryon as a bound state of three constituent quarks, we
define the configuration of three particles by the Jacobi coordinates ρ and λ
as [11,30]

~ρ =
1√
2

(~r1 − ~r2) , ~λ =
1√
6

(~r1 + ~r2 − 2~r3) (6)

such that

mρ =
2m1m2

m1 +m2
, mλ =

3m3 (m1 +m2)
2 (m1 +m2 +m3)

, (7)

where m1, m2 and m3 are the constituent quark masses. Instead of ρ and
λ, one can introduce the hyperspherical coordinates, which are given by the
angles Ωρ = (θρ, φρ) together with the hyperradius x, and the hyperangle ζ,
defined respectively by [27,34,35,36,37]

x =
√
ρ2 + λ2 , ξ = arctan

(√
ρ

λ

)
. (8)

Therefore, the Hamiltonian will be

H =
P 2
ρ

2m
+
P 2
λ

2m
+ V (x) , (9)

where m is the reduced mass as

m =
2mρmλ

mρ +mλ
. (10)

In the hypercentral constituent quark model (hCQM), the quark potential
v is assumed to depend on the hyperradius x only that is to be hyper-
central. Therefore, V = V (x) is, in general, a three-body potential, and the
hyperradius x depends on the coordinates of all the three quarks. In the
three-quark wave function one can factor out the hyperangular part, which
is given by hyperspherical harmonics [20]. The remaining hyperradial part
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of the wave function is determined by hypercentral Schrödinger equation as
follows [8, 11,27,30][

d2

dx2
+

5
x

d

dx
− γ(γ + 4)

x2

]
ψγ(x) = −2m [E − V (x)]ψγ(x) , (11)

where γ is the grand angular quantum number given by γ = 2υ + lρ + lλ;
lρ and lλ are the angular momenta associated with the ~ρ and ~λ variables
and υ is a non-negative integer number. We investigate the ground state
of baryons (γ = 0). For ground state of baryons and using the hyper ra-
dial approximation, where has been introduced in Ref. [24], the Schrödinger
equation is given as

d2χ(x)
dx2

+ 2µ
[
E − V (x)− 15

8µx2

]
χ(x) = 0 , (12)

where µ is an arbitrary parameter with the dimension of mass and χ(x) is
the reduced function as follows

χ(x) = x
5
2ψ(x) (13)

and V (x) is the three-quark potentials over the six-dimensional sphere that
was defined in Eq. (1). We use a new variable x′ =

√
µx, to eliminate an

artificial dependence of Eq. (12) on µ, then the equation (12) becomes

χ
′′
(x′) + 2

[
E − V (x′)−

(
15

8x′2

)]
χ(x′) = 0 , (14)

where
V (x′) = −

a
√
µ

x′
+

b
√
µ
x′ . (15)

We can solve Eq. (14) by the variational method. We introduce a simple
variational ansatz for χ(x′) as

χ(x′) = 2
√

2p3x′
5
2 e−P

2x′2
, (16)

where p is the variational parameter, and the numerical factor is chosen so
that

∫
χ2(x′)dx′ = 1. The trial three-quark Hamiltonian admits explicit

solutions for the wave function and the energy E0 = minE(p) where

E(p) = 〈χ|H|χ〉 = 3p2 − a√µ 3
4

√
π

2
p+

b
√
µ

15
16

√
π

2
p−1 . (17)

Now by using the condition dE
dp |p=p0 = 0, the value of p0 is found.
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4. The heavy baryon masses

The baryon masses are given by three quark masses and the energy E0

which is a function of a and b, with the hyperfine interaction potential 〈Hint〉
treated as a perturbation. The first order energy correction from the non-
confining potential 〈Hint〉, as given in (5), can be obtained by using the
unperturbed wave function (16) as follows

〈Hint〉 =
∫
χHintχdx

′ . (18)

Therefore, the Baryon mass then becomes the sum of quark masses and
energy of perturbed system, thus [27]

Mbaryon = mq1 +mq2 +mq3 + E0 + 〈Hint〉 . (19)

This depends on the constituent quark masses mq and potential parameters
a and b that are listed in Table II.

TABLE II

The value of the potential parameters and quark masses.

a b mu md ms mc mb

4.59 [33] 1.61 fm−2 [33] 330 MeV 335 MeV 469 MeV 1.6 GeV 4.98 GeV

We use the experimental masses of Σ+, Σ0, Σ−, Ξ−, Ξ+
c and Σ−b as input

to determine the quark masses and the value of µ. The potential parameters
are obtained from Refs. [34, 35,36] that the static properties of the baryons
with Cornell potential have investigated. We obtained the heavy baryons
mass and compared with experimental data or other theoretical model pre-
dictions in Tables III–VIII. In Table III, we calculated heavy baryon masses
containing one strange quark.

TABLE III

Strange baryon masses (in MeV).

Baryon I (jp) Present work Exp. [38]

Σ+(uus) 1
(

1
2

+
)

1189 1189

Σ0(uds) 1
(

1
2

+
)

1192 1192

Σ−(dds) 1
(

1
2

+
)

1197 1197

Ξ0(uss) 1
2

(
1
2

+
)

1317.8 1314

Ξ−(dss) 1
2

(
1
2

+
)

1321 1321
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Single charm and single beauty baryon masses are presented in Tables IV
and V, respectively.

TABLE IV

Single charm baryon masses (in GeV).

Baryon I (jp) Present work [9] Others Exp.

Σ++
c (uuc) 1

(
1
2

+
)

2.318 2.443 2.460[13] 2.452[38]

Σ∗++
c (uuc) 1

(
3
2

+
)

2.446 2.506 2.440[13] —

Λ+
c (udc) 0

(
1
2

+
)

2.303 — 2.290[11] 2.284[38]

Σ+
c (udc) 1

(
1
2

+
)

2.323 2.460 2.453[12] 2.451[38]

Σ∗+
c (udc) 1

(
3
2

+
)

2.451 2.525 2.520[12] 2.518[39]

Σ0
c (ddc) 1

(
1
2

+
)

2.328 2.477 2.466[8] —

Σ∗0
c (ddc) 1

(
3
2

+
)

2.456 2.544 2.533[8] —

Ξ+
c (usc) 1

2

(
1
2

+
)

2.467 2.53 2.468[12] 2.467[38]

Ξ∗+
c (usc) 1

2

(
3
2

+
)

2.577 2.603 2.650[12] 2.646[38]

Ξ0
c (dsc) 1

2

(
1
2

+
)

2.453 2.548 2.536[8] 2.471[38]

Ξ∗0
c (dsc) 1

2

(
3
2

+
)

2.582 2.623 2.611[8] 2.646[38]

Ω0
c (ssc) 0

(
1
2

+
)

2.587 2.620 2.696[11] 2.699[18]

Ω∗0
c (ssc) 0

(
3
2

+
)

2.716 2.704 2.757[11] —

Baryon masses containing double and triple charm (beauty) quarks are
shown in Table VI (VII).

Finally, in Table VIII, we presented baryon masses containing beauty
and charm quarks. As we see from Tables I–VIII, our calculations are very
close to the ones obtained in experiments or in the other works [7, 8, 9, 10,
11,12,13,14,15,16,17,18,19,38,39].
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TABLE V

Single beauty baryon masses (in GeV).

Baryon I (jp) Present work [11] [16] Exp.

Σ+
b (uub) 1

(
1
2

+
)

5.700 5.801 5.824 5.807[15]

Σ∗+
b (uub) 1

(
3
2

+
)

5.826 5.823 5.840 5.829[15]

Λ0
b(udb) 0

(
1
2

+
)

5.683 5.629 — 5.624[38]

Σ−
b (ddb) 1

(
1
2

+
)

5.708 5.821 — 5.815[15]

Σ∗−
b (ddb) 1

(
3
2

+
)

5.836 5.844 — 5.836[15]

Ξ0
b (usb) 1

2

(
1
2

+
)

5.828 5.872 5.805 5.792[15]

Ξ∗0
b (usb) 1

2

(
3
2

+
)

5.957 5.936 5.996 —

Ξ−
b (dsb) 1

2

(
1
2

+
)

5.833 5.887 — —

Ξ∗−
b (dsb) 1

2

(
3
2

+
)

5.962 5.943 — —

Ω−
b (ssb) 0

(
1
2

+
)

5.967 6.005 6.068 —

Ω∗−
b (ssb) 0

(
3
2

+
)

6.096 6.065 6.083 —

TABLE VI

Double and triple charm baryon masses (in GeV).

Baryon I (jp) Present work [9] [14] Exp.

Ξ++
cc (ucc) 1

2

(
1
2

+
)

3.579 3.730 3.480 3.519[38]

Ξ∗++
cc (ucc) 1

2

(
3
2

+
)

3.708 3.800 3.610 —

Ξ+
cc(dcc) 1

2

(
1
2

+
)

3.584 3.755 3.480 —

Ξ∗+
cc (dcc) 1

2

(
3
2

+
)

3.713 3.828 3.610 —

Ω+
cc(scc) 0

(
1
2

+
)

3.718 3.857 3.590 —

Ω∗+
cc (scc) 0

(
3
2

+
)

3.847 3.944 3.690 —

Ω∗++
ccc (ccc) 0

(
3
2

+
)

4.978 — 4.736[10] —
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TABLE VII

Double and triple beauty baryon masses (in GeV).

Baryon I (jp) Present work [11] Others

Ξ0
bb(ubb)

1
2

(
1
2

+
)

10.339 10.114 10.093[19]

Ξ∗0
bb (ubb) 1

2

(
3
2

+
)

10.468 10.165 10.330[17]

Ξ−
bb(dbb)

1
2

(
1
2

+
)

10.344 10.117 —

Ξ∗−
bb (dbb) 1

2

(
3
2

+
)

10.473 10.170 —

Ω−
bb(sbb) 0

(
1
2

+
)

10.478 10.164 10.340[24]

Ω∗−
bb (usb) 0

(
3
2

+
)

10.607 10.236 —

Ω∗−
bbb(bbb) 0

(
3
2

+
)

15.118 — 14.444[10]

TABLE VIII

Beauty and charm baryons masses (in GeV).

Baryon I (jp) Present work Others

Ω+
cb(ucb)

1
2

(
1
2

+
)

6.959 6.950[7]

Ω0
cb(scb)

1
2

(
1
2

+
)

7.098 7.050[7]

Ω+
ccb(ccb)

1
2

(
1
2

+
)

8.229 8.089[10]

Ω∗+
ccb(ccb) 1

2

(
3
2

+
)

8.358 8.099[10]

Ω0
bbc(cbb) 0

(
1
2

+
)

11.609 11.354[10]

Ω∗0
bbc(cbb) 0

(
3
2

+
)

11.738 11.394[10]

5. Conclusions

In this paper, we employed the hyperspherical formalism with potential of
the coulomb plus power potential to study the masses of baryons containing
heavy flavor quarks in the ground state. We solved the Schrödinger equation
by the variational method. We have shown that it is possible to find baryon
masses by a suitable confining and non-confining interaction potentials.
Using the theory of time-independent perturbation and the wave function,
we get the effects of spin and isospin potentials in the shift of baryon energy.
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