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An improved self-similar transformation is used to construct exact so-
lutions of the nonlinear Schrödinger equation with variable nonlinearity
and quadratic external potential, which both depend on the distance of
propagation and the transverse spatial coordinate. By means of analytical
and numerical methods we reveal the main features of the spatial soli-
tons found. We focus on the most important optical examples, where the
applied optical field is a function of both linearly or periodically varying
distance and spatial coordinate. In the case of periodically varying nonlin-
earity, the variations of confining external potential are found to be sign-
reversible (periodically attractive and repulsive) and thus supporting the
soliton management.
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1. Introduction

Spatial optical solitons are self-trapped light beams supported by the bal-
ance between diffraction and nonlinearities of various types [1, 2, 3], which
in most cases are produced by the refractive index modification in the ma-
terial. Depending on the type of nonlinearity, nonlinear (NL) media may
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support either bright or dark solitons [1]. While bright solitons are just
finite-size beams formed in media with self-focusing nonlinearity, dark soli-
tons are more complex objects, representing an intensity dip in an otherwise
constant background with nontrivial phase profile [4]. Spatial solitons have
potential for use in all-optical data-processing schemes designed for switch-
ing, pattern recognition, and parallel information storage [1, 4]. Nonlinear
Schrödinger (NLS) equation possesses practical interest, since it appears in
many branches of physics, such as NL optics, nuclear physics, and Bose–
Einstein condensates (BECs). In NL optics it describes the propagation of
pulses in optical fibers [5]. In BECs it models the condensate wavefunc-
tion [6, 7, 8], once the two-body interactions are taken into account. The
three-body interactions between cold atoms, in the form of Efimov reso-
nances, have also been observed in an ultracold gas of cesium atoms [6].

In NL optics, the construction of exact solutions for various NLS equa-
tions is one of the most important and essential tasks. With the help of
exact solutions one can better understand the phenomena modeled by these
equations, such as the propagation and stability of optical solitons. In re-
cent years, many powerful methods for constructing exact analytical solu-
tions have been proposed, such as the inverse scattering transform [9,10], the
Hirota’s binary operator approach [11,12], the Bäcklund transformation [13],
and the truncated Painlevé expansion [14]. With the advent of symbolic
computation algorithms, the methods of direct algebraic manipulation have
become feasible. New powerful methods of solution have been invented, such
as the homogeneous balance principle [15], the F-expansion technique [16],
the hyperbolic tangent expansion method [17], the generalized Riccati equa-
tion method [18], and the Jacobi elliptic function (JEF) expansion method
[19], among other. Very recently, for the NLS equation with variable co-
efficients depending on the propagation distance, we have obtained exact
solutions by the self-similar method [20, 21, 22] and the homogeneous bal-
ance and F-expansion technique [23,24,25,26].

In this paper we study spatial solitary waves in a generic Kerr medium
with variable nonlinearity and quadratic external potential. They describe
the propagation of optical pulses when the nonlinearity coefficient and the
external potential are functions of both the propagation distance and the
spatial coordinate. We solve the corresponding NLS equation for the dynam-
ics of localized waves using the similarity transformation, which is suitable
for finding analytical solutions of such NL optical systems. We discover a va-
riety of localized solutions which describe, for example, physically important
applications of amplification and compression of pulses in NL optics. For
periodically varying nonlinearity, sign-reversible variations of the confining
external potential are found, which are useful for soliton management.
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The paper is organized as follows. Section 2 introduces the NLS equation
with variable nonlinearity and quadratic external potential, and presents the
solution method for the problem. Section 3 analyses different types of spatial
solitons obtained. Section 4 gives the conclusions.

2. The solution method

Optical wave propagation in Kerr medium with variable nonlinearity and
external potential in (1 + 1) dimensions [(1 + 1)D] is governed by the scaled
NLS equation of the form

i
∂u

∂z
+

1
2
∂2u

∂x2
+ g(z, x)|u|2u+ V (z, x)u = 0 , (1)

where u(z, x) is the complex envelope of the optical field, z is the dimen-
sionless coordinate along the propagation direction, and x is the transverse
spatial variable. The function g(z, x) is a variable nonlinearity coefficient and
V (z, x) is the external potential; both of them are assumed to be functions
of the propagation distance and the spatial coordinate. When the functions
g and V depend only on the longitudinal variable z, Eq. (1) turns into the
NLS equation used in [23]. If z → t, Eq. (1) becomes the generalized Gross–
Pitaevskii (GP) equation with time-dependent coefficients; this equation is
extensively used in BECs [26,27,28,29]. Pérez-García et al. [27] constructed
exact breathing solutions of the generalized GP equation with the help of a
similarity transformation to the standard NLS equation. Serkin et al. [29]
obtained nonautonomous solitons in the linear and harmonic oscillator po-
tentials. Kruglov et al. [30] obtained exact self-similar solutions to the gener-
alized NLS equation with distributed coefficients. Kundu [31] demonstrated
that the nonautonomous NLE equation in (1 + 1)D indeed is equivalent to
the standard autonomous NLS equation.

Here, we consider the generalized NLS equation with the general quad-
ratic potential of the form V (z, x) = 1

2Ω
2(z)x2 + α(z)x + µ(z). Our first

goal is to transform Eq. (1) into the standard NLS equation

i
∂U

∂z
+

1
2
∂2U

∂θ2
+G|U |2U = 0 , (2)

where U = U(θ), θ ≡ θ(z, x) is a new variable to be determined, and G is
a constant nonlinearity parameter. Equation (2) is the standard (1 + 1)D
NLS equation, possessing the well-known exact first-order and second-order
bright (G = 1) soliton solutions [32]

U1(z, θ) = λ sech(λθ)e
1
2
iλ2z , (3a)

U2(z, θ) =
2
∆

(
λ1+λ2

λ1−λ2

)[
λ1 cosh(λ, θ)e

1
2
iλ2

1z+λ2 cosh(λ2θ)e
1
2
iλ2

2z
]
, (3b)
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where∆ = cosh[(λ1+λ2)θ]+(λ1+λ2
λ1−λ2

)2 cosh[(λ1−λ2)θ]+ 4λ1λ2
(λ1−λ2)2

cos(λ
2
1−λ2

2
2 )z.

Here λ, λ1, λ2 (λ1 6= λ2) are the amplitudes, and ∆ 6= 0.
To connect the solutions of Eq. (1) with those of Eq. (2), we use the

similarity transformation [27,28,29,30]

u(z, x) = ρ(z, x)eiϕ(z,x)U [θ(z, x)] , (4)

where ρ(z, x) and ϕ(z, x) are the real (non-negative) amplitude and the
phase, to be determined. Here we require U(θ) to satisfy Eq. (2) and u(z, x)
to be the solution of Eq. (1). The substitution of Eq. (4) into Eq. (1) and
the requirement that the real and imaginary parts be separately equal to
zero, with the use of Eq. (2) leads to the following set of equations for ρ, θ
and ϕ (

ρ2
)
z

+
(
ρ2ϕx

)
x

= 0 , (5a)

ϕx = −θz
θx
, (5b)

1
2

(
ρ2θx

)
x

= 0 , (5c)

gρ2 = Gθ2
x , (5d)

V (z, x) = ϕz − 1
2

ρxx
ρ

+ Eθ2
x + 1

2ϕ
2
x , (5e)

where E is the eigenvalue of the NL Eq. (2), which corresponds to the chem-
ical potential in the Bose–Einstein condensate framework or to the propa-
gation constant in the NL optics framework. The subscripts here denote the
partial derivatives. From Eq. (5c) we have

ρ2(z, x) =
λ2(z)
θx(z, x)

, (6)

where λ(z) is an arbitrary function of the propagation distance z. The
substitution of Eqs. (6) and (5b) into Eq. (5a) gives

θzxθx − θzθxx
θ2
x

=
λz
λ
. (7a)

Taking the derivative of Eq. (5b) with respect to x, one gets

θzxθx − θzθxx
θ2
x

= −ϕxx . (7b)

From Eq. (7a) we find (
θz
θx

)
x

=
λz
λ
. (8)
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After integrating Eq. (8), one obtains

θ(z, x) = F (ξ) , ξ = λ(z)x+ δ(z) , (9)

where δ(z) is an arbitrary function of z. Comparing Eq. (7a) with Eq. (7b)
and using Eq. (5b), we arrive at the following result

ϕ(z, x) = −λz
2λ
x2 − δz

λ
x+ γ(z) , (10)

where γ(z) is also an arbitrary function of z. Thus, from Eqs. (4), (6), (9),
and (10) we get the following exact analytical solution of Eq. (1)

u(z, x) =

√
λ

∂F (ξ)/∂ξ
U [θ(z.x)]ei[

λz
2λ
x2− δz

λ
x+y(z)] , (11)

where U is the soliton solution of the standard NLS Eq. (2), determined by
Eqs. (3); other parameters in Eq. (11) satisfy the following equations, which
are found from Eqs. (5d), (5e), (6) and (10)

g(z, x) = G
λ4

ρ6
, (12a)

V = −ρxx
2ρ

+E
λ4

ρ4
+γz+

(
2λ2

z−λλzz
)
x2+2 (2λzδz−λδzz)x+δz

2λ2
. (12b)

Therefore, by choosing appropriately the functions λ(z), δ(z), and γ(z),
we can generate the functions ρ(z, x), g(z, x), and V (z, x), for which the
solutions of Eq. (1) can be obtained from those of Eq. (11) via Eq. (3).

We now discuss the optical intensity I = |u|2 distributions and exploit
them to exhibit interesting non-trivial behavior of the analytical solution of
Eq. (1). We want to point out that the procedure requires a suitable choice
of θ(z, x), ρ(z, x) and the functions g(z, x) and V (z, x), to determine the
solution given by Eq. (11) subsequently.

3. Discussion

To illustrate some interesting examples, we focus on the specific nonlin-
earities. First, we presume that the nonlinearity coefficient is given explicitly
by g = Gλ(z), which corresponds to the choice F = ξ = λ(z)x+ δ(z). Sub-
stituting the nonlinearity coefficient g(z, x) into Eq. (12a) yields ρ2(z, x) =
λ(z). In the following, we consider a generic case for the set of parameters:
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δ(z) = 0, E = 0, γ = 0 and λ(z) = 1 + λ0 sin(ω0z), where λ0 ∈ (−1, 1) and
0 6= ω0 ∈ R. From Eq. (12b) one finds that the potential can be cast as

V (z, x) =
2λ2

z − λλzz
2λ2

x2 .

Thus, the solution of Eq. (1) is obtained from Eq. (11). For this choice,
namely, we consider the harmonic potential case.

Typical behavior of these solitons is depicted in Fig. 1 for the first-order
soliton and in Fig. 2 for the second-order soliton. We find that these solitons
take the shape of a breather. We calculate some physical quantities charac-
terizing the breathers, such as the breather amplitude and the period. For
the first-order soliton, the amplitude of peaks depends on the propagation
distance as

|u1|2 = (1 + λ0 sinω0z)2sech2
[
(1 + λ0 sinω0z)

2 x
]
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Fig. 1. (Color online) Breathing oscillations of order-one soliton, after choosing the
soliton management parameters as ω0 = 2, and (left) λ0 = 0.8; (right) λ0 = 0.2.
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Fig. 2. (Color online) Second-order soliton interactions. The soliton management
parameters are: ω0 = 2, and (left) λ10 = 0.2, λ20 = 0.8; (right) λ10 = 0.3,
λ20 = 0.7.
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and the breather period is 2π/ω0. For the second-order soliton, the corre-
sponding expressions are as follows [32]

|u2|2 =
4A2

C2

B +
2∑
j=1

(1 + λj0 sinω0z)
2 cosh2 (1 + λj0 sinω0z)x

 .
Tsol =

π(
λ2

10 − λ2
20

)
cosω0z

,

where

A =
2 + (λ10 + λ20) sinω0z

(λ10 + λ20) sinω0z
,

B = 2 cos

(
λ2

10 − λ2
20

)
2

z
2∏
j=1

(1 + λj0 sinω0z) cosh(1 + λj0 sinω0z)x ,

and

C = cosh [(λ10 + λ20)x sinω0z] +
(
λ10 + λ20

λ10 − λ20

)2

× cosh [(λ10 − λ20)x sinω0z]+
4λ10λ20

(λ10 − λ20)2
cos
(
λ2

10 − λ2
20

2
z

)
.

Order-two spatial soliton has been observed in the pioneering experi-
ments in fibers [33]. In the general case of a system with distance-dependent
nonlinearity, the soliton period becomes dependent on the propagation dis-
tance. The intensity profiles of the breathers build up a complex landscape
of peaks and valleys, and reach increasing peaks as the distance is increased.
Since the problem is in (1 + 1)D, no collapse is expected. Consequently,
variations of the confining harmonic potential are found to be periodically
attractive and repulsive, to support the stable soliton management in this
example [33].

Next, we assume that the nonlinearity coefficient is constant, g = G;
this corresponds to the choice F = ξ = λ(z)x+ δ(z). Other parameters are
chosen as: λ(z) = λ0 = const., δ(z) = λ0 cos(ω0z), and E = 1, γ = 0, where
ω0 6= 0. With this choice, from Eq. (12) we find:

V (z, x) = ω2
0 cos2(ω0z)x+ λ

4/3
0 − λ0ω0 sin(ω0z) .

The potential is a linear function of x. In Figs. 3 and 4 the first-order and
the second-order bright solitary intensity profiles I = |u|2 are presented, as
functions of x and z. Similar to the case above, the amplitude of peaks and
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the period can also be written down easily. As one can see, with the periodic
change of the linear potential parameter, the first- and the second-order
solitons display a zig-zag propagation. Thus, stable soliton propagation
can be achieved by manipulating the linear potential field. An interesting
collision behavior is noted for the two peaks of the second-order soliton.
After the first collision, the soliton reemerges as two distinct wave packets,
which then collide repeatedly.
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Fig. 3. (Color online) Periodic oscillations of the order-one soliton, after choosing
the soliton management parameters, λ0 = 1 and (left) ω0 = 1; (right) ω0 = 0.5.
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Fig. 4. (Color online) Periodic interactions within the second-order soliton, with
zig-zag propagation. The soliton management parameters are ω0 = 0.25 and (left)
λ10 = 0.2, λ20 = 0.8; (right) λ10 = 0.3, λ20 = 0.7.

To confirm the validity of solution (11) and test the stability of those
solitons, we perform a numerical study and compare the analytical solution
with the numerical simulation. Figure 5 shows the comparison of the ex-
act solution from Eq. (11) with the results of the numerical simulation of
Eq. (1), obtained by utilizing the split-step beam propagation method [24]
and adding 10% white noise to the initial condition. Numerical simulation
of the solitary wave from Fig. 1, right is performed, and we set initial con-
ditions given by the analytical solution (11) at z = 0, with the step-length
∆z = 0.02. It is seen that the analytical solution is consistent with the nu-
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merical simulation. It is evident that the noise does not cause the instability
of the solitary wave and that the solitary wave indeed is stable.
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Fig. 5. (Color online) Comparison of the analytical solution with the numerical
simulation at different propagation distances. Solid line is the analytical solution
from Eq. (11), dashed line is the numerical simulation of Eq. (1).

4. Conclusions

In summary, we have studied exact solutions of the nonlinear Schrödinger
equation with a variable nonlinearity and a quadratic external potential,
both depending on the propagation distance and the transverse spatial co-
ordinate. A simple procedure is presented for controlling the behavior of
solitons, in which one may select the parameters of nonlinearity and ex-
ternal potential, to control the propagation behavior of solitons. We have
considered two interesting examples, the harmonic and the potential linear
in x. In the case of periodically varying nonlinearity coefficient, the soliton
is found to be periodically attractive for the second-order soliton.
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