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A generalized focusing NLS equation is studied by the dressing method
via local Riemann–Hilbert problem. The associated RH problem with zeros
is solved by means of regularization. The explicit solutions, including one-
soliton, two-soliton solution and breather solution, are obtained.
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1. Introduction

In this paper, the generalized (self-)focusing NLS (GFNLS) equation

iut + uxx + 2ε|u|2u+ 4β2|u|4u− 4iεβ
(
|u|2
)
x
u = 0 (1)

will be studied by dressing method via local Riemann–Hilbert (RH) prob-
lem [1,2,3,4,5,6,7,8,9], where ε > 0 and β is a real constant. Equation (1)
can be transformed to the classical NLS equation [10, 11, 12, 13, 14] which
describes the self-modulation of one-dimensional waves in a nonlinear dis-
persive medium. It is well known that the solution of focusing NLS equation
with rapidly decreasing type [10,12] can be transformed into the solution of
the defocusing NLS equation with finite density type [3,15,16]. It is readily
verified that the solution of GFNLS equation becomes that of generalized
defocusing NLS equation (ε < 0) under the transformation

x→ ix , t→ −t , ε→ −ε , β → iβ .

∗ The authors are grateful to the Referee for his/her valuable suggestions. Project
supported by the National Natural Science Foundation of China (Grant No 11001250).
† jyzhu@zzu.edu.cn

(1893)



1894 J. Zhu, Z. Li

The GFNLS equation (1) is the compatibility condition between two
linear matrix equations [17,18]

ψx = Uψ , ψt = V ψ , (2)

where
U = −ikσ3 − iβQ2σ3 +Q , Q = i

(
0 u
εū 0

)
, (3)

and

V = −2ik2σ3 + 2kQ+ iσ3Qx − 2βQ3 + β[Qx, Q] +
(
4iβ2Q4 − iQ2

)
σ3 . (4)

In fact, the compatibility condition of the system (2), that is

Ut − Vx + [U, V ] = 0 , (5)

gives the nonlinear evolution equation

Qt − iσ3Qxx + 2iσ3Q
3 − 4iβ2σ3Q

5 + 4β
(
Q2
)
x
Q = 0 , (6)

and a conservation law

−iβ
(
Q2
)
t

=
(
β[Qx, Q]σ3 + 4iβ2Q4

)
x
. (7)

In the dressing procedure, the zero seed solution is chosen to define the
Jost matrix solutions which are interconnected by the scattering matrix. The
analytic properties are used to factorize the scattering matrix, from which
the associated local matrix RH problem is constructed. The reconstruc-
tion formula for the potential is obtained by the normalization which is not
canonical. The reconstruction formula about the solution of RH problem
is transformed into the expression about the so-called dressing factor [19]
(or soliton matrix [20, 21]) which is obtained by means of regularization
from the RH problem with zeros [22]. The dressing factor is the expression
of (x, t)-dependent vector parameters which can be derived by the spectral
equations. In the special cases about the number and form of the zeros
the RH problem, the explicit solutions, including one-soliton, two-soliton
solution and breather solution, are obtained.

2. Jost solutions

It will be more convenient to write the spectral equation in terms of the
matrix J = ψE−1, where E = exp(−ikxσ3) is a solution of the spectral
equation ψx = Uψ for zero potential. Hence, the matrix-valued function
J(x, k) satisfies

Jx = −ik[σ3, J ] + ŨJ , Ũ = Q− iβQ2σ3 . (8)
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For the spectral equation (8), the standard approach is to define the so-called
Jost solutions J±(x, k) by the asymptotic conditions

J±(x, k)→ eα±(x)σ3 , x→ ±∞ , (9)

where

α±(x) = iεβ

x∫
±∞

|u(ξ)|2dξ . (10)

Since trŨ = 0, these boundary conditions imply that det J± = 1 for all x.
Being solutions of the first-order differential equation, the Jost functions

J± are not mutually independent. In fact, they are interconnected by the
scattering matrix S(k),

J− = J+ESE
−1 , S(k) =

(
a(k) −εb̄(k)
b(k) ā(k)

)
, detS(k) = 1 . (11)

The involutive condition of U(x, k) in (2) is U †(x, k̄) = −HU(x, k)H,
H = diag(1, ε), and hence ψ†(x, k̄) = Hψ−1(x, k)H, which implies that
the Jost solutions obey the involutive condition

J†±
(
x, k̄
)

= HJ−1
± (x, k)H . (12)

As a result, the scattering matrix S(k) satisfies the same involution S†(k̄) =
HS−1(k)H.

In the following, we will investigate the analytic properties of the Jost
solutions. For convenience, we introduce the notations:

• [M ]j , (j = 1, 2) denote the j-th column vector of matrix M ;

• [M ]j denote the j-th row vector.

It is noted that [J±]j satisfy the following linear differential equations

∂x[J±]1 − 2ik
(

0 0
0 1

)
[J±]1 = Ũ [J±]1 ,

∂x[J±]2 + 2ik
(

1 0
0 0

)
[J±]2 = Ũ [J±]2 , (13)

which are equivalent to linear integral equations

[J±]1 =
(
e−α±(x)

0

)
+

x∫
±∞

G∓(x− ξ, k)Ũ [J±]1dξ ,

[J±]2 =
(

0
eα±(x)

)
+

x∫
±∞

Ĝ±(x− ξ, k)Ũ [J±]2dξ , (14)
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where

G∓(x− ξ, k) =
(

1 0
0 e2ik(x−ξ)

)
, Imk ≶ 0 ,

Ĝ±(x− ξ, k) =
(
e−2ik(x−ξ) 0

0 1

)
, Imk ≷ 0 . (15)

We see that [J−]1, [J+]2 are analytic in the upper half k plane, and we define
the matrix function Φ+(x, k) as

Φ+(x, k) = ([J−]1, [J+]2) , (16)

which also satisfies the spectral problem (8), and is analytic in the up-
per half k plane. From equation (11), we know that [J−]1 = a(k)[J+]1 +
b(k) exp(2ikx)[J+]2. Then Φ+(x, k) can be expressed in terms of the Jost
solution J+(x, k) and the elements of the scattering matrix as following

Φ+(x, k) = J+(x, k)ES+(k)E−1 , S+(k) =
(
a(k) 0
b(k) 1

)
. (17)

Similarly,

Φ+(x, k) = J−(x, k)ES−(k)E−1 , S−(k) =
(

1 εb̄(k)
0 a(k)

)
. (18)

In order to obtain the analytic function in the lower half plane, we define
such a function Φ−1

− (x, k) by means of the involution (12) as

Φ−1
− (x, k) = HΦ†+

(
x, k̄
)
H . (19)

It is remarked that [J+]1, [J−]2, in (14), are analytic in the lower half plane,
and analytic function in the lower half plane being relative to Φ+ should be
defined by [J+]1, [J−]2. While the reason we introduce the definition (19)
instead of Φ− = ([J+]1, [J−]2) is that the former is more convenient to the
Riemann–Hilbert problem in the next section. It is noted that the row
vectors of J−1

± are relative to the column ones of J± as

[
J−1
±
]1 = − (σ[J±]2)T ,

[
J−1
±
]2 = (σ[J±]1)T , σ =

(
0 −1
1 0

)
.

So, Φ−1
− can be expressed as

Φ−1
− (x, k) =

(
[J−1
− ]1

[J−1
+ ]2

)
=
(
−(σ[J−]2)T

(σ[J+]1)T

)
.
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On the real axis, we have, by virtue of (17) and (18),

Φ−1
− (x, k) = HES†±E

−1J†±H . (20)

In order to reconstruct the potential, we write the asymptotic expansion
for Φ+(x, k),

Φ+(x, k) = e−iγ(x)σ3 +
1
k
Φ(1)(x) +O

(
1
k2

)
, k →∞ , (21)

where γ(x) satisfies the following equation about Φ(1)(x) as

γx(x)I = β
[
σ3, Φ

(1)(x)
]
H
[
σ3, Φ

(1)†(x)
]
H . (22)

On use of the involution (19), it is readily verified that the function Φ(1)
+ (x)

in (21) satisfies the following involutive condition

Φ(1)†(x) = −eiγ(x)σ3HΦ(1)(x)Heiγ(x)σ3 . (23)

Substituting the asymptotic expansion (21) into the spectral equation (8),
and considering the O(1) terms, we find γx = βQ2 and

Q = i
[
σ3, Φ

(1)
]
eiγσ3 . (24)

It is noted that the expression of Q, in virtue of (23), can be rewritten as

Q = −ie−iγσ3H
[
σ3, Φ

(1)†
]
H .

Then the equation γx = βQ2 coincides with the definition (22) by collecting
the above two expressions of Q. Equations (24) and (22) give the reconstruc-
tion formulae of potential. Hence, in order to solve the GFNLS equation,
we should find the analytic solution Φ+(x, k).

3. The Local Matrix Riemann–Hilbert problem

The Local Matrix RH problem can be obtained by the product
Φ−1
− (x, k)Φ+(x, k) on the real axis (Imk = 0), where Φ−1

− (x, k) and Φ+(x, k)
are defined by (20) and (17) (or (18)). The RH problem has the form

Φ−1
− (x, k)Φ+(x, k) = EG0(k)E−1 , G0 = S†+S+ =

(
1 εb̄
b 1

)
, (25)
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and the normalization of the RH problem is

Φ+(x, k) = e−iγ(x)σ3 +
1
k
Φ(1)(x) +O

(
1
k2

)
, k →∞ , (26)

where γ(x) satisfies equation (22).
The RH problem (25) is characterized by the so-called RH data which

are categorized into discrete data (eigenvalue kj and eigenvectors |j〉) and
continuous data (the matrix element b(k)). Solitons correspond to the dis-
crete data of RH problem with zeros of the scattering coefficients a(k) and
ā(k). The equations (17) (or (18)) and (20) imply that the determinants
of the matrices Φ+ and Φ−1

− are given by a(k) and ā(k), respectively. We
give the assumption that a(k) and ā(k) have simple zeros at the points kj
and k̄l in their domains of analyticity, which imply that detφ+(kj) = 0,
Imk > 0, j = 1, 2, . . . , N and detΦ−1

− (k̄l) = 0, Imk < 0, l = 1, 2, . . . , N ,
here the equal number N of the zeros in both domains are guaranteed by
the involution (19).

We will solve the RH problem with zeros (25) by means of its regulariza-
tion. This procedure consists in extracting rational factors from Φ+ which
are responsible for the existence of zeros. If detΦ+(kj) = 0, then at the
point kj there exists an eigenvector |vj〉 in the kernel of matrix Φ+(kj), i.e.
Φ+(kj)|vj〉 = 0. Let us introduce a rational matrix function

χ−1
j = I +

kj − k̄j
k − kj

Pj , Pj =
|vj〉〈vj |
〈vj |vj〉

, (27)

where Pj is the rank 1 projector, P 2
j = Pj , and 〈vj | = |vj〉†. It can be shown

that detχ−1
j = (k − k̄j)(k − kj)−1. Since detΦ+(k) ∼ (k − kj) near the

point kj , we evidently have det(Φ+χ
−1
j ) 6= 0 at the point kj . In this way, we

succeeded in regularizing the RH problem at the point kj . Similarly, zero k̄l
of the matrix function Φ−1

− is regularized by the rational function

χl = I − kl − k̄l
k − k̄l

Pl , (28)

and the matrix χlΦ−1
− has no zero in the point k̄l. The regularization of all

the other zeros is performed similarly and eventually we obtain the following
representation for the analytic solutions

Φ± = φ±Γ , Γ = χNχN−1 . . . χ1 , (29)

where the rational matrix function Γ (x, k) accumulates all zeros of the RH
problem, while the matrix functions φ± solve the regular RH problem

φ−1
− (x, k)φ+(x, k) = Γ (x, k)EG0(k)E−1Γ−1(x, k) . (30)
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In order to obtain the soliton solution of the GFNLS equation, we need only
consider the discrete data, that is b(k) = 0 or G0(k) = I. In this case,
by posing φ± = e−iγ(x)σ3 , then it follows from (29) that the asymptotic
expansion for Γ is written as

Γ (x, k) = I +
1
k
Γ (1)(x) +O

(
1
k2

)
, k →∞ . (31)

For practical purposes, it is more convenient to decompose the prod-
uct (29) into simple fractions [22, 23]. In general, the rational matrix func-
tion Γ (k) and its inverse can be decomposed into terms of two sets of the
vectors |mj〉 and |nj〉

Γ (k) =
N−1∏
l=0

(
I − kN−l − k̄N−l

k − k̄N−l
PN−l

)
= I −

N∑
l=1

kl − k̄l
k − k̄l

|ml〉〈nl| ,

Γ−1(k) =
N∏
j=1

(
I +

kj − k̄j
k − kj

Pj

)
= I +

N∑
j=1

kj − k̄j
k − kj

|nj〉〈mj | . (32)

It can be shown that the 2N vectors |mj〉 and |nj〉 are not independent, but
satisfy the following equation

|nj〉 =
N∑
l=1

|ml〉〈nl|
kl − k̄l
kj − k̄l

|nj〉 . (33)

Let us introduce N ×N matrices

M = (|m1〉, |m2〉, . . . , |mN 〉) , N = (|n1〉, |n2〉, . . . , |nN 〉) ,

D = (Dlj) =
(
〈nl|

1
kj − k̄l

|nj〉
)
, K = diag

(
. . . , kl − k̄l, . . .

)
.

Then (33) can be written as N =MKD orMK = ND−1. In components,

(
kl − k̄l

)
|ml〉 =

N∑
j=1

(
D−1

)
jl
|nj〉 .

Substituting it into (32) and introducing more convenient notation |j〉 ≡
|nj〉, we obtain the desired formulae

Γ (k) = I −
N∑

j,l=1

1
k − k̄l

|j〉
(
D−1

)
jl
〈l| , Dlj =

〈l|j〉
kj − k̄l

, (34)
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and
Γ−1(k) = I +

∑
j,l

1
k − kj

|j〉
(
D−1

)
jl
〈l| . (35)

Let us remember the reconstruction formula (24), which is now written as

Q = ie−iγ(x)σ3

[
σ3, Γ

(1)(x)
]
eiγ(x)σ3 , (36)

where

γxI = β
[
σ3, Γ

(1)(x)
]
H
[
σ3, Γ

(1)†(x)
]
H , Γ (1)† = −HΓ (1)H . (37)

As a result, we will be able to find solutions of the GFNLS equation, provided
that we can calculate explicitly the matrix Γ or the vector |j〉. To this end,
let us differentiate the equation Φ+(kj)|j〉 = 0 in x. Since Φ+ satisfies the
spectral equation (8), then we have the linear x-dependent equation about |j〉

|j〉x = −ikjσ3|j〉 . (38)

In the same manner, we can find the evolutionary equation

|j〉t = −2ik2
jσ3|j〉 . (39)

Hence, the vector |j〉 has the form explicitly as

|j〉 = exp
{
−i
(
kjx+ 2k2

j t
)
σ3

}
|j0〉 , (40)

where |j0〉 is a vector integration constant.

4. Soliton solutions

From the reconstruction (36) and (37), we know that the potential u(x, t)
takes the following expression

u(x, t) = 2e−2iγΓ
(1)
12 , (41)

where

γ = −4εβ∂−1
x

(∣∣∣Γ (1)
12

∣∣∣2) , (42)

and Γ (1)
12 can be obtained from (34). Specially, for N = 1, we let k1 = ξ+ iη,

then the one-soliton solution of GFNLS equation takes the form

u(x, t) = 2ηeiϕ̃sech z , (43)
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where ea+ib = |10〉1/|10〉2 and

z = 2η(x+ 4ξt) + a , ϕ = −2ξx− 4
(
ξ2 − η2

)
t+ b ,

γ = −4εβη2∂−1
x

(
|sech z|2

)
, ϕ̃ = ϕ− 2γ − π

2
.

The two-soliton solution can be obtained from (41) in the case of N = 2.
From the asymptotic expansion of (34), we have

Γ (1) = (detD)−1 [−D22|1〉〈1|+D21|2〉〈1|+D12|1〉〈2| −D11|2〉〈2|] , (44)

where the matrix D takes the form

D =

( 〈1|1〉
k1−k̄1

〈1|2〉
k2−k̄1

〈2|1〉
k1−k̄2

〈2|2〉
k2−k̄2

)
,

and the vectors |j〉, (j = 1, 2) have the form

|j〉 = e(aj+ibj)/2

(
e(zj+iϕj)/2

e−(zj+iϕj)/2

)
,

where kj = ξj + iηj , e
aj+ibj = |j0〉1/|j0〉2 and

zj = 2ηj(x+ 4ξjt) + aj , ϕj = −2ξjx− 4
(
ξ2
j − η2

j

)
t+ bj .

Then the elements of D are

D12 =
2

k2−k̄1
exp

{
1
2 [(a2+a1)+i(b2−b1)]

}
cosh

{
1
2 [(z2+z1)+i(ϕ2−ϕ1)]

}
,

D21 = −D̄12 , D11 =
cosh z1

iη1
, D22 =

cosh z2

iη2
.

Through a direct calculation, we can obtain

Γ
(1)
12 =

V1 + iV2

W2
, (45)

where

V1 = 2η1η2(ξ2 − ξ1)ea1+a2
(
tanh z1sech z2e

iϕ2 − tanh z2sech z1e
iϕ1
)
,

V2 =
[
(ξ2 − ξ1)2 + (η1 + η2)2 − 2η2(η1 + η2)ea2

]
η1e

a1+iϕ1sech z1

+
[
(ξ2 − ξ1)2 + (η1 + η2)2 − 2η1(η1 + η2)ea1

]
η2e

a2+iϕ2sech z2 ,

W2 = −(ξ2 − ξ1)2 − (η1 + η2)2 + 2η1η2e
a1+a2

× [sech z1sech z2 cosh(z1 + z2) + sech z1sech z2 cos(ϕ2 − ϕ1)] .
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With Γ (1)
12 in hand, we can obtain the two-soliton solution of GFNLS equa-

tion from (41) and (42).
In order to obtain the breather solution, we firstly take ξj = 0 and aj = 0,

then

Γ
(1)
12 = i

Ṽ2

W̃2

,

where

Ṽ2 =
(
η2

1 − η2
2

) [cosh(2η2x)
2η2

ei(4η2
1t+b1) − cosh(2η1x)

2η1
ei(4η2

2t+b2)
]
,

W̃2 = cosh [2(η1 + η2)x] + cos
[
4
(
η2

2 − η2
1

)
t+ b2 − b1

]
−(η1 + η2)2

2η1η2
cosh(2η1x) cosh(2η2x) .

Secondly, setting η1 = 3/2, η2 = 1/2 and b1 = 0, b2 = π, one has the
breather solution of GFNLS equation (1), where

Γ
(1)
12 = 2ei(t−

π
2 ) cosh 3x+ 3e8it coshx

cosh 4x+ 4 cosh 2x+ 3 cos 8t
.

It is remarked that the assumption ξj = 0, j = 1, 2 means that the relative
velocity of the solitons is zero, and we put aj = 0, j = 1, 2 because the
maxima of both solitons coincide. It is noted that the initial condition
Γ

(1)
12 (x, 0) = −isechx guarantees the evolution of GFNLS breather. Figure 1

demonstrates the temporal evolution of GFNLS breather.
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Fig. 1. Modular of the breather solution takes the form |u| = 2
∣∣∣Γ (1)

12

∣∣∣.
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5. Summary and discussion

In this paper, we have studied a generalized focusing NLS equation by
using the dressing method which is based on the local RH problem. We have
briefly discussed the direct scattering problem and established the expression
of potential about the solution of RH problem. In order to obtain the soli-
ton solutions, the RH problem with zeros is considered, and the method of
regularization is introduced to reconstruct the expression of potential about
the dressing factor. For the rational matrix, we have decomposed the dress-
ing matrix into sample fractions where all the involved vectors have explicit
(x, t) dependence.

The “potential” matrix in spectral problem (8) has non-zero diagonal
elements, which led to the normalization (9) as introduced in our paper. It
is noted that this normalization can be reduced to the canonical one. While,
if the canonical normalization is considered, the associated discussion will be
complicated and difficult. In the latter case, for example, it will be difficult
to construct the potential about the solution of RH problem.

We have used dressing method via RH problem, but a few results of RH
problem are involved. It is known that the RH problem in the inverse scatter-
ing transform (IST) is involved to reconstruct the potential from knowledge
of the scattering data, this can be done by taking the minus projection of
the RH problem and finding the asymptotic behaviour of the former re-
sult in the inverse scattering problem, (for a review see [4], and references
therein). In this paper, instead of discussing the inverse scattering prob-
lem, we have used the procedure of regularization and decomposition to
reconstruct the potential from the dressing factor which involves the (x, t)
dependent vectors. Following this procedure, it has been shown that it is
more convenient to study the higher order soliton solutions of the integrable
nonlinear PDEs [20,21].

Since the GFNLS (1) is invariant under the transformation u → ueiα,
where α is a real constant, then the conservation law (7) may be regarded
as conservation of particle numbers. So, for the GFNLS equation, the linear
spectral problem (8) contains not only the potential u orQ but also one of the
conserved densities iβQ2 which determines the asymptotic condition (9) of
the Jost solutions. The evolution equation of the latter part of the “potential”
matrix is the conservation law (7).
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