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1. Introduction

In the last time, there appeared a lot of papers dealing with classical and
quantum mechanics (see e.g. [1,2,3]) as well as with field theoretical models
(see e.g. [4]), in which the quantum space-time plays a crucial role. The idea
to use non-commutative coordinates is quite old — it goes back to Heisenberg
and was firstly formalized by Snyder in [5]. Recently, however, there were
found new formal arguments based mainly on Quantum Gravity [6] and
String Theory models [7], indicating that space-time at Planck scale should
be noncommutative, i.e. it should have a quantum nature. Besides, the main
reason for such considerations follows from the suggestion that relativistic
space-time symmetries should be modified (deformed) at Planck scale, while
the classical Poincare invariance still remains valid at larger distances [8,9].

Currently, it is well known, that in accordance with the Hopf-algebraic
classification of all deformations of relativistic and non-relativistic symme-
tries, one can distinguish three types of quantum spaces [10,11] (for details
see also [12]):

(1) Canonical (θµν-deformed) type of quantum space [13,14,15]

[xµ, xν ] = iθµν , (1)

(1905)
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(2) Lie-algebraic modification of classical space-time [15,16,17,18]

[xµ, xν ] = iθρµνxρ , (2)

(3) Quadratic deformation of Minkowski and Galilei spaces [15,18,19,20]

[xµ, xν ] = iθρτµνxρxτ , (3)

with coefficients θµν , θ
ρ
µν and θρτµν being constants.

Besides, it has been demonstrated in [21], that in the case of so-called
acceleration-enlarged Newton–Hooke Hopf algebras U0(N̂H±) the twist de-
formation provides the new space-time non-commutativity of the form1,2,3

(4)

[t, xi] = 0 , [xi, xj ] = if±

(
t

τ

)
θij(x) , (4)

with time-dependent functions

f+

(
t

τ

)
= f

(
sinh

(
t

τ

)
, cosh

(
t

τ

))
,

f−

(
t

τ

)
= f

(
sin
(
t

τ

)
, cos

(
t

τ

))
,

θij(x) ∼ θij = const. or θij(x) ∼ θkijxk and τ denoting the time scale
parameter — the cosmological constant.

It should be also noted that different relations between all mentioned above
quantum spaces (1), (2), (3) and (4) have been summarized in paper [12].

From historical point of view, the studies on so-called coherent states
were started by Schrödinger, who minimalized uncertainty relations for posi-
tion and momenta operator in the case of harmonic oscillator model [25]. The
result of these investigations has been applied in the 60s by Glauber [26] to
provide a complete quantum-theoretical description of coherence for electro-
magnetic free field. It was a pioneer work in quantum optic theory describing
phenomena associated with such processes as laser light emission or laser in-
terferometry [27]. Recently, in articles [28, 29], the above-mentioned results

1 x0 = ct.
2 The discussed space-times have been defined as the quantum representation spaces,
so-called Hopf modules (see [13, 14, 23, 24]), for quantum acceleration-enlarged
Newton–Hooke Hopf algebras.

3 The twisted (usual) Newton–Hooke quantum space-times have been provided in [22].
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have been extended to the case of canonically deformed space-time (1). Par-
ticularly, it has been constructed the proper Fock space of quantum states
and the deformed coherent wave functions.

In this article, following [28] and [29], we find coherent states for twisted
acceleration-enlarged Newton–Hooke space-times (31), i.e. we provide states
which saturate the deformed uncertainty relations (39)–(41). In the first sec-
tion we recall basic facts associated with saturation of Heisenberg relations
for commutative space-time. Section 2 concerns the saturation of twist-
deformed uncertainty relations (39)–(41) — it contains the construction of
Fock space and twisted coherent states. The final remarks are discussed in
the last section.

2. Saturation of uncertainty relations and coherent states
in commutative space-time

2.1. General prescription

Let us start with general algorithm for saturation of uncertainty prin-
ciples described in [30, 31]. Hence, it is well-known that for arbitrary two
observables â, b̂ such that [

â, b̂
]

= iĉ , (5)

one can derive the following (so-called generalized Heisenberg principle) in-
equality

(∆â)ψ ·
(

∆b̂
)
ψ
≥ 1

2 |〈ĉ〉ψ| , (6)

where |ψ〉 denotes quantum state normalized to unity and

(∆ô)ψ =
√
〈ψ|(ô− 〈ô〉ψI)2|ψ〉 ; ô = â, b̂ . (7)

The Heisenberg relation (6) is saturated when the following condition is
satisfied

(â− 〈â〉ψI) |ψ〉 = −iξ
(
b̂−

〈
b̂
〉
ψ

I
)
|ψ〉 . (8)

Further, by acting with â − 〈Â〉ψI on both sides of equation (8), using for-
mula (5) and again (8), one can rewrite the above condition as follows

(â− 〈â〉ψI)2|ψ〉 = −ξ2

(
b̂−

〈
b̂
〉
ψ

I
)2

|ψ〉+ ξĉ|ψ〉 , (9)

or, equivalently, on multiplying by |ψ〉 from the left as

(∆â)2
ψ + ξ2

(
∆b̂
)2

ψ
= ξ〈ĉ〉ψ . (10)
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It is easy to check that the relation (10) together with the saturated form
of Heisenberg principle (6) gives

(∆â)2
ψ =

ξ

2
〈ĉ〉ψ ,

(
∆b̂
)2

ψ
=

1
2ξ
〈ĉ〉ψ , (11)

which explains the meaning of ξ.

2.2. The standard Heisenberg relation case

Let us now apply the above scheme to the standard Heisenberg relation

[x̂, p̂] = i~ , (12)

which yields inequality

∆x̂ ·∆p̂ ≥ ~
2
. (13)

In accordance with the formula (8) one can observe that the uncertainty
relation (13) is saturated iff

(x̂− αI)|ψ〉 = −iξ(p̂− βI)|ψ〉 , (14)

where α = 〈x̂〉ψ and β = 〈p̂〉ψ. Next, we define in a standard way the
creation/annihilation operators4

a ≡ 1√
2~

(x̂+ ip̂) , a† ≡ 1√
2~

(x̂− ip̂) , (15)

satisfying [
a, a†

]
= 1 , (16)

and then, the Hilbert space of states is spanned by the vectors

|n〉 =
1√
n!

(
a†
)n
|0〉 . (17)

Firstly, in order to find the general solution of equation (14) one should
notice that ξ is bigger than zero5. Further, we consider ξ = 1 and observe
that in such a case the equation (14) can be rewritten as follows

a|ψ〉 = z|ψ〉 with z =
α+ iβ√

2~
. (18)

4 We use ω = m = 1 units.
5 In fact, parameter ξ is different than zero because operator x̂−αI cannot have normal-
ized eigenvectors (operators commuting to c-number have no normalized eigenvectors
in their common invariant domain). Consequently, for ξ 6= 0 equation (11) gives ξ
bigger than zero.
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The solutions of (18), i.e. the eigenstates of annihilation operator a are called
coherent states and, particularly, the vacuum vector is coherent state corre-
sponding to the eigenvalue z equal zero. In order to find remaining solutions
of (18) one defines, for any complex value of z, the unitary operators

U(z) ≡ eza†−z̄a = e−
1
2
|z|2eza

†
e−z̄a . (19)

Next, one can easily check that

U †(z)aU(z) = a+ z · I , (20)

what means that any coherent state for ξ = 1 is given by

|z〉 ≡ U(z)|0〉 = e−
1
2
|z|2eza

† |0〉 = e−
1
2
|z|2

∞∑
n=0

zn√
n!
|n〉 . (21)

Let us now turn to the case ξ 6= 1 for which formula (14) can be written as

aξ|ψ〉 = z|ψ〉 , (22)

with

aξ =
1√
2~

(
x̂√
ξ

+ i
√
ξp̂

)
, a†ξ =

1√
2~

(
x̂√
ξ
− i
√
ξp̂

)
, (23)

and
z =

1√
2~

(
α√
ξ

+ iβ
√
ξ

)
. (24)

It is also easy to verify that [
aξ, a

†
ξ

]
= 1 , (25)

and that for ξ = 1 we have
aξ=1 = a . (26)

Solutions of equation (22) can be find with use of ξ-creation/annihilation
a†ξ/aξ operators and ξ-vacuum state |0〉ξ. However, all representations of
Fock algebra are unitarily equivalent and, indeed, one can check that

V (ξ)aV †(ξ) = aξ , V (ξ)a†V †(ξ) = a†ξ , (27)

for the unitary operator V (ξ) defined by

V (ξ) = e
− 1

4
ln ξ

“
a2−(a†)2

”
. (28)
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Consequently, the solution of equation (14) can be written as

|z, ξ〉 = V (ξ)U(z)|0〉 = e−
1
2
|z|2e

− 1
4

ln ξ
“
a2−(a†)2

”
eza
† |0〉 (29)

with complex parameter z related to the mean values of x̂ and p̂ operators,
and ξ describing their dispersions (see formulas (11) and (18), respectively)

(∆x̂)2 =
ξ~
2
, (∆p̂)2 =

~
2ξ
. (30)

3. Coherent states for twist-deformed acceleration-enlarged
Newton–Hooke space-times

In this section we turn to the twisted acceleration-enlarged Newton–
Hooke space-times equipped with classical time and quantum spatial direc-
tions, i.e. we consider spaces of the form

[t, x̄i] = 0 , [x̄1, x̄2] = if(t) ; i = 1, 2 , (31)

with positive defined function f(t) given by6

f(t) = fκ1(t) = f±,κ1

(
t

τ

)
= κ1C

2
±

(
t

τ

)
, (32)

f(t) = fκ2(t) = f±,κ2

(
t

τ

)
= κ2τ

2 S2
±

(
t

τ

)
, (33)

f(t) = fκ3(t) = f±,κ3

(
t

τ

)
= 4κ3τ

4

(
C±

(
t

τ

)
− 1
)2

, (34)

C+/−

(
t

τ

)
= cosh/cos

(
t

τ

)
and S+/−

(
t

τ

)
= sinh/sin

(
t

τ

)
.

As it was already mentioned in Introduction, in τ → ∞ limit, the above
quantum spaces reproduce the canonical (1), quadratic (3) and quartic type
of space-time non-commutativity, with7

fκ1(t) = κ1 , (35)
fκ2(t) = κ3 t

2 , (36)
fκ3(t) = κ4 t

4 . (37)
6 κa > 0.
7 Space-times (35), (36) correspond to the twisted Galilei Hopf algebras provided
in [15], while the quantum space (37) is associated with acceleration-enlarged Galilei
Hopf structure [21].
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Of course, for all parameters κa running to zero the above deformations
disappear.

The above spaces can be extended to the whole algebra of position and
momentum operators as follows

[x̄1, x̄2] = ifκa(t) , [p̄i, p̄j ] = 0 , [x̄i, p̄j ] = i~δij , i, j = 1, 2 , (38)

and then, the corresponding uncertainty relations take the form

∆x̄1∆x̄2 ≥
fκa(t)

2
, (39)

∆x̄1∆p̄1 ≥
~
2
, (40)

∆x̄2∆p̄2 ≥
~
2
. (41)

In the next two subsections we construct the quantum-mechanical states
saturating the deformed Heisenberg principles (39)–(41). Partially, we use
algorithm described in pervious section and the results of articles [28,29].

3.1. Oscillator representations

In order to find the coherent states associated with twisted commutation
relations (38), we provide their oscillator (irreducible) representations. First
of all, we observe that position and momentum operators x̄i and p̄i can be
written in terms of canonical ones (x̂i, p̂i) as follows

x̄i ≡ x̂i −
fκa(t)

2~
εij p̂j , p̄i ≡ p̂i , (42)

with ε12 = −ε21 = 1 and ε11 = ε22 = 0. Then, it seems sensible to introduce
the following definition of creation/anihilation operators

ai(t) ≡
1√
2~

[
x̄i +

(
iδij +

fκa(t)
2~

εij

)
p̄j

]
, (43)

a†i (t) ≡
1√
2~

[
x̄i +

(
−iδij +

fκa(t)
2~

εij

)
p̄j

]
, (44)

which satisfy [
ai(t), a

†
j(t)
]

= δij . (45)

In such a way we arrive at Fock space spanned by the orthonormal vectors
of the form

|n1, n2, t〉 =
1√
n1!

1√
n2!

(
a†1(t)

)n1
(
a†2(t)

)n2

|0〉 . (46)
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For later convenience we also provide the modified operators

a±(t) ≡ 1√
2

(a1(t)∓ ia2(t)) , a†±(t) ≡ 1√
2

(
a†1(t)± ia†2(t)

)
, (47)

leading to the following (new) basis

|n+, n−, t〉 =
1√
n+!

1√
n−!

(
a†+(t)

)n+
(
a†−(t)

)n−
|0〉 . (48)

3.2. Saturating of uncertainty relations

Let us construct all states which saturate the uncertainty relations (39).
To this end, in accordance with algorithm proposed in [28] and [29], we
define the following set of independent creation/anihilation operators

b(t) ≡

√
~

2fκa(t)

[(
1 +

fκa(t)
2~

)
a− +

(
1− fκa(t)

2~

)
a†+

]
,

b†(t) ≡

√
~

2fκa(t)

[(
1 +

fκa(t)
2~

)
a†− +

(
1− fκa(t)

2~

)
a+

]
,

c(t) ≡

√
~

2fκa(t)

[(
1 +

fκa(t)
2~

)
a+ +

(
1− fκa(t)

2~

)
a†−

]
,

c†(t) ≡

√
~

2fκa(t)

[(
1 +

fκa(t)
2~

)
a†+ +

(
1− fκa(t)

2~

)
a−

]
. (49)

Next, by straightforward calculations we get

b(t) =
1√

2fκa(t)
(x̄1 + ix̄2) , b†(t) =

1√
2fκa(t)

(x̄1 − ix̄2) , (50)

what means that both b-operators are spanned in a standard way by non-
commutative positions x̄1 and x̄2. Consequently, due to the commutation
relations (31)8 one can applied the standard scheme proposed in Section 2.
Then, in accordance with formula (29) we have

|z, ξ, t〉 = e−
1
2
|z|2e

+ 1
4

ln ξ
“
(b†(t))2−b2(t)

”
ezb
†(t)|0, t〉b , (51)

where symbol |0, t〉b denotes the vacuum state for annihilator b(t), i.e.

b(t)|0, t〉b = 0 . (52)
8 They are the same as canonical commutation relations (12) with operator p̂ replaced
by x̂2 and ~ replaced by function fκa(t).
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It should be noted that the choice of state (52) is not unique, i.e. it may
contain an arbitrary number of c†(t) excitation. Besides, one should observe
that in accordance with formal arguments proposed in [28,29], the represen-
tation given by b(t), b†(t), c(t) and c†(t) operators is unitary equivalent to
that defined by a±(t) and a†±(t). The corresponding transformation is given
by9

b(t) = T (t) [a−(t)]T †(t) , (53)

b†(t) = T (t)
[
a†−(t)

]
T †(t) , (54)

c(t) = T (t) [a+(t)]T †(t) , (55)

c†(t) = T (t)
[
a†+(t)

]
T †(t) , (56)

with
T (t) = e

1
2

ln
“

2~
fκa (t)

”“
a+(t)a−(t)−a†+(t)a†−(t)

”
. (57)

Consequently, it means that the states saturating (31) are linear combina-
tions with respect to n+ of the vectors10

|z, ξ, n+, t〉 = e−
1
2
|z|2T (t)e

− 1
4

ln ξ

„
a2
−(t)−

“
a†−(t)

”2
«
eza
†
−(t)|n+, 0, t〉 . (58)

Let us now turn to the states saturating

∆x̄1∆p̄1 ≥
~
2
. (59)

Firstly, as in the pervious case, we define the new creation/anihilation op-
erators as follows

d(t) = a1(t) +
ifκa(t)

4~

(
a2(t)− a†2(t)

)
, (60)

d†(t) = a†1(t) +
ifκa(t)

4~

(
a2(t)− a†2(t)

)
, (61)

e(t) = a2(t) +
ifκa(t)

4~

(
a1(t)− a†1(t)

)
, (62)

e†(t) = a†2(t) +
ifκa(t)

4~

(
a1(t)− a†1(t)

)
, (63)

which in d-sector take the form

d(t) =
1√
2~

(x̄1 + ip̄1) , d†(t) =
1√
2~

(x̄1 − ip̄1) . (64)

9 It can be find by analogy to the algorithm proposed in [28] and [29] for the case of
canonical deformation (1).

10 z and ξ are fixed.
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Further, one can find unitary transformation connecting d(t) and e(t) oper-
ators with old ones. It looks as follows

d(t) = S(t) [a1(t)]S†(t) , e(t) = S(t) [a2(t)]S†(t) , (65)

where
S(t) = e

ifκa (t)

4~

“
a1(t)−a†1(t)

”“
a2(t)−a†2(t)

”
. (66)

Consequently, the states saturating (59) can be written as linear combina-
tions, with respect to n2 but with parameters z and ξ fixed, of the following
vectors

|z, ξ, n2, t〉 = e−
1
2
|z|2S(t)e

− 1
4

ln ξ

„
a1(t)2−

“
a†1(t)

”2
«
eza
†
1(t)|0, n2, t〉 , (67)

It is easy to see, that the states saturating (41) are obtained by exchanging
index “1” to “2” and functions fκa(t) to −fκa(t) in formula (67), i.e.

|z, ξ, n1, t〉 = e−
1
2
|z|2S†(t)e

− 1
4

ln ξ

„
a2(t)2−

“
a†2(t)

”2
«
eza
†
2(t)|0, n1, t〉 . (68)

4. Final remarks

In this article we construct states saturating uncertainty relations for
twisted acceleration-enlarged Newton–Hooke space-times (4). Particularly,
for very special choice of considered quantum spaces we get the results ob-
tained in [28,29] for canonical deformation (1).

It should be noted that presented investigation has been performed for
the case of quite simple deformation with two spatial directions commut-
ing to function of classical time. However, the mentioned studies can be
extended in non-trivial way to much more complicated space-time models,
such as Lie-algebraic or quadratic type of non-commutativity with two spa-
tial directions commuting to space. Besides, one should better understand
the obtained results in context of (for example) wave-gravitational inter-
ferometry processes, for which saturating states play a prominent role [27].
The works in these directions already started and are in progress.

The author would like to thank J. Lukierski and A. Frydryszak for valu-
able discussions.
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